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A B S T R A C T

Mouse podoplanin (mPDPN) is a type I transmembrane sialoglycoprotein, which is expressed on lymphatic
endothelial cells, podocytes of the kidney, and type I alveolar cells of the lung. mPDPN is known as a platelet
aggregation-inducing factor and possesses four platelet aggregation-stimulating (PLAG) domains: PLAG1,
PLAG2, and PLAG3 in the N-terminus and PLAG4 in the middle of the mPDPN protein. mPDPN overexpression in
cancers has been reportedly associated with hematogenous metastasis through interaction with the C-type lectin-
like receptor 2 of platelets. We previously reported a rat anti-mPDPN monoclonal antibody clone PMab-1, which
was developed by immunizing the PLAG2 and PLAG3 domains of mPDPN. PMab-1 is very useful in flow cyto-
metry, western blot, and immunohistochemical analyses to detect both normal cells and cancers. However, the
binding epitope of PMab-1 remains to be clarified. In the present study, flow cytometry, enzyme-linked im-
munosorbent assay, and immunohistochemical analyses were utilized to investigate the epitope of PMab-1. The
results revealed that the critical epitope of PMab-1 is Asp39 and Met41 of mPDPN. These findings can be applied
to the production of more functional anti-mPDPN monoclonal antibodies.

1. Introduction

Podoplanin (PDPN/T1alpha/gp38/Aggrus) is expressed in many
normal tissues, such as renal podocytes, lymphatic endothelial cells of
many tissues, and pulmonary type I alveolar cells [1–4]. Several anti-
mouse PDPN (mPDPN) monoclonal antibodies (mAbs), such as clone
8.1.1 or clone PMab-1, have been used in many studies [5]. However,
clone 8.1.1 is produced using hamsters, and clone PMab-1 is produced
using rats because it is difficult to develop anti-mPDPN mAbs using
mice. Recently, we developed a rat–mouse chimeric antibody, mPMab-
1 of mouse IgG2a, which was derived from a rat PMab-1 mAb [6].
Immunohistochemical analysis showed that mPMab-1 detects podo-
cytes of the kidney, lymphatic endothelial cells of the colon, and type I
alveolar cells of the lung. Importantly, mPMab-1 was shown to be more
sensitive than original PMab-1.

mPDPN possesses four platelet aggregation-stimulating (PLAG) do-
mains: PLAG1, PLAG2, and PLAG3 in the N-terminus [1] and PLAG4 in
the middle of the mPDPN protein [7]. In a previous study, PMab-1 mAb
was produced against the platelet aggregation-stimulating (PLAG) do-
main of mPDPN [5]; therefore, PMab-1 neutralizes the interaction be-
tween mPDPN and the C-type lectin-like receptor 2 [8–10]. The

administration of PMab-1 was found to reduce lymphangiogenesis in
corneal suture and ear-wound healing models [11]. PMab-1 also sup-
pressed the infiltration of thioglycollate-induced macrophages at the
site of wound healing. Furthermore, the administration of PMab-1 lead
to a significant suppression of the rejection reaction in a corneal
transplantation model, suggesting that mPDPN is a novel therapeutic
target for suppressing lymphangiogenesis and inflammation.

In the present study, we determined the binding epitope of PMab-1
to mPDPN using flow cytometry, enzyme-linked immunosorbent assay
(ELISA), and immunohistochemical analyses.

2. Materials and methods

2.1. Cell line

Chinese hamster ovary (CHO)-K1 cell line was purchased from the
American Type Culture Collection (Manassas, VA, USA). The mPDPN
mutation plasmids were transfected into CHO-K1 cells using
Lipofectamine LTX (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Transiently transfected cells were cultured in RPMI 1640 medium
(Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-
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inactivated fetal bovine serum (Thermo Fisher Scientific Inc.), 100
units/ml of penicillin, 100 μg/ml of streptomycin, and 25 μg/ml of
amphotericin B (Nacalai Tesque, Inc.) at 37 °C in a humidified atmo-
sphere of 5% CO2 and 95% air.

2.2. Production of mPDPN point mutants

The cDNA of mPDPN was subcloned into a pcDNA3 vector (Thermo
Fisher Scientific Inc.) [2]. Substitutions of amino acids to alanine in the
mPDPN sequence were performed using a QuikChange Lightning Site-
Directed Mutagenesis Kit (Agilent Technologies Inc., Santa Clara, CA,
USA).

2.3. Flow cytometry

Cells were harvested after brief exposure to 0.25% trypsin/1mM
ethylenediaminetetraacetic acid (Nacalai Tesque, Inc.). After washing
with 0.1% bovine serum albumin in PBS, the cells were treated with
PMab-1 for 30min at 4 °C, followed by treatment with Alexa Fluor 488-
conjugated anti-rat IgG (1:1000; Cell Signaling Technology, Inc.,
Danvers, MA). Fluorescence data were acquired using the Cell Analyzer
EC800 (Sony Corp., Tokyo, Japan).

2.4. ELISA

Synthesized mPDPN peptides using PEPScreen (Sigma-Aldrich
Corp., St. Louis, MO) were immobilized on Nunc Maxisorp 96-well
immunoplates (Thermo Fisher Scientific Inc.) at 10 μg/ml for 30min at
37 °C. After blocking with SuperBlock T20 (PBS) Blocking Buffer
(Thermo Fisher Scientific Inc.), the plates were incubated with purified
PMab-1 (10 μg/ml), followed by a 1:2000 dilution of peroxidase-con-
jugated anti-rat IgG (Agilent Technologies Inc.). The enzymatic reaction
was performed using 1-Step Ultra TMB-ELISA (Thermo Fisher Scientific

Inc.). Optical density was measured at 655 nm using an iMark micro-
plate reader (Bio-Rad Laboratories, Inc., Berkeley, CA). These reactions
were performed at 37 °C with a total sample volume of 50–100 μl.

2.5. Immunohistochemical analyses

Histological