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Abstract

Behavior-associated structural connectivity (SC) and resting-state functional connec-

tivity (rsFC) networks undergo various changes in aging. To study these changes, we

proposed a continuous dimension where at one end networks generalize well across

age groups in terms of behavioral predictions (age-general) and at the other end, they

predict behaviors well in a specific age group but fare poorly in another age group

(age-specific). We examined how age generalizability/specificity of multimodal

behavioral associated brain networks varies across behavioral domains and imaging

modalities. Prediction models consisting of SC and/or rsFC networks were trained to

predict a diverse range of 75 behavioral outcomes in a young adult sample (N = 92).

These models were then used to predict behavioral outcomes in unseen young

(N = 60) and old (N = 60) subjects. As expected, behavioral prediction models

derived from the young age group, produced more accurate predictions in the unseen

young than old subjects. These behavioral predictions also differed significantly

across behavioral domains, but not imaging modalities. Networks associated with

cognitive functions, except for a few mostly relating to semantic knowledge, fell

toward the age-specific end of the spectrum (i.e., poor young-to-old generalizability).

These findings suggest behavior-associated brain networks are malleable to different

degrees in aging; such malleability is partly determined by the nature of the behavior.
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1 | INTRODUCTION

In recent years, research using various edge-based prediction model-

ing approaches has mapped out the brain networks associated with a

diverse range of behaviors. These approaches generally involve deriv-

ing from a training dataset, the optimal prediction weights assigned to

the edges in the connectome, and then applying these weights to

unseen subjects' network of edges to predict their behavioral traits.

Such weights can exist in the binary form of ones and zeros in the

connectome-based prediction model (Shen et al., 2017) or as continu-

ous values in other prediction approaches such as those of partial

least squares (Yoo et al., 2018) and ridge regression (Gao, Greene,

Received: 23 June 2021 Revised: 9 December 2021 Accepted: 13 December 2021

DOI: 10.1002/hbm.25759

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;43:2405–2418. wileyonlinelibrary.com/journal/hbm 2405

https://orcid.org/0000-0002-2563-9658
mailto:junhong.yu@ntu.edu.sg
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


Constable, & Scheinost, 2019). These “weighted” connectomes would

then constitute a behavior-associated network (BAN). Thus far, most

of these networks are predominantly conceived in the resting-state

functional connectivity (rsFC) modality. Some research has also shown

that BANs can also be constructed using the structural connectivity

(SC) modality; importantly, the behavioral predictions obtained from

these SC networks are largely comparable to their rsFC counterparts

(Yu et al., 2020). Generally, edge-based prediction modeling studies

have been mostly carried out among young age groups (Yoo

et al., 2018). These studies showed that BANs across a wide spectrum

of behavior outcomes, such as personality traits (Jiang et al., 2018),

cognition (Yoo et al., 2018), affect and psychopathology (Wang

et al., 2021), interpersonal closeness (Hyon et al., 2020), and life satis-

faction (Itahashi, Kosibaty, Hashimoto, & Aoki, 2021), generalized

fairly well to unseen subjects of the same age group.

Much less research has looked at the across-age generalizability

of BANs. In this regard, the limited findings have been mixed. One

study showed that the rsFC network associated with processing

speed generalized poorly across age groups (Gao et al., 2020), while

another showed relatively better generalizability of a sustained-atten-

tion-associated functional connectivity (FC) network across age

groups (Fountain-Zaragoza, Samimy, Rosenberg, & Prakash, 2019). It

is likely that the BANs would undergo changes to varying degrees, in

the course of aging, which could consequently affect the network's

across-age generalizability. To shed light on this, we propose charac-

terizing networks along a continuum, where age-general and age-

specific BANs are located at both extreme ends. Assuming that both

age-specific and age-general BANs are derived from the same age

group, age-general BANs will generalize well beyond the age group

they were derived from—that is they can predict behavioral traits with

similar precision across age groups. On the other hand, although age-

specific BANs will fare poorly in predicting behavioral traits beyond

the age group they were derived from, they will outperform age-

general BANs in behavioral predictions in the age group they are

trained in.

While it will not be surprising if the age-specificity and generaliz-

ability of BANs can be manipulated by varying the age range of the

training sample they are derived from, we put forth two other impor-

tant factors that could determine the age-specificity and generalizabil-

ity of BANs. The first relates to the nature of the behavior. We expect

that stable behavioral traits, such as those relating to personality, are

maintained by BANs that would undergo relatively few changes

across the adult lifespan. On the other hand, cognitive functions,

which typically undergo observable age-related decline and as a result

require compensatory activation of auxiliary brain networks (Park &

Reuter-Lorenz, 2009) to maintain an appropriate level of functioning,

are likely to be underpinned by age-specific BANs.

The second relates to the modality of the BAN. Although whole-

brain SC is on a general downward trajectory starting from early adult-

hood, this SC network appears to be held together by a consistent set

of highly connected and central hubs which remain mostly unchanged

across the lifespan (Betzel et al., 2014). Therefore, given the age-

related stability in the SC network topography, we would expect that

the subset of highly weighted SC edges associated with behavioral

measures to undergo relatively minor changes across aging. On the

other hand, rsFC is highly susceptible to experience-dependent plas-

ticity that could occur in the context of aging. Task-based functional

magnetic resonance imaging (fMRI) studies have shown previously

untapped functional connections can become behaviorally relevant

through the redistribution and reorganization of task-related activity

(Kelly & Castellanos, 2014). Given the high correspondence between

task-related FC and rsFC networks (Cole, Bassett, Power, Braver, &

Petersen, 2014), we would expect experienced-related redistribution

and reorganization to influence rsFC networks in a similar manner. In

this regard, rsFC networks have been previously shown to undergo an

age-related decrease in within-network and increase in between-

network connectivity, resulting in less segregated brain networks

(Damoiseaux, 2017; Zonneveld et al., 2019). In particular, the longitu-

dinal decline in segregation between the default mode and executive

control rsFC networks was associated with decreases in processing

speed (Ng, Lo, Lim, Chee, & Zhou, 2016). Consequently, such segrega-

tion meant that the subset of highly weighted resting-state functional

connections associated with a particular behavior would change dras-

tically with age. To these ends, we postulated, in relative terms, that

SC and rsFC BANs are age-general and age-specific, respectively.

