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Shaoguan Aromatic Plant Engineering Research Center, Henry Fok College of Biology and Agriculture, Shaoguan University,

Shaoguan, China

Taro (Colocasia esculenta) is a major root crop or vegetable in the world, and the

corm is a good source of many nutrients including starch, vitamins, and minerals.

Taro corms are processed into various forms before consumption, which makes them

perishable, reduces the shelf life, and increases postharvest losses. The surface browning

of fresh-cut taros is one of the major factors that limits storage life and affects consumer

acceptance. In this study, the effects of ferulic acid (FA) as an effective agent in the

prevention of quality deterioration were investigated. Fresh-cut taros were immersed in

distilled water and different concentrations of FA (1, 2, 5, 10, and 20mM) solutions for

30min, air-dried at 25◦C for 30min, and then stored at 5◦C for 12 days to investigate

the effects of FA on browning. Among the FA concentrations tested, 10mM resulted in

significantly higher L∗ values, lower a∗ and b∗, and browning index values. FA treatment

(10mM) also induced de novo biosynthesis of two volatile compounds, including non-

anal and octanoic acid ethyl ester in fresh-cut taros following extended cold storage.

The results suggest that FA treatment maintains the quality of fresh-cut taros under

cold conditions. FA treatment enhanced PAL activity and gene expression but reduced

total phenolic content and the expression of six C4H, 4CL, and CHS genes, suggesting

that FA treatment reduced phenolic biosynthesis. FA treatment reduced PPO activity

and gene expression and decreased soluble quinone content, suggesting that FA

treatment suppressed the phenolic oxidation. FA treatment enhanced the activity and

gene expression of CAT and POD, reduced those of LOX, and decreased MDA and

H2O2 levels, suggesting that FA treatment activated the antioxidant defense system and

thereby reduced oxidative damage. These findings demonstrated that FA treatment could

serve as an effective approach to retard the browning of fresh-cut taros and provided a

basis for the feasible application of FA in the preservation of fresh-cut foods.

Keywords: fresh-cut taro, cold storage, surface discoloration, ferulic acid, aroma quality

INTRODUCTION

In recent years, consumer demands for the consumption of fresh-cut fruits and vegetables have
dramatically expanded because of the convenience, freshness, and lack of pollution of fresh-cut
products (1, 2). However, cutting and peeling operations cause mechanical damage to fresh
products and result in the release of cellular contents, which brings about a series of undesirable
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consequences such as the growth of harmful microbes, cut-
surface browning, stale taste, and short shelf life (3). Among the
undesirable changes, the discoloration of cut surfaces is the major
factor affecting storage life and consumers’ acceptance (4, 5).
Therefore, it is necessary to develop more effective postharvest
techniques that can not only maintain the quality but also do not
affect the safety of fresh-cut foods.

The postharvest methods used to prevent the discoloration
of fresh-cut products mainly include physical and chemical
treatments (6). The inhibitory efficacy of physical treatments,
such as washing, UV sanitizing, edible coating, heat treatment,
modified atmosphere packaging, and cold storage, has been
extensively investigated (7–12). Cold storage is the most effective
among physical method that maintains the storage quality
of fresh-cut foods. However, the browning of fresh food is
generally caused by enzymatic reactions, and the browning-
related enzymes in fresh-cut products are still active under low-
temperature conditions (13, 14). Therefore, the combination of
cold storage with chemical additives may be a more effective
strategy (15–17). Among the chemicals studied, sulfite- and
chlorine-containing additives are the most effective, and as a
result, they have been widely used in the fresh-cut industry in
the past years (18, 19). However, the use of these chemicals
may lead to concerns from consumers, as such compounds
have potential hazards to human health. Therefore, more safe
browning inhibitors are worth developing.

Taro (Colocasia esculenta L.) belongs to the Araceae family
(20). It is similar to other root vegetables, such as potatoes,
Chinese water chestnut (CWC), burdocks, yams, and lotus roots,
with the root being the main edible organ (21). In China, the
peels of taro are removed before cooking (22). However, fresh-
cut taros get spoiled more easily than the intact taros, because
peeling and cutting can result in the loss of compartmentation of
enzymes and substrates, which leads to browning (22). Therefore,
the peeled taros brown easily during the period of shelf life and
consumption (23). The application of two kinds of hydrosols
from citronella plants and rose petals to fresh-cut taros was
effective in reducing the browning under cold conditions (24).
Further analysis indicated the presence of carboxylic acids in
abundance in two hydrosols. Carboxylic acids belong to organic
acids and are widely distributed in the plant kingdom (25). It has
been reported that several carboxylic acids or their derivatives,
such as cinnamic acid, phytic acid, citric acid, coumaric, caffeic,
and chlorogenic acid, have potential effects on the browning
inhibition of fresh-cut products (6, 26, 27). The application
of phytic acid to fresh-cut purple sweet potatoes markedly
inhibited the browning caused by polyphenol oxidases (PPO)
(28). Cinnamic acid was an effective browning inhibitor in
preventing the browning development of fresh-cut taros during
cold storage (22). In general, carboxylic acids can interact
with metal ions, which enable them to scavenge free oxidative
radicals (29).

