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Dauer and Life Span
The life span of non-renewing organisms is determined by the potential of their individual cells to
maintain their functions while aging. Nematodes, like Caenorhabditis elegans with their 20 days of
adult life, have proven to be excellent model systems to study organismal lifespan, its variability,
and its regulation [1–3]. Early on, the life span could be linked to environmental conditions, like
growth temperature and food intake [1,4]. In general, in these experiments, organisms develop
and age slower and live longer at lower growth temperatures. This is evident from a clear relation-
ship between temperature and life span ranging from 35 days to 9 days upon temperature changes
from 10 to 25.5 degrees [1]. On the higher end of this temperature range, C. elegans can enter the
dauer state, which is also found in response to starvation or the presence of dauer pheromone [5–
7]. The formation of this stress-resistant state, which enables survival of the organism for longer
than 3 months, requires morphological changes to the cuticule and inhibition of further develop-
ment. Interestingly, it is entirely reversible without effects on the later adult life span [8]. This deci-
sion has been analyzed genetically in detail, identifying genes that promote dauer entry (DAF-c)
and those that prevent dauer entry (DAF-d). These studies unravel the pathways, which cooperate
in the decision whether to enter the path to the dauer state instead of normal development. The
most prominent of those are the homologs of the insulin-like receptor DAF-2, the FOXO-tran-
scription factor DAF-16, and the steroid hormone receptor DAF-12, amongst others [9–11]. The
decision making requires the sensing of environmental factors and alteration of developmental
programs in different tissues. Thus the number of genes influencing this decision is considerable.

Interestingly, several genes that control the entry into the stress- and starvation-resistant
dauer state also exert control over the normal life span of the nematode [12,13]. Early aging
markers include disorganization of muscular structure and reduction of pharyngeal activity
and motility [14,15]. In this context, lower temperature, like some aging-related mutations,
delays these early aging markers and likewise postpones later aging markers, like swallowing
difficulties and general loss of motility. Despite knowing the individual function of many
dauer-influencing genes, the reconstruction of regulated cellular pathways is complicated. This
also originates from the fact that different cells are participating in the pathways as well as a
contribution of humoral controls, implying that several individual cellular decisions culminate
to regulate these pathways [16,17].

daf-41/p23 Reprograms Temperature-Dependence in Aging
For many years it has been known that the cellular chaperone network is also contributing to
these phenomena. In this context, the daf-21 allele p673, representing a mutation in the heat
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shock protein 90, was known to cause constitutive dauer entry [18]. Moreover, the general reg-
ulator of the heat shock response HSF-1 was known to influence the life span in cooperation
with other dauer genes and its depletion causes early onset of aging [19,20].

In this issue of PLOS Genetics, Horikawa and coworkers address critical questions at the
crossroads of stress-resistance, longevity, and chaperone involvement by investigating a dele-
tion mutant of the cochaperone p23, an effector protein of Hsp90. They first determine that
the deletion strain constitutively enters dauer and name the gene daf-41. They find that the
usual temperature-dependence of the lifespan is altered in this strain with a much smaller tem-
perature-influence than known for the wild-type background (Fig 1). This makes the deletion
strain short lived at low temperatures and long lived at high temperatures. While it has been
thought up until recently that the slow development and aging at low temperatures reflects the
slower turnover of metabolites and the slower rate of all biochemical processes based on plain
physical principles, being able to influence this effect by genetic means implies the existence of
a biological control. Recent reports had suggested that such programs may exist [21]. Also,
temperature-sensitive neurons had been reported to influence the aging process, similar to the
findings reported here [22]. In general, these studies show that development does not necessar-
ily has to be slow at low temperatures and fast at high temperatures, and, importantly, with
daf-41 a regulator is uncovered that influences this program.

Horikawa and coworkers also provide information on the mechanism—how such a
response may be regulated by addressing the transcriptional networks influenced by the daf-41
mutation. They show that the deletion of p23 influences several transcriptional outputs. At low
temperatures, the influence on the steroid hormone receptor DAF-12 and on DAF-16 is espe-
cially relevant. At high temperatures, instead, the lifespan regulation originates from influences
on the activity of the heat-shock factor HSF-1, making the stress response stronger in the
absence of the Hsp90 cofactor. Thus, p23 appears to balance the transcriptional responses of
these three transcription factors relevant for dauer formation, longevity, and aging, and in this
way enables control over these processes at different temperatures.

DAF-41/p23: How Can it Work?
Temperature-dependent growth is observed in all organisms, from bacteria to metazoa, and
generally has been attributed to differences in metabolic rates. The recent observations now

Fig 1. Nematode lifespan is regulated by temperature amongst other influences. This temperature dependence is the result of transcriptional networks
and DAF-41/p23, which influences the transcriptional activities of HSF-1, DAF-12, and DAF-16.

doi:10.1371/journal.pgen.1005188.g001
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cast in doubt the general belief that plain physics controls the temperature-dependent effects
on life span, as at least metazoa appear to have developed a program that controls these growth
rates based on transcriptional networks. It is thus very exciting to see that another potentially
deterministic program controls the progression of C. elegans through its larval stages to adult-
hood and during aging and adjusts the growth rate to the environmental conditions.

While the molecular details at the basis of this regulation are still elusive, it is worthwhile to
look at the known biochemical functions of p23 and its interaction partner Hsp90. Hsp90 is
known to regulate transcriptional outputs by influencing the activity of dozens of transcription
factors via their cellular stability. p23, likewise, has been shown to influence the activity of tran-
scription factors, including steroid hormone receptors and HSF-1 [23]. In several cases p23
and Hsp90 cooperate, but also individual activities have been observed for p23 [24]. The bio-
chemical and structural aspects of their interaction are well studied, including by structural
characterization of the Hsp90-p23 complex [25]. p23 binds to a conformational state of Hsp90
adopted during its ATPase cycle. Specifically, it recognizes an ATP-induced N-terminal dimer-
ized conformation, which is populated just prior to ATP hydrolysis and remains bound to
Hsp90 during the hydrolysis reaction. It controls the hydrolysis rate and enables stable com-
plexes between Hsp90 and its protein clients. Processed client proteins are released after ATP
hydrolysis. Essentially, this characteristic behavior contributed to the identification of the pro-
tein p23 more than 20 years ago, when it was uncovered as part of the protein assemblies
involved in steroid hormone receptor maturation in mammals [26,27]. The influence of Hsp90
and p23 on their clients is not fully understood and rarely has a combinatorial effect on several
clients being studied. However, tinkering with Hsp90 inhibition leads to many different pheno-
typic traits in flies [28], showing that in other model systems, several signaling networks are
influenced simultaneously.

With the study of Horikawa and coworkers, this chaperone machinery now also moves into
the center of life span regulation. Previously Hsp90, like p23, was found to regulate Hsf1 activ-
ity [29], and its depletion strongly induces the heat-shock response [30]. The chaperones’
involvement in the cellular folding process of transcription factors was, until now, seen as a
contribution to the regulation of individual transcription factors. The new picture emerging is
that by regulating simultaneously the activity of several transcriptional outputs, p23 enables
complex developmental decision making. The present study thus integrates the cellular chaper-
one network surrounding the molecular chaperone Hsp90/DAF-21 into the complex decision
making to enter the dauer state and to determine the organismal life span.
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