Studying the generalizability of BANs across age groups may be

useful to understand age-related differences and similarities of behav-

ioral traits across the adult lifespan and how they relate to age-related

changes in the brain. For instance, some studies have demonstrated

that normal aging may lead to a reduction in rsFC preferentially at the

default-mode network and the dorsal attention networks; which are

thought to be implicated in cognitive functioning, such as attention

and memory processes (van den Heuvel & Hulshoff Pol, 2010). Others

have also reported FC decrements in normal elderly subjects in motor

and salience networks (Allen et al., 2011; Onoda, Ishihara, &

Yamaguchi, 2012). However, in comparison to the relatively well-

documented course of the cognitive functioning across the adult's

lifespan, age-related changes in the other behavioral domains and

their neural correlates, such as those of affective and social skills are

still understudied (Knight & Mather, 2006; Mather, 2016). The scant

available evidence has pointed to relatively preserved neural mecha-

nisms of emotion across the life span related to both positive and neg-

ative affective states (Mather, 2016). Although these results are

informative, it remains to be known if brain connectivity patterns

associated with behavioral traits could be generalized across age

groups.

To these ends, the current study examined how generalizable

these BANs are across age groups. While the concept of age general-

izability or specificity generally relates to how the models derived

from any age group would generalize to other age groups, in the

current research context, due to sample size limitations we are

only examining how well the young-derived models generalized to the

old age group, but not vice-versa. Hence, subsequent references to

the age-specificity and generalizability concepts should be narrowly

interpreted in this context of generalizing young-derived models to

the old age group. In the current study, we constructed multimodal
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connectome models of a diverse range of behaviors from a young

adult sample, and then assess these models' predictions in unseen

subjects in the young and old age groups. The accuracy metrics of

these predictions are then used to infer the age-specificity and gener-

alizability of the BANs. In the current study, we hypothesized that

(a) BANs derived from the young adult sample would produce more

accurate predictions in the young than old unseen subjects;

(b) multimodal networks associated with personality traits and cogni-

tive functions are likely to fall at the age-general and age-specific ends

of the spectrum, respectively; and (c) SC BANs are significantly more

age-generalizable than their rsFC counterparts.

2 | MATERIALS AND METHODS

2.1 | Participants and procedures

We used the publicly accessible “Leipzig Study for Mind-Body-

Emotion Interactions” (LEMON; Babayan et al., 2019) dataset in the

current study. Participants from this dataset were recruited via public

advertisements, leaflets, online advertisements, and information

events disseminated at the University of Leipzig. To be eligible,

participants should not report any neurological disorders, head injury,

alcohol or other substance abuse, hypertension, pregnancy, claustro-

phobia, chemotherapy, and malignant diseases, current and/or previ-

ous psychiatric disease, or any medication affecting the cardiovascular

and/or central nervous system in a telephone prescreening. After

completing the health report, eligible individuals were invited to the

laboratory. Participants earned monetary compensation upon com-

pleting the data collection procedures, which comprised of the MRI

scanning, a resting-state electroencephalography recording, and a bat-

tery of psychological assessments, such as emotion, cognitive and per-

sonality tests, and a psychiatric interview. The study protocol

conformed to the Declaration of Helsinki and was approved by the

ethics committee at the medical faculty of the University of Leipzig

(reference number 154/13-ff).

This dataset included 227 adults, which were divided into two

age groups—the young age group consisted of 153 individuals

(45 females) aged from 20 to 35 years old (Agemean = 25.1; SD = 3.1);

and the old age group consisted of 74 (37 females) participants aged

from 59 to 77 years old (Agemean = 67.6; SD = 4.7). We subsequently

excluded 1 and 14 subjects from the young and old age groups,

respectively, due to excessive head motion during the MRI scans.

2.2 | Behavioral measures

Participants in the LEMON study were administered a diverse range

of behavioral measures. All measures were administered via their

German-translated versions. Among the behavioral measures assessed

in the LEMON study, we excluded state measures of affect. Given the

volatility of such measures, it is likely that participants' affective states

would change from the time they were measured to the moment they

undergo the MRI scan, thus confounding brain-behavior associations.

Additionally, we also excluded cognitive measures involving error

counts, as most participants scored 0 in these measures. Conse-

quently, a total of 75 behavioral outcomes were included, they can

be broadly grouped in the personality-general, coping, affect, socio-

cognitive and cognitive domains (see Table 1). These selected

behavioral outcomes are described in detail in the supplementary

materials.