Ferulic acid (FA), 4-hydroxy-3-methoxycinnamic acid, is one
of the carboxylic acids naturally existing in many plants (29, 30).
FA is one of the most abundant phenolic acids in plants, whose
contents vary from 5 g kg−1 in wheat bran to 50 g kg−1 in corn
kernels (30). Song et al. (31) first reported that the application

of 10mM FA to fresh-cut CWC effectively prevented the yellow
color development and inhibited phenylalanine ammonia-lyase
(PAL), peroxidase (POD), and PPO activities. However, studies
show that CWC yellowing is different from enzymatic browning
(31, 32). Therefore, more investigations are needed to determine
whether FA could reduce the browning development of fresh-cut
taros, as the browning type of fresh-cut taro may be enzymatic
(21, 23, 33). Furthermore, since FA is a precursor in the
production of many aromatic compounds whether and how FA
treatment influences the aroma quality of fresh-cut taros under
cold storage conditions remains unclear.

This study investigated the effects of FA treatment on the
browning reduction of fresh-cut taros. In addition, the effects
of FA treatment on the contents of total phenolic compound
(TPC), soluble quinone (SQ), hydrogen peroxide (H2O2), and
malondialdehyde (MDA), as well as the activities and gene
expression of PAL, PPO, POD, catalase (CAT), and lipoxygenase
(LOX) were analyzed. Moreover, the effects of FA treatment on
the aroma quality of fresh-cut taros following a long-term cold
storage were evaluated. The results would lay the foundation
for the practical application of FA in the fresh-cut industry.
The investigations on FA effects on quality maintenance would
reduce the postharvest losses of fresh-cut products and provide
alternatives for the preservation of fresh-cut products.

MATERIALS AND METHODS

Materials Utilized, Treatments, and
Sampling Procedures
Taro (cv. binglang) roots were purchased from a local market
in Shaoguan City, Guangdong province, China. We first
booked taro materials the day before the investigation and
made the demands including maturity and weight. Taro
corms at commodity maturity were used for investigations
(22). The corms were then transported to the laboratory of
the Shaoguan Aromatic Plant Engineering Research Center,
Shaoguan University, within 48 h of harvest. Taro corms were
selected with uniform shape and size, and a lack of physical injury
or disease signs. The selected corms were washed with tap water
before being peeled and cut into 1-cm thick slices (6–8 pieces
for each root) using a stainless steel knife. Then, the slices were
soaked in the distilled water (DW) and different concentrations
of FA (1, 2, 5, 10, and 20mM) solution for 30min and air-dried
at room temperature (25◦C) for 30min. Finally, the treated taro
slices were packed with plastic film (0.02-mm thick polyethylene)
and stored at 5◦C for 12 days.

Each treatment contained 60 slices with three replicates. Taros
from the DW and each treatment were randomly sampled for
further investigations. Three slices from the same treatment were
chopped and pooled using a stainless steel knife, and then the
mixed samples were ground to powder in liquid nitrogen and
stored at−80◦C.

Color Measurement
The color change of the taro slice surface was quantified using
a digital Chroma Meter (CR-400, Konica Minolta, Japan), which
presents the L∗, a∗, and b∗ values using the CIELAB scale. The
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chroma meter was calibrated using a standard white tile (Y =

84.4, x = 0.3205, and y = 0.3377) before measurement. The L∗,
a∗, and b∗ values of each test were converted into browning index
(BI) according to the following formulas: BI = [100(x – 0.31)] /
0.17, x = (a∗ + 1.75L∗) / (5.645L∗ + a∗ – 3.012b∗) (22). After
color measurement, pictures were taken at each sampling point.

Determination of Total Phenolic Compound
(TPC) and Soluble Quinones (SQ) Contents
The TPC of fresh-cut taros was evaluated by using the method
described by Liu et al. (34). The TPC content of taro slices
was measured using the Folin–Ciocalteu method with a UV-
Spectrophotometer (UV-6100, SHjingmi, China) at 765 nm.
Gallic acid was employed as a calibration standard, and the results
were expressed as gallic acid equivalents (GAE) per kilogram of
fresh weight (mg GAE kg−1 FW) (35).