2.3 | MRI acquisition

Participants were scanned using a 3 T scanner (MAGNETOM Verio,

Siemens Healthcare GmbH, Erlangen, Germany) equipped with a

32-channel head coil. T1-weighted images were acquired using a

Magnetization Prepared 2 Rapid Acquisition Gradient Echoes protocol

(TE = 2,920 ms; TR = 5,000 ms; TI1 = 700 ms; TI2 = 2,500 ms;

FOV = 256 mm; 176 sagittal slices; voxel size = 1 mm isotropic). For

the resting-state fMRI, 657 T2*-weighted gradient-echo EPI volumes

were acquired (TR = 1,400 ms; TE = 30 ms; 64 axial slices;

matrix = 88 � 88; voxel size = 2.3 mm isotropic). During the resting-

state fMRI scan, subjects were instructed to remain awake and lie still

with their eyes open while looking at a fixation cross. Diffusion-

weighted images were acquired using a high angular resolution diffu-

sion imaging protocol, consisting of 7 b0 images, 60 diffusion direc-

tions at b = 1,000 s/mm2 (TE = 80 ms; TR = 7,000 s; 128 � 128

matrix, 88 axial slices, voxel size = 1.7 mm isotropic). Additionally, gra-

dient echo field maps (TR = 680 ms; TE1 = 5.19 ms; TE2 = 7.65 ms),

and spin-echo images with reversed phase encoding (TR = 7,000 ms;

TE = 80 ms; echo spacing = 0.78 ms) acquired were acquired for cor-

recting the rsfMRI and DWI distortions, respectively.

2.4 | Image processing

Distortion correction was carried out on the EPI volumes using FSL

FUGUE with the subject's magnitude and phase difference images.

Following which, these corrected volumes were preprocessed using

data processing assistant for resting-state fMRI (DPARSF), advance

version (Yan, Wang, Zuo, & Zang, 2016). Briefly, the first 10 volumes

were removed to allow for T1 equilibrations effects. Next, the middle

slice was used as the reference slice for slice time correction and

motion correction realignment. Following this, the corrected images

were coregistered to their respective T1-weighted image, and seg-

mented into gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF) tissue maps using the DARTEL algorithm. Then, nuisance

covariates regression, consisting of Friston 24 head-motion parame-

ters, mean WM and CSF, and linear detrending was carried out. Global

signal regression was also carried out to maximize the associations

between FC and behavioral variables (Li et al., 2019). To further

remove the effects of head motion, scrubbing was carried out on vol-

umes with framewise displacement (FDJenkinson) > 0.2 mm (Yan

et al., 2013). Additionally, participants with excessive head motion, as
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operationalized by having a mean FDJenkinson > 0.2 mm, were

excluded. Next, the images were normalized by DARTEL to MNI

space with a voxel size of 3 � 3 � 3 mm3 and smoothed using a

4 mm FWHM kernel. A band-pass filter of 0.01–0.1 Hz was applied to

the signal to remove the high-frequency physiological noise and low-

frequency drift.

For the network construction, the brainnetome atlas (Fan

et al., 2016) was used to parcellate the whole brain into 246 anatomi-

cal regions corresponding to the nodes of the network. For each par-

ticipant, the time course of each node was extracted, and Fisher's z

transformed correlations between each pair of nodes (i.e., edge) were

computed, resulting in a 246 � 246 connectivity matrix.

TABLE 1 List of behavioral measures

Personality-general Coping Affect Socio-cognitive Cognitive

LOT-R optimism COPE seeking emotional

support

Hamilton depression

rating scale

TAS identifying feelings CVLT Total learning

LOT-R pessimism COPE behavioral

disengagement

NEO-FFI neuroticism TAS describing feelings CVLT short delay

LOT-R overall score COPE positive reframing NEO-FFI extraversion TAS externally-oriented

thinking

CVLT long delay

NEO-FFI openness COPE humor STAI trait anxiety TAS overall score CVLT delayed recognition

NEO-FFI agreeableness COPE substance use STAXI trait anger TeiQueSF global trait emotional

intelligence

LPS-2 fluid intelligence

NEO-FFI

conscientiousness

COPE use of

informational support

STAXI trait anger

temperament

TeiQueSF self-control RWT category fluency

UPPS urgency COPE venting STAXI trait anger

response

TeiQueSF emotionality RWT letter fluency

UPPS lack of

premeditation

COPE planning STAXI anger-in TeiQueSF sociability TAP alertness (with audio

RT)

UPPS lack of perseverance COPE acceptance STAXI anger-out TeiQueSF well-being TAP alertness (without

audio RT)

UPPS sensation seeking COPE self-blame STAXI anger-control TAP incompatibility

(congruent RT)

BIS/BAS drive fun seeking COPE religion TAP incompatibility

(incongruent RT)

BIS/BAS drive reward

responsiveness

COPE denial TAP incompatibility (F

value)

BIS/BAS drive avoidance

behavior

COPE active coping TAP incompatibility (F%)

CERQ self-blame TAP working memory

CERQ acceptance TMT part A

CERQ rumination TMT part B

CERQ positive refocusing WST verbal intelligence

CERQ refocusing on

planning

CERQ positive

reappraisal

CERQ putting into

perspective

CERQ catastrophizing

CERQ blaming others

CERQ self-distraction

ERQ reappraisal

ERQ suppression

Abbreviations: BIS/BAS, Behavioral Inhibition and Approach System; CERQ, Cognitive Emotion Regulation Questionnaire; COPE, Coping Orientations to

Problems Experienced; CVLT, California Verbal Learning Task; ERQ, Emotion Regulation Questionnaire; LOT-R, Optimism Pessimism Questionnaire-

Revised; LPS, Performance Testing System; NEO-FFI, Big-Five of Personality; RWT, Regensburger Word Fluency Test; STAI, State–Trait Anxiety Inventory

(Short version); STAXI, State–Trait Anger Expression Inventory; TAP, Test of Attentional Performance; TAS, Toronto-Alexithymia Scale; TEIQue-SF,