Soluble quinone concentrations were determined according to
the method described by Ali et al. (36). The 5.0 g of taro samples
from three slices were ground using 10ml of methanol at room
temperature (25◦C) and centrifuged at 12,000× g for 20min. The
absorbance of each supernatant at 437 nm was measured, and the
SQ concentrations were expressed as OD437 per gram of fresh
weight (OD437 g−1 FW).

Measurement of MDA and H2O2

Concentrations in Fresh-Cut Taros
The MDA and H2O2 contents were estimated using commercial
kits (D799761 and D799773, Sangong Biotech, China) according
to the manufacturer’s instructions. The MDA and H2O2

contents were measured using 0.1 g of taro powders from three
different slices.

The MDA content = [6.45 × (A532–A600) – 0.56 × A450]
× Vt / (Vs × m) (37), where Vs represents the extract volume
required for determination and Vt represents the total volume
of sample extract. The concentration was expressed as nmol per
kilogram of fresh weight (nmol kg−1 FW). For the measurement
of H2O2 content, the absorbance of the solution was recorded at
415 nm, and the content was reported as µmol per kilogram of
fresh weight (µmol kg−1 FW).

Extraction Procedure for Enzymatic Assay
The 1.0 g of composite pulverized samples was extracted in
5ml of 0.5mM phosphate buffer (pH 6.8) containing 2% of
polyvinylpyrrolidone. The extractions were centrifuged at 12,000
× g for 10min at 4◦C. The supernatants were collected and
regarded as crude enzyme extractions.

The activities of CAT, POD, PPO, PAL, and LOX in fresh-
cut taro samples were estimated with the assay of Xiao et al.
(22), and activities of all above enzymes were expressed as
unit per kilogram of fresh weight (U kg−1 FW). The CAT
activity was measured by monitoring the decomposition rate of
H2O2 at 240 nm in a reaction with 10mM H2O2 using a UV-
visible spectrophotometer. The POD activity was determined by
measuring guaiacol oxidation at 470 nm in reaction with 20mM
concentrated guaiacol (36). The PPO activity was assayed by
monitoring the decrease of 4-methylcatechol at 398 nm (24).
For the PAL activity assay, 0.2ml of the supernatants, 0.5ml

of 5mM dithiothreitol, 0.5ml of 0.02M L-phenylalanine, and
1.8ml of 0.1mM sodium borate (pH 8.8) were reacted at room
temperature (25◦C) for 2 h, and the absorbance was noted at
290 nm. For the measurement of LOX activity, a reactionmixture
was made, which contained 0.1ml of the supernatants, 0.2ml of
5mM linoleic acid, and 2.7ml of 0.5M borax–borate buffer (pH
7.0). LOX activity was determined on the basis of the formation
of conjugated dienes at 234 nm (4).

Gene Expression Analysis
Total RNA from taro samples was extracted with the RNAprep
Pure Plant Plus Kit (DP441, Tiangen, China), and one-strand
cDNA was synthesized with an iScript cDNA Synthesis Kit
(11123ES60, Yeasen, China) according to the manufacturer’s
instructions (22). A specific primer for each gene was designed
using a primer designing tool at the National Center for
Biotechnology Information (NCBI) website, and primer details
were listed in Supplementary Table 1. Quantitative real-time
PCR (qRT-PCR) was performed using an iCyeler iQTM/Clooo
system (Bio-Rad, USA), and a Hieff R© qPCR SYBR Green Master
Mix (No Rox) kit was used (11201ES03, Yeasen). Relative
expression of the target gene was normalized to taro Actin7 as the
internal control. mRNA sequences of candidate genes for qRT-
PCR analysis were isolated from the taro genome (https://www.
ncbi.nlm.nih.gov/genome/12429) using BLAST searches of the
published sequences.

Detection of Volatile Compounds in
Fresh-Cut Taros
A gas chromatography (GC) system (Agilent 7890B, USA)
coupled with mass spectrometry (MS; Agilent 5977B, USA)
equipped with an automated headspace sampler (CTC Analytics
AG, Switzerland) was used for the analysis of volatile components
in DW- and FA-treated taros (38, 39). Fresh taro samples on days
0 and 12 were used for investigations.

The headspace and GC operating conditions refer to the
descriptions of Zhang et al. (40), with minor modifications.
Approximately, 2.0 g of taro samples were weighed in a GC-MS
vial (20ml). The GC-MS analysis program was started, and the
vials were placed in a thermostatic stirrer at 100◦C for 5min. The
headspace operating conditions were as follows: equilibration
temperature, 160◦C; equilibration time, 60min; pressing time,
0.5min; extracting time, 0.2min; and injecting time, 0.5min. The
injection port temperature wasmaintained at 230◦C, and the split
ratio was 10:1.