Emotional Intelligence Questionnaire; TMT, Trail Making Test; UPPS, Impulsivity Questionnaires; WST, Vocabulary Test.
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For the preprocessing of diffusion-weighted images, inhomogene-

ity field maps were first generated from the subject's pair of spin-echo

images using FSL topup (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). Subsequent preprocessing of the diffusion images,

tractography, and construction of the structural connectome were car-

ried out using MRtrix3 (Tournier et al., 2019). Briefly, MP-PCA den-

oising (Veraart et al., 2016) and removal of Gibbs ringing artifacts

(Kellner, Dhital, Kiselev, & Reisert, 2016) were carried out on the raw

images. Subsequently, they were corrected for motion, eddy currents,

and susceptibility-induced distortion using the inhomogeneity field

maps obtained previously. Following this, bias field correction (Tustison

et al., 2010) was carried out. Next, the GM), WM, and CSF response

functions were obtained using the Dhollander (Dhollander &

Connelly, 2016) algorithm which are in turn used for estimating fiber

orientation distributions (FOD) in the WM, GM, and CSF tissues from

diffusion data using spherical deconvolution. Then, anatomically con-

strained tractography (Smith, Tournier, Calamante, & Connelly, 2012)

was carried out using the WM FOD. This involved the prior preparation

of a GM mask from the segmentation of the subject's T1 structural

image using FSL FAST, and then using this mask to seed streamlines.

The AAL-90 atlas (Tzourio-Mazoyer et al., 2002) was used to

parcellate the whole brain. For each subject, the AAL-90 template

was first warped to the subject's native DTI space to obtain the trans-

formations. Then, the warped template was overlaid onto the sub-

ject's diffusion tensors for visual inspection of the alignment. The

transformations obtained previously were then applied to warp the

AAL-90 atlas into the subject's native diffusion space. For the network

construction in the subject's native diffusion space, the nodes i and

j were thought to be connected by an edge (eij = [i, j]), if at least one

reconstructed streamline was found with its two endpoints located

within the two nodes, respectively. The edges in the connectivity

matrix for each participant were operationalized as the number of

streamlines connecting between each pair of regions. Finally, the

thresholded matrices were normalized using the Brain Connectivity

Toolbox (Rubinov & Sporns, 2010) within MATLAB.

2.5 | Statistical analysis

The partial least squares regression (PLSR; Yoo et al., 2018) approach

was used to construct connectome models for behavioral predictions.

Briefly, PLSR finds a linear regression solution by projecting predictors

onto a new dimensional space in relation to the outcome variables.

Such dimensional reduction meant the PLSR approach is well-suited

in situations where the predictors are highly correlated among them-

selves, such as in the case of brain connectomes.

PLSR was carried out separately on the SC and rsFC modalities to

construct the prediction models associated with each behavioral mea-

sure in a training dataset, which were subsequently applied to the

testing dataset. First, the SC and FC matrices from the young sample

were assigned to a training (N = 92; young-train) and testing dataset

(N = 60; young-test). We decided on this ratio of train-test assign-

ment, such that the testing datasets for the young and old equally are

matched in terms of sample size. In order to minimize overfitting, we

determined the optimal component number (k) via a fivefold cross-

validation procedure within the young-train sample; we tested PLSR

models with k values of 1–10, and selected the k-component solution

corresponding to the lowest mean square error of prediction. Having

identified the optimal k value, we carried out the PLSR again on the

full young-train dataset, this time setting the number of components

to k, to obtain the beta coefficients, which are then applied to the

young-test dataset, as well as the old age group (i.e., old-test; N = 60)

to obtain two sets of modality-specific predicted behavioral scores, in

these two unseen samples.

Next, we created another array of models that combined the SC

and rsFC features. First, we calculated the network strength—the dot

product of the model coefficients (derived from the young-test sam-

ple) and the subject's connectivity matrix, separately in the SC and

rsFC modalities. Then, within the young-train sample, we regressed

the behavioral scores onto the SC and rsFC network strengths, to

obtain their regression coefficients which were subsequently applied

to the network strengths in the young-test and old-test samples, to

generate their predicted behavioral scores. Hence, for each behavioral

measure in each subject in the young-test and old-test datasets, there

were three predicted scores from the SC-only, rsFC-only, and the

combined SC and rsFC models.

To assess the accuracy of predictions we computed the normal-

ized root mean square error (NRMSE) between the predicted and

observed scores for each of the three models. The NRMSE is the root

mean square error (RMSE) divided by the mean observed score,

and is calculated separately for the young-test and old-test samples

(i.e., NRMSEold = RMSEold/mean observed scoreold; NRMSEyoung =

RMSEyoung/mean observed scoreyoung). The NRMSE can be compared

across measures and samples; lower NRMSE values correspond to

more accurate predictions. To assess the degree of young-to-old age

generalizability, we calculate the ratio of RMSEyoung/RMSEold. These

RMSE ratios can similarly be compared across measures. Ratios close

to 1 meant that the model predicted scores at similar levels of preci-

sion in both the young-test and old-test samples, alluding to greater

generalizability of the young-train model to the old-test sample. On

the other hand, lower RMSE ratios indicate that predictions are more

accurate in the young-test than the old-test samples. Finally, we also

calculated the standardized regression coefficients of the SC and rsFC

network strengths, and take their ratio as a rough indicator of the SC

and rsFC networks' share of contribution in predicting the behavioral

scores in the young sample.

Given that the way the young subjects were shuffled into the

young-train and young-test samples would affect the optimal k value

and subsequently the beta coefficients and prediction metrics, the

above-mentioned procedures were repeated 1,000 times, with partici-

pants randomly assigned into the young-train and young-test samples

each time. After which, the prediction metrics and beta coefficients

obtained at the end of each iteration were averaged across the 1,000

iterations. These analyses are carried out in MATLAB (R2019b). An

overview of the training/testing paradigm is illustrated in Figure 1.