Helium (99.99% purity) was used as the carrier gas at a flow
rate of 1.0 ml/min. Separation of compounds was achieved using
a quartz capillary column (HP-5MS UI 30m × 0.25mm with
0.25µm film thickness). The initial oven temperature was set
at 50◦C for 1min and gradually increased to 230◦C at a rate
of 5◦C/min with a holding time of 1min. The analysis time
was 31min. The temperatures of the ion source temperature
and vacuum chamber were maintained at 200 and 150◦C,
respectively. The ionization energy was 70 eV, and the emission
current was 35mA. Themass range was 33–520m/z, and the scan
rate was 11.7 scans per second.
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Compound identifications were done by matching the MS
spectra and comparing the retention time with that of a
corresponding reference standard after all compounds were
successfully separated.

Statistical Analysis
All investigations were performed in triplicate, and the results
were presented as means ± standard deviation (SD, n =

3). Mean and SD values from their independently replicated
sets were calculated using the Excel software (version 2016).
Statistical differences between treatments were analyzed by one-
way ANOVA using the SPSS software package (version 21) at
the p ≤ 0.05 level. The differences were presented with different
letters above the bars in the figures.

RESULTS

Effects of Different Concentrations of FA
Treatments on Color Value of Fresh-Cut
Taro During Cold Storage
In order to understand the effects of FA treatments on the
color value of fresh-cut taro under cold storage conditions,
we measured the L∗ value because it is an indicator of color
brightness. In all treatments, L∗ values decreased with storage
time (Figure 1A). The L∗ values of taro slices did not show
significant differences among the control (DW-treated group),
1, 2, 5, and 20mM FA-treated groups. However, the 10mM
FA-treated group showed the highest L∗ values, which were
significantly higher than those of the control during cold
storage (Figure 1A). On the whole, increased trends in a∗ and
b∗ values and browning index (BI) of fresh-cut taros were
observed throughout the cold storage period (Figures 1B–D).
In particular, 10mM FA treatment was the most effective at
restricting the increase of a∗ and b∗ values and BI in taro
slices during the cold storage period (Figures 1B–D). On day 6,
the browning symptoms started to appear in DW-treated taro
slices, revealing the effectiveness of cold storage on the browning
suppression of fresh-cut taros. However, the browning symptoms
in the control were obviously aggravated during the late storage
period. The effects of FA treatments on the browning inhibition
of taro slices on day 12 are presented in Figure 1E.

The concentration of FA 10mM shows a very slight browning
reaction in fresh-cut taros during the cold storage period. To
confirm the effectiveness of browning inhibition of 10mM FA
treatment, we carried out a new investigation. The peeled, fresh-
cut taros were immersed into DW and 10mM FA solutions for
30min, respectively. The storage conditions for this experiment
were the same as for the previous experiment. Undoubtedly, the
10mM FA treatment brought about higher L∗ values, but lower
a∗ and b∗ values and BI, resulting in a brighter appearance than
the control during the entire storage period (Figure 2). Overall,
our results suggested that 10mM FA treatment could reduce the
browning and maintain the visual quality of fresh-cut taro under
cold storage conditions. Therefore, taro samples exposed to this
treatment were used for further study.

FA Treatment Regulates the Activity and
Gene Expression of Enzymes in the
Phenylpropanoid Pathway in Fresh-Cut
Taros
PAL activities in the control and 10mM FA-treated groups were
first increased on days 12 and 3 as compared with the initial day
of storage, respectively (Figure 3A). Compared with the control,
FA treatment significantly enhanced PAL activities during cold
storage at each time point except for day 12 (Figure 3A),
indicating that FA treatment could induce PAL activities in fresh-
cut taros. To verify the induction of FA treatment, the effects of
FA treatment on the expression of two PAL genes, namely, PAL1
and PAL-like genes, were also investigated. The expression levels
of PAL1 in FA treatment were significantly higher than those
in control groups during the entire storage period (Figure 3B).
Compared with the control, the expression levels of PAL-like
gene were significantly upregulated in the last 6 days (Figure 3C).

The effects of FA treatment on the expression patterns
of cinnamate-4-hydroxylase (C4H), 4-coumarate: CoA ligase
(4CL), and chalcone synthase (CHS)-encoded genes were also
studied. Compared with the control, FA treatment significantly
repressed C4H1 expression on day 12 and C4H2 expressions
during the whole storage period with an exception on day
9, respectively (Figures 3D,E). However, FA treatment did
not significantly suppress the expressions of C4H3 and 4CL3
during the entire storage. Their expression levels in the control
were higher than those in the FA-treated group on day
12 (Figures 3F,I). The expressions of 4CL1 and 4CL2 were
significantly repressed by FA treatment on day 3 and day 6
compared with the control (Figures 3G,H). For the three CHS
genes, FA treatment significantly restrained CHS1 expression
during the entire storage, with an exception on day 9, CHS2
expression on days 3 and 6, and CHS3 expression on day 3,
respectively (Figures 3J–L).

Effects of FA Treatment on Oxidation
Characteristics of Fresh-Cut Taro Slices
The contents of total phenolic compounds showed an upward
trend during the whole storage period, while the 10mM
FA treatment significantly reduced total phenolic contents
during cold storage except on day 6 (Figure 4A). SQ contents
progressively increased along with storage days. Compared with
the control, FA treatment significantly restricted the increase of
SQ contents during the whole storage period (Figure 4B). FA
treatment reduced SQ content by 3.98–21.44% compared with
the control.

The PPO activity decreased in the first 6 days and then
increased and was maintained at a high level during the late
storage period (Figure 4C). Compared with the control, FA
treatment significantly reduced PPO activity during the whole
cold storage period (Figure 4C). During the 9th day of storage,
the PPO activity of the control group was 1.68-fold higher
than that of the FA-treated group. FA treatment downregulated
the expression of three PPO genes at several time points
(Figures 4D–F). The PPO1 expression level of FA treatment on
days 3, 6, and 12, the PPO2 expression level on day 9, and the
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FIGURE 1 | Effects of different concentrations of FA treatments on the browning development of fresh-cut taro during storage at 5◦C. (A) L* value; (B) a* value; (C) b*

value; (D) browning index (BI), (E) the representative pictures of fresh-cut taros, which were taken at 12 days of cold storage at 5◦C. Each value is presented as

means ± standard deviation (SD, n = 3). Statistical differences (p ≤ 0.05) between treatments at the same time point are analyzed and indicated using different letters

above the bars.

PPO3 expression level on days 3 and 9 were significantly lower
than those of the control, respectively (Figures 4D–F).

Effects of FA Treatment on Antioxidant
Activity of Fresh-Cut Taros
Hydrogen peroxide content rapidly increased in the control
but increased slowly in the FA-treated group within 12 days
of measurements (Figure 5A). Compared with the control, FA

treatment significantly reduced H2O2 content during the entire
storage period.

Peroxidase activity of the control first increased on day 6,
rose to a peak on day 9, and then decreased (Figure 5B). POD
activity in the FA-treated group increased rapidly within the first
3 days and then maintained at high levels during the late storage.
Compared with the control, FA treatment significantly enhanced
POD activity during the whole cold storage period (Figure 5B).
On day 3, the POD activity of the control was 4.20-fold higher
than that of the FA treatment. The expression levels of three
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FIGURE 2 | Effects of 10mM FA treatment on the browning development of fresh-cut taro during storage at 5◦C. (A) L* value; (B) a* value; (C) b* value; (D) browning

index (BI), (E) the representative pictures of fresh-cut taros, which were taken at each sampling point. Each value is presented as means ± standard deviation (SD, n

= 3). Statistical differences (p ≤ 0.05) between the control and 10mM FA treatment at the same time point are analyzed and indicated using different letters above the

bars.

POD-encoded genes in the FA-treated group were significantly
higher than those in the control within the last 6 days but lower
during the first 6 days (Figures 5C–E).

The CAT activity rapidly increased during the first 6 days
and was maintained at high levels during the remaining storage
period in both the DW- and FA-treated groups (Figure 5F).
Compared with the control, FA treatment significantly enhanced
CAT activity on days 9 and 12 of cold storage (Figure 5F).
The expression level of CAT1 in the control was progressively
increased in the entire storage, whereas the expression after
FA treatment dramatically increased on days 6 and 9 and
showed a low level on day 12 (Figure 5G). The CAT2 expression
level sharply increased to a peak on day 3 and declined
subsequently (Figure 5H). Compared with the control, FA
treatment significantly upregulated CAT1 expression on days 6
and 9 and CAT2 expression on days 3, 6, and 9, respectively
(Figures 5G,H).

FA Treatment Alleviates the Peroxidation of
Membrane Lipids of Fresh-Cut Taro Slices
Malondialdehyde levels of fresh-cut taros in both groups showed
peaks on day 9 (Figure 6A). FA treatment resulted in significantly
lower MDA content relative to the control during cold storage
except on day 12 (Figure 6A). The LOX activities of DW-treated
taros steadily increased and showed a peak at day 9, whereas those
of FA-treated taros changed much less (Figure 6B). Compared

with the control, FA treatment significantly reduced LOX activity
on days 6 and 9.

The effects of FA treatment on the expression of four
LOX genes were also investigated. FA treatment significantly
downregulated the expressions of LOX1 and LOX4 genes during
the entire period of cold storage, LOX3 expression on days 3 and
12, and LOX5 expression on days 3 and 6 compared with the
control (Figures 6C–F).