We do not expect the PLSR model derived from the young-train

sample to produce meaningful predictions in the young-test sample

for all behavioral measures. If the model fared poorly in predicting
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behavioral scores among unseen subjects of the same age group, it

would be meaningless to examine the generalizability of the model to

unseen subjects of another age group. To this end, for the reporting

of the results, we excluded behavioral measures that are poorly

predicted in the young-test sample, as defined by having an NRMSE

≥0.5 for the combined SC and rsFC model.

For the comparison of the model characteristics and prediction

metrics between modalities or age groups, we use paired samples

t tests and repeated measures analysis of variance (ANOVA) with the

modality as the within-subject factor. One-way between-subject

ANOVAs were used to compare prediction metrics between behav-

ioral domains. Statistical significance was set at p < .05. The MATLAB

and R codes for the analyses and generating the figures are available

at https://osf.io/u6zck/.

3 | RESULTS

3.1 | Comparing behavioral outcomes across age
groups

Figure 2 illustrates the differences in behavioral outcomes, as quanti-

fied by Cohen's ds, across both age groups. In general, relatively large

differences (i.e., Cohen's d > 0.5) exist across most outcomes in the

cognitive domains. On the contrary, scores of affective outcomes tend

to be largely similar across age groups.

3.2 | Characteristics of trained PLSR models and
validation in the young-test sample

PLSR models were trained using the young-train dataset, across the

behavioral spectrum and modalities. Figure 3a shows the average

k values in these models. These k values were generally low (≤5). In

particular, this mean was consistently lower in the SC than the rsFC

modality as suggested by a paired samples t test (t(66) = 6.16,

p < .001, Cohen's d = 0.75). Figure 3b shows the ratio of the SC and

rsFC regression coefficients across the behavioral spectrum. In gen-

eral, the rsFC modality explained a larger proportion of variance (mean

SC:rsFC ratio = 0.62) across the behavioral spectrum in the young-

train sample.

Next, we validated these models in the young-test sample. As shown

in Figure 3c, most of the NRMSEyoung values in the combined SC and

rsFC modality were well below 0.5. In particular, those of eight behav-

ioral outcomes (TAP_I_Fval, Hamilton_Scale, CERQ_Catastrophizing,

CERQ_BlamingOthers, CERQ_positiveRefocusing, LOT_Pessimism.

F IGURE 1 Overview of training/testing paradigm. (a) Within the SC and rsFC modalities, PLSR models were trained on the young-train
dataset to predict scores in the young-test and old-test datasets. The optimal component number was tuned within the young-train dataset via
fivefold cross-validation. This whole process was repeated 1,000 times, with young subjects randomly assigned to the young-train and young-test
datasets each time. (b) SC and functional connectivity (FC) network strengths were computed as the dot products of the network matrices and

their respective PLSR coefficients. (c) The young-train SC and FC network strengths were entered into a regression to obtain their respective
coefficients, which are subsequently applied to the young-test and old-test network strengths to obtain predicted scores in the combined SC and
rsFC model. NRMSE, normalized root mean square error; PLSR, partial least squares regression; RMSE, root mean square error; rsFC, resting-state
functional connectivity; SC, structural connectivity
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CERQ_SelfBlame, and COPE_Religion) exceeded 0.5. These behavioral

outcomes are thus excluded in the subsequent reporting of results.

It was observed that the k values for the SC models correlated

significantly and negatively with NRMSEyoung (r = �.29, p = .012),

suggesting that sparse SC models produced more accurate

predictions. On the other hand, the k values for the rsFC models were

not significantly correlated with NRMSEyoung (r = �.11, p = .333).

Finally, one-way ANOVAs suggests that the k values in the SC (F

(4,70) = 1.09, p = .367) and rsFC (F(4,70) = 2.29, p = .069) models

were not significantly different across behavioral domains.

F IGURE 2 Forest plot showing the effect size (i.e., Cohen's d) associated with the between age-group differences across all behavioral

outcomes. Positive Cohen's d values suggest higher scores in the old than in the young age groups. The error bars represent 95% confidence
intervals

F IGURE 3 (a) Mean number of components selected in 1,000 fivefold cross-validation iterations of the PLSR model. (b) Ratio of SC and
functional connectivity (FC) network strength coefficients in the regression model predicting behaviors in the young sample. Higher values
correspond to larger SC contributions in behavioral prediction. (c) NRMSE of PLSR models (trained from the young-train group) predictions in the
young-test dataset. Behavioral outcomes are arranged in order of increasing NRMSE in the combined SC and resting-state functional connectivity
(rsFC) modality. NRMSE, normalized root mean square error; PLSR, partial least squares regression; RMSE, root mean square error; rsFC, resting-
state functional connectivity; SC, structural connectivity
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3.3 | Comparing predictions across age groups

Using the remaining 67 behavioral outcomes, we compared the

performance (i.e., NRMSE) of the young-train PLSR models in

predicting behavioral scores in the young-test and old-test samples.

Paired samples t test suggests that the NRMSE values, collapsed

across behavioral outcomes and modalities, were significantly differ-

ent (t(100) = 2.96, p = .003, Cohen's d = .21; see Figure 4a) in the

young-test and old-test samples. As expected, behavioral predictions

derived from the young-train PLSR models were more precise in the

young-test than in the old-test samples.

3.4 | Comparing predictions and young-to-old age
generalizability across modalities and behavioral
domains

Then, we compared the NRMSE values (in the young-test and old-test

samples) and RMSE ratios, collapsed across behavioral outcomes,

between the different modalities. Results of repeated measures ANO-

VAs suggest that the NRMSE values and RMSE ratios were highly

similar across modalities (see Figure 4b) (ps ≥ .997).

Next, we compared the NRMSE values and RMSE ratios, col-

lapsed across modalities, between the different behavioral domains.

Results of a one-way ANOVA suggested significant differences in all

three metrics across the behavioral domains (see Figure 4c). Post hoc

Tukey tests revealed significant differences between several pairs of

behavioral domains in all three metrics. Generally, the NRMSEyoung

values were significantly higher in the affect and coping domains

relative to the other domains (adjusted ps < .001), suggesting that the

BANs produced relatively less accurate predictions in these measures.

Of major relevance to our hypothesis, the RMSE ratios in the cogni-

tion domain were significantly lower compared to the other four

domains (adjusted ps < .001).

As we narrow down further into the individual behavioral out-

comes (see Figure 5), we observed that most of the behavioral out-

comes in the cognition domains were associated with relatively low

RMSE ratios, apart from some interesting exceptions such as the

LWT_catflu, LWT_letfluency, TAP_I_conRT, and WST_1. We also

observed a handful of behavioral outcomes, especially those mea-

sured by the STAXI, which were consistently associated with RMSE

ratios >1. This meant that the young-train PLSR models actually per-

formed better in the old-test than in the young-test datasets for these

behavioral outcomes. Interestingly, the RMSE ratios in all three condi-

tions were highly and negatively correlated (rs ranging from �.68 to

�.69) with the magnitude of the Cohen's ds obtained earlier (differ-

ences in behavioral outcomes across age groups). This suggests that

behavioral outcomes with larger age-group differences are associated

with less age-general BANs. The chord diagrams representing the

BANs of three behavioral measures with the highest and lowest

RMSE ratios are shown in Figure 6.

3.5 | Effect of functional network parcellation
scheme

While we had intended to use different parcellation schemes across

modalities to optimize predictions within their respective modalities,

F IGURE 4 Beehive plots illustrating the comparison of (a) normalized root mean square error (NRMSE) values across age groups, and NRMSE
and root mean square error (RMSE) ratios across (b) modality and (c) behavioral domain. Note that NRMSEold values of TMT_B are not shown in
the above plots as they are extreme outliers (structural connectivity [SC] = 4.43; functional connectivity [FC] = 4.42; combined SC and resting-
state FC [rsFC] = 4.42)
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previous research has shown that the use of different parcellation

schemes may affect certain characteristics of brain networks (Wang

et al., 2009; Zalesky et al., 2010). Consequently, the use of different

parcellation schemes in the SC and rsFC networks may preclude a fair

comparison across modalities and may have a confounding influence

on the generalizability of behavioral predictions from the young-train

model to the old-test sample. Thus, we repeated the above analyses

using rsFC connectomes constructed from the AAL-90 atlas.

Paired t tests indicated significant differences in the NRMSE

values between both parcellation schemes in the young-test (t

(74) = 5.81, p < .001, Cohen's d = .67) and old-test (t(74) = 4.43,

p < .001, Cohen's d = .59) samples. As expected, rsFC networks con-

structed from the more granular brainnetome parcellation scheme

produced more accurate predictions. However, RMSE ratios were not

significantly different between parcellation schemes (t(74) = 0.77,

p = .446, Cohen's d = .03). Finally, paired t tests comparing the

NRMSEyoung (t(74) = 1.50, p = .139, Cohen's d = .17), NRMSEold (t

(74) = 0.83, p = .411, Cohen's d = .10), and RMSE ratios (t(74) = .03,

p = .979, Cohen's d = .003) derived from the rsFC and SC networks

constructed from the same AAL-90 atlas, did not reveal any significant

differences. While these results suggest that different parcellation

schemes can systematically influence the accuracy of behavioral pre-

dictions, importantly, they do not confound the generalizability of

behavioral predictions from the young to the old.

4 | DISCUSSION

In the present study, we constructed SC and rsFC connectome models

from young adults and assessed their predictions in unseen young and

old subjects, to examine the young-to-old generalizability of BANs. As

expected, we showed that these BANs predicted behavioral scores

more accurately in unseen subjects of the same young age group,

suggesting a general age-specificity effect across the BANs. Next, this

age-specificity effect was observed to be greatest among BANs in the

cognition domains. That is, BANs in the cognition domains, relative to

F IGURE 5 NRMSE of PLSR models (trained from the young-train group) predictions in the (a) young-test dataset and (b) old-test dataset.
(c) Ratio of RMSE of predictions in the old and young. Larger values correspond to more similar predictions between the young and old groups.
NRMSE, normalized root mean square error; PLSR, partial least squares regression; RMSE, root mean square error; rsFC, resting-state functional
connectivity; SC, structural connectivity. Note that NRMSEold values of TMT_B are not shown in the above plots as they are extreme outliers
(SC = 4.43; functional connectivity [FC] = 4.42; combined SC and rsFC = 4.42)
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the other domains, produced disproportionately less accurate behav-

ioral predictions in unseen old subjects than their younger counter-

parts. Hence, as we have hypothesized, BANs from the cognitive

domain tend to fall toward the age-specific end of the continuum.

Although those of personality traits fell toward the age-general end of

the continuum as hypothesized, most other behavioral domains were

similarly positioned at that end. Finally, we observed that the accuracy

and young-to-old generalizability of behavioral predictions to be

largely similar across imaging modalities.