Effects of FA Treatment on the Aromatic
Characteristics of Fresh-Cut Taros
Given that FA is an intermediate in the biosynthesis of
various aromatic compounds in the phenylpropanoid pathway
(41), therefore we further analyzed whether and how FA
treatment influences the aroma quality of fresh-cut taros
following long-term cold storage. Rare volatile compounds
were identified in taros by using a GC-MS assay (Figure 7).
Before cold storage, a total of six volatile components were
successfully identified in fresh taros (Supplementary Table 2).
However, only two kinds of volatile compounds were identified
in DW-treated taro slices after 12 days of cold storage
(Supplementary Table 2).

After 12 days of cold storage, five compounds were
totally found in the FA-treated taro slices. Among these
five compounds, three compounds, including cyclopentasiloxane
decamethyl, 2,4-di-tert-butylphenol, and 18-methyl-non-
adecane-1,2-dio trimethylsilyl ether, were also identified
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FIGURE 3 | Effects of 10mM FA treatment on the activity and gene expression of enzymes in the phenylpropanoid pathway in taro slices during storage at 5◦C. (A–C)

PAL activity and two PAL gene expression; (D–F) three C4H gene expression; (G–I) three 4CL gene expression; (J–L) three CHS gene expression. Each value is

presented as means ± standard deviation (SD, n = 3). Statistical differences (p ≤ 0.05) between the control and 10 mM FA treatment at the same time point are

analyzed and indicated using different letters above the bars.
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FIGURE 4 | Effects of 10mM FA treatment on total phenolic contents (A), soluble quinone contents (B), and the activity and gene expression of PPO (C–F) in taro

slices during storage at 5◦C. Each value is presented as means ± standard deviation (SD, n = 3). Statistical differences (p ≤ 0.05) between the control and 10mM FA

treatment at same time point are analyzed and indicated using different letters above the bars.

in fresh taros on the initial day of storage. The relative
content of cyclopentasiloxane decamethyl was increased but
the relative content of 2,4-di-tert-butylphenol was reduced
after FA treatment compared with the control at day 12.
The relative content of 18-methyl-non-adecane-1,2-dio
trimethylsilyl ether did not change before and after FA
treatment (Supplementary Table 2). Moreover, two novel
compounds, namely, non-anal, and octanoic acid ethyl ester,
with a distinctive aroma were discovered in FA-treated taros after
12 days of cold storage (Supplementary Table 2 and Figure 7).
These two aromatic compounds were newly biosynthesized after
FA treatment.

DISCUSSION

The surface color is a visual indicator of good quality as this
cosmetic feature highly correlates with the freshness of fresh-
cut products such as taro corm (21, 22). The parameters of
L∗ value, a∗ value, b∗ value, and BI are regarded as indicators
of browning severity in fresh-cut taros (24). In this study, the
efficiency of FA treatments with different concentrations (1, 2,
5, 10, and 20mM) on the browning inhibition in fresh-cut taros
was evaluated. The results indicated that 10mM FA significantly

reduced the browning reaction in fresh-cut taros (Figure 1), as
reflected by the results that the decrease of L∗ values, the increase
of a∗ and b∗ values, and the BI of taro slices were significantly
inhibited by 10mM FA treatment (Figures 1, 2). These results
suggest that the inhibition efficiency of FA treatment on taro
browning depends on FA concentrations used, varying from 1 to
20mM FA. It has been reported that 10mM FA treatment can
significantly reduce the discoloration of fresh-cut CWCs (31).
The results demonstrated that 10mM FA treatment was effective
in reducing the browning of fresh-cut products.

The de novo biosynthesis of phenolic compounds induced
by peeling and cutting can promote the browning development
of fresh-cut products (31, 32). The phenylpropanoid pathway is
one of the chief pathways responsible for phenolic biosynthesis
in plants (41). PAL, C4H, 4CL, and CHS are the four key
enzymes in the phenylpropanoid pathway (42). The activity
of such enzymes in fruit and vegetables can be activated by
fresh-cut operations (43). An increase in phenolic content
was related to the aggravated browning in many fresh-cut
products (43, 44). Moreover, FA is a key upstream intermediate
of the phenylpropanoid pathway and is the precursor for
the biosynthesis of many phenolics (41). To explore whether
the external addition of FA could influence the biosynthesis
of phenolic compounds in fresh-cut taros, the effects of FA
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FIGURE 5 | Effects of 10mM FA treatment on hydrogen peroxide contents (A), and the activity and gene expression of POD (B–E) and CAT (F–H) in taro slices during

storage at 5◦C. Each value is presented as means ± standard deviation (SD, n = 3). Statistical differences (p ≤ 0.05) between the control and 10mM FA treatment at

the same time point are analyzed and indicated using different letters above the bars.

treatment on total phenolic content, PAL activity, and the
expressions of three main enzyme-encoded genes, including
C4H, 4CL, and CHS, were investigated.