Across most cognitive outcomes, the patterns of brain connectiv-

ity, especially in terms of SC, were observed to largely correspond to

the cognitive control network (Niendam et al., 2012), which largely

comprises of nodes from the frontoparietal and limbic regions

(i.e., anterior cingulate cortex). As we have hypothesized, these BANs

are highly age-specific alluding to significant age-related differences in

the connectomes associated with cognition. These differences may be

attributed to the neural compensatory and dedifferentiation processes

that occur in the context of aging. In relation to the former, functional

neuroimaging studies have typically observed an age-related increase

in the activation of auxiliary brain networks during cognitive tasks.

Such activation was explained to compensate for the age-associated

degradation in brain structures and networks (Cabeza et al., 2018). In

age-related neural dedifferentiation, task-based fMRI studies have

generally observed an age-related decrease in the functional specific-

ity of brain regions and networks, which have been attributed to the

age-related decrease in segregation or increased interactions between

large scale brain networks (Costanzo et al., 2015; Koen, Srokova, &

Rugg, 2020). Both age-related processes are likely to contribute to

the rewiring of connections associated with cognition, which ulti-

mately resulted in differences in the connectivity correlates of cogni-

tion, across the lifespan. Generally, these age-related processes

represent a shift toward less efficient recruitment of neural activity

(Reuter-Lorenz & Park, 2014), and have been associated with worse

cognitive abilities in the aging context (Meunier, Stamatakis, &

F IGURE 6 Chord diagrams showing the structural connectivity (SC) and functional connectivity (FC) averaged connectivity values between
and within different regions, associated with the three behavioral measures with the highest and lowest RMSEold/RMSEyoung ratios in the
combined SC and resting-state functional connectivity (rsFC) model. The list of nodes corresponding to various regions in the SC and FC
networks can be referred to in table 3 of Rolls et al. (2015) and at https://atlas.brainnetome.org/bnatlas.html, respectively
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Tyler, 2014). This would also explain the significant relationship

between age-group differences in behavioral scores and the young-

to-old age-generalizability of their BANs.

Another possible explanation for the age-specific characteristics

of these BANs may relate largely to the significant age-group differ-

ences in cognitive scores. Given these differences, some of the old-

test subjects had cognitive scores which were beyond the range of

scores observed in the young-train sample. As a result, the PLSR

models had to extrapolate beyond the range of scores in the young-

train sample and such extrapolations are more prone to prediction

errors. Generally, this highlights the limitations of linear regression-

based prediction approaches.

Although cognitive functions were generally underpinned by age-

specific BANs, there were some interesting exceptions; we observed

that BANs belonging to a subgroup of cognitive tests

(i.e., RWT_catflu, RWT_letfluency, and WST_1) that assessed seman-

tic knowledge demonstrated much higher young-to-old age-generaliz-

ability. Such knowledge has been shown not only to undergo less age-

related decline relative to other aspects of cognition but also to con-

tinue to accumulate even in the later lifespan (Kavé &

Halamish, 2015; Park et al., 2002). We speculate the age-general

nature of BANs in this domain of cognition is intimately linked to the

resilience of semantic knowledge in the context of age-related cogni-

tive decline. We theorized that age-general BANs undergo relatively

less rewiring of connections across the lifespan, possibly due to their

resilient network structure. In particular, semantic knowledge is asso-

ciated with a brain network that is widely distributed across the fron-

tal, temporal and parietal lobes (Xu, Lin, Han, He, & Bi, 2016). This is

fairly consistent with the patterns of rsFC observed to be associated

with the three semantic knowledge tests in the current study. For

instance, the temporal and parietal regions were observed to be rela-

tively central in the network (see supplementary Figure 1). This

semantic brain network has been shown to be resilient to some types

of damage and perturbations (Rice, Caswell, Moore, Lambon Ralph, &

Hoffman, 2018), in part due to its flexibility in varying regional activa-

tion and FC across domain-specific and -general subsystems (Jung,

Rice, & Lambon Ralph, 2021).

In addition to the cognitive measures, we could observe that

there were a few behavioral traits that were poorly predicted in the

old-test sample, especially the ones relating to emotion regulation and

coping strategies. This is likely related to the challenge in measuring

these behavioral strategies in the elderly in a laboratory setting, lead-

ing to a larger degree of measurement error in the old compared to

the young age groups. Older adults tend to exhibit different types of

emotion regulation strategies than their younger counterparts, with

the former being more prone to using suppression and avoidance of

emotional situations and less inclined on engaging in reappraisal, rumi-

nation, and active coping when compared to young adults (Barrett

Feldman, Lewis, & Haviland-Jones, 2016). Furthermore, the assess-

ment of these behaviors requires participants to recall their habitual

modes of dealing with certain scenarios rather than asking them to

rate their procedural skills, which can be particularly challenging to

the elderly and may lead to larger measurement errors in this age

group.

Interestingly, we also observed a handful of BANs, such as those

relating to anger, personality and socio-cognitive-related traits, which

produced more accurate predictions in the old-test than in the young-

test subjects. The counterintuitive predictive performance across age

groups may seem somewhat puzzling. Nevertheless, this could happen

when two conditions are satisfied. In the first, these behavioral predic-

tions can be predicted with similar accuracy in the young and old,

using the same set of connectomes. For behavioral phenotypes that

showed minimal between-age-group differences (e.g., anger traits),

this could point to the resilient network structure of their BANS,

hence requiring little or no age-related organization or compensation.

In particular, the nodes of a brain network commonly associated with

negative affect have been shown to be relatively age-resilient both in

terms of function and structure (Mather, 2016). As for behavioral

traits that showed large between-age-group differences

(e.g., NEOFFI_Conscientiousness), it is likely that their associated con-

nectomes are highly specific to these traits, such that there is very lit-

tle flexibility or capacity for it to undergo age-related reorganization

and compensation to stabilize the age-related behavioral changes. The

second condition relates to the relatively larger measurement error

associated with these behavioral measurements in the young than in

the old sample, thus leading to more accurate predictions in the latter.