Phenylalanine ammonia lyase is an entry-point enzyme in
phenolic biosynthesis through the phenylpropanoid pathway
(41). The results currently available about the effects of exogenous
FA treatment on PAL activity are contradictory. For example,
Sato et al. reported that FA is ineffective against PAL activity in
sweet potatoes (45). As a feedback regulator, FA inhibits PAL
activity and gene expression in fresh-cut CWCs (31). In contrast,
FA functions as an inducer of PAL activity in soybean roots

(46). In this study, FA treatment enhanced PAL activity and
upregulated the expressions of two PAL genes (Figures 3A–C),
suggesting that FA treatment activated PAL activity in fresh-
cut taros.

Cinnamic acid is the first product in the phenylpropanoid
pathway (47). PAL directly catalyzes the non-oxidative
deamination of L-phenylalanine and L-tyrosine to form
cinnamic acid (48). These results suggest that FA treatment
could increase endogenous cinnamic acid content in fresh-cut
taros by inducing PAL activity. The application of cinnamic acid
on fresh-cut taros reduces taro browning (22), suggesting that
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FIGURE 6 | Effects of 10mM FA treatment on malondialdehyde contents (A) and the activity and gene expression of LOX (B–F) in taro slices during storage at 5◦C.

Each value is presented as means ± standard deviation (SD, n = 3). Statistical differences (p ≤ 0.05) between the control and 10mM FA treatment at the same time

point are analyzed and indicated using different letters above the bars.

FA treatment reduces taro browning partly through inducing
cinnamic acid biosynthesis.

In this study, FA treatment reduced the TPC content
(Figure 4A) and downregulated the expressions of C4H, 4CL,
and CHS genes (Figures 3D–L). The results suggest that FA
treatment might reduce the phenolic biosynthesis by suppressing
the expressions of C4H, 4CL, and CHS. The decreased phenolics
may restrict the phenolic oxidation reactions, which contribute to
the browning alleviation in fresh-cut taros (24). Whether FA can
regulate the activity of those enzymes at the protein level remains
to be studied.

The discoloration of most agricultural products is mainly
attributed to the oxidation of phenolic compounds by PPO (49–
51). Postharvest treatments could reduce and/or inhibit PPO
activity, which can restrain the browning of fresh-cut fruit or
vegetables because PPO is a key enzyme responsible for the
formation of dark-colored quinones in plants (52). For example,
maclurin treatment suppressed the enzymatic browning and PPO
activity in potato supernatant by directly binding to the active
site of PPO by forming multiple hydrogen bonds and aromatic
interactions with the binding pocket (49). Melatonin treatment
reduces PPO activity and gene expressions in fresh-cut pears
(53) and taros (4). In addition, the application of 10mM FA
significantly inhibits PPO activity and the yellowing of fresh-cut

CWCs (31). In this study, 10mM FA treatment reduced SQ
content and PPO activity and reduced the expression levels
of three PPO genes in taro slices during cold storage as well
(Figures 4B–F). These results suggest that FA treatment might
reduce the oxidation of phenolic compounds by suppressing PPO
activity, leading to a delay in taro tissue browning.

Many studies have demonstrated that FA can act as a feedback
inhibitor of enzymes in the phenolic biosynthesis and oxidation
reactions (47). In this study, at concentrations lower and higher
than 10mM, FA treatments did not significantly reduce the
surface browning of fresh-cut taros (Figure 1). These results
imply that low concentrations of FA might not be sufficient for
the inhibition of enzyme activity in the phenolic biosynthesis
pathway. On the contrary, FA could act as a substrate of oxidative
enzymes such as PPO to form dark-colored pigments when the
FA concentrations were higher than a specific concentration such
as 10mM, thus resulting in aggravated browning. Therefore, only
proper FA concentration could effectively suppress the browning
of fresh-cut taros.

Malondialdehyde content is an indicator of the cell membrane
lipid peroxidation (54). LOX is involved in the regulation of
lipid peroxidation in fresh-cut fruits and vegetables (55), and the
enhanced LOX activity is found to be related to the aggravated
browning in fresh-cut foods as seen in lotus roots (56), pear fruits
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FIGURE 7 | Plots of FID chromatogram of fresh-cut taros using a GC-MS system. (A) Fresh samples from 0 day of storage; (B,C) DW-treated and FA-treated samples

from 12 days of storage at 5◦C, respectively. Each sample was repeatedly analyzed three times. The representative plot shown were obtained from three replications.