One plausible source of measurement error can be traced to the insta-

bility of certain dispositional traits. For instance, one study showed

that young adults exhibited significantly greater variability in extraver-

sion, agreeableness, and emotional stability across a 1 to 2-week

period as compared to older adults (Noftle & Fleeson, 2010). In line

with these previous findings, BANs associated with these three traits

tend to produce worse predictions in the young than in the old.

Contrary to our hypothesis, the young-to-old age-generalizability

of SC and rsFC predictions is largely comparable. Similarly, neither the

SC nor rsFC modality is consistently superior to the other in behav-

ioral predictions in both age groups and the differences in the overall

accuracy of these SC and rsFC-based predictions are fairly minute.

Furthermore, the combination of both modalities into a single

regression-based prediction model did not necessarily produce better

predictions than the SC-only or rsFC-only models. Taken together,

this suggests that the SC and rsFC models shared a large overlap in

predictive information. It should be noted that this overlap in predic-

tive information does not necessarily mean that SC and rsFC patterns

are tightly coupled. As shown in Figure 6, the profile of structural and

functional connections shared very little resemblance. This is not sur-

prising, since previous research has shown that FC between a pair of

regions can thrive even with few or no direct structural connections,

as long as indirect structural connections exist between the regions

(Damoiseaux & Greicius, 2009). This minimal dependence of direct

structural connections opens up many possible functional connections

between pairs of regions, ultimately culminating in more densely con-

nected BANs in the rsFC modality. This could possibly explain the sig-

nificantly sparser PLSR solutions obtained (i.e., smaller k values) in the

SC than in the rsFC modality.

Generally, we observed that the BANs in the affect and coping

domains produced relatively less accurate predictions within the same

young age group than in the other behavioral domains. This could be
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due to the heterogeneous nature of these measured constructs. For

instance, depression is one such heterogeneous construct. Two per-

sons with the same score on the Hamilton depression scale, can pre-

sent with very different symptom profiles. These different profiles

would consequently be linked to different sets of connectomes

(Drysdale et al., 2017). Therefore, a single connectome model alone,

would not adequately capture the heterogeneous symptom profiles of

depression. It is thus not surprising that the Hamilton depression

score is among one of the least accurately predicted measures rev-

ealed in our study.

Presently, there has been a great deal of attention in using rsFC

features in edge-based behavioral prediction models, and far less

research has explored the use of SC-based features in these predic-

tion models. Despite the highly comparable performance of SC and

rsFC behavioral prediction models shown here, there are certain

advantages in using SC- over rsFC-based features in behavioral pre-

diction models. First, SC, which is typically derived from diffusion-

weighted images, is less susceptible to head motion artifacts. Had this

study focused solely on the SC modality, we would not have excluded

the 15 subjects with excessive head motion during their rsfMRI scans.

Second, edge-based prediction models utilizing SC features tend to be

computationally “cheaper” due to the use of low-granularity atlases

(e.g., AAL) to map out the structural connectome, and the relatively

sparse connectivity matrices (i.e., containing mostly zeros)—arising

from the fact that it is anatomically impossible for WM fibers to con-

nect between all possible pairs of brain nodes.

Our findings on age-specific networks would caution extrapolat-

ing brain-cognitive functions associations from one age group to

another, as we have shown these cognitive functions are usually

underpinned by age-specific BANs. Furthermore, research on these

neurocognitive correlates tends to be predominantly carried out in

the older adult population, possibly due to its relevance to dementia,

resulting in a relative paucity of similar studies on younger adults. To

this end, it may be tempting, but ill-advised, to generalize findings

from the old to young. Doing so will result in highly inaccurate conclu-

sions. Beyond brain-based behavioral prediction research, these impli-

cations also weigh heavily on intervention studies utilizing brain

stimulation techniques to target a particular brain region or network

to enhance cognitive functions in a specific age group.

The current study is subjected to some limitations. First, we had a

relatively small sample of older participants. This meant it would not

be appropriate for us to derive BANs from the older sample and

assess the generalizability of these BANs in the young sample—which

would have been a very meaningful addition to the study. Second, we

excluded disproportionately more subjects in the old age group due to

excessive head motion. While it is not unusual that older adults gener-

ally produce greater head motion during MRI scans (Saccà

et al., 2021), the larger number of exclusions would contribute to a

selection bias in the old age group. Third, we explored only two

extreme age groups with relatively narrow age ranges; there is a large

intermediate age range (i.e., 36–58) not accounted for in this study.

Although it is convenient and tempting to assume that the age gener-

alizability or specificity of the BANs, would vary across this

intermediate age range in a graded manner, it remains to be verified

by future research. Fourth, we had an unbalanced male to female ratio

across the datasets (i.e., 29% female subjects in the young-age group

against 50% female participants in the old-age group); nevertheless, a

recent study using a classification machine-learning approach based

on rsfMRI data could not find enough evidence that would support a

clear sexual differentiation of the human brain (Weis et al., 2020). Fur-

thermore, the relatively small sample size, especially for the older par-

ticipants sample, meant that splitting our sample by gender would not

be feasible. Nevertheless, we encourage future studies to compare

gender effects in the BANs model performance across different age

ranges. Finally, this study is essentially a cross-sectional comparison

between the young and old. Such cross-sectional comparisons may

not accurately reflect the longitudinal aging processes and would be

subjected to cohort-related confounds such as socioeconomic condi-

tions, educational attainment, and nutrition.
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