(57), guava fruits (58), and taros (24). LOX catalyzes the first
oxygenation step of polyunsaturated fatty acids and results in the
formation of hydroperoxides (59, 60). In this study, FA treatment
decreased MDA contents, LOX activity, and the expression levels
of four LOX genes in fresh-cut taros (Figure 6). These results
suggest that FA treatment could reduce the membrane lipid
peroxidation in fresh-cut taros, thereby maintaining the integrity
of the cell membrane and the compartmentation of enzymes and
substrates.

Reactive oxygen species (ROS) overproduction or scavenger
system failure is one of the main reasons for causing enzymatic
browning in fresh-cut products (61). CAT and POD are the two
main antioxidant enzymes and play crucial roles in scavenging
ROS in plant cells (37, 62). The enhancement of the activities of
various antioxidant enzymes such as POD, CAT, and APX could
reduce ROS levels and prevent oxidative damage caused by ROS
(63). In this study, 10mM FA treatment significantly enhanced
POD and CAT activities and gene expressions and reduced H2O2
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contents in fresh-cut taros (Figure 5). These results show that FA
treatment activated the antioxidant system in taro slices, reducing
oxidative damages caused by cutting and peeling, which greatly
contributed to the reduced browning. The improved antioxidant
activity by FA treatment might also contribute to the reduction of
membrane lipid peroxidation in fresh-cut taros due to the strong
oxidation activity of ROS (64).

Besides ROS scavenging activity, POD is also involved in the
oxidation of phenolics (65, 66). However, the available results
regarding the roles of POD in the browning of fresh-cut foods
were inconsistent. Hydrogen sulfide treatment inhibited POD
activity and thus retarded the browning of fresh-cut lotus root
slices (35) and CWCs (61) during cold storage. The reduction
of carambola fruit browning under UV-C treatment was not due
to a reduction in PAL and/or POD activities (67). The cinnamic
acid treatment enhances POD activity and gene expression but
reduces the browning of fresh-cut taros (22). POD activities and
gene expression of fresh-cut taros were activated by 10mM FA
treatment in this study (Figures 5F–H). These results suggest
that POD is more suitable to act as an ROS scavenger rather
than a browning enhancer in fresh-cut taros. The results reported
by Gao et al. concurred with our results and showed that 24-
epibrassinolide treatment reduced the surface browning of fresh-
cut lotus roots by enhancing POD activity (56).

Taro is characterized by a distinctive aroma after cooking (68),
so the aroma is an important characteristic of the high quality
of taro. Aromatic compounds are closely related to ethylene
production in postharvest fruit (69), and cutting and peeling
operations can induce the production of endogenous ethylene,
but cold storage shows effective inhibition of ethylene generation
in fresh-cut products (70). Therefore, it seems to be unclear
how aromatic compounds change in fresh-cut foods under cold
storage conditions. In this study, we found that the aromatic
quality of DW-treated taros was reduced following a long period
of cold storage (Supplementary Table 2 and Figure 7). However,
FA treatment prevented the decrease in the number and content
of aromatic components. Furthermore, two novel aromatic
compounds, namely, non-anal and octanoic acid ethyl ester,
were identified in the FA-treated taros (Supplementary Table 2

and Figure 7). Octanoic acid ethyl ester is an important aroma-
producing substance in strawberry fruit (71). These results
suggest that FA treatment improved the aroma quality of cold-
stored fresh-cut taros. LOX is also involved in the formation of
some aromatic components (72). In this study, LOX activity was
enhanced in FA treatment within the first 3 days (Figure 6B),

implying that the enhanced LOX activity at the initial phase
of cold storage might be involved in the formation of aroma
components in fresh-cut taros. However, how FA treatment
influences aromatic components in cold-stored taros remains to
be elucidated in the future.

CONCLUSION

Treatment with 10mM FA significantly maintained the L∗ values
but reduced a∗ values, b∗ values, and BI in fresh-cut taro
slices, suggesting that FA treatment restrained the browning
of fresh-cut taro. FA treatment induced the PAL activity but
reduced the phenolic biosynthesis by suppressing the expression
of C4H, 4CL, and CHS genes. FA treatment reduced PPO
activity and thus reduced the formation of dark-colored quinones
in taros. FA treatment reduced oxidative damages caused by
cutting by enhancing CAT and POD activities and reducing
LOX activity. Moreover, the application of FA improved the
aroma quality of cold-stored taro slices. Overall, our results
highlight that the FA treatment at proper concentration is
probably a useful strategy to maintain the quality of fresh-
cut taro and inhibit browning, which is still a big problem
in fresh-cut foods. Whether and how FA treatment enhances
the nutritional quality of fresh-cut taros should be studied in
the future.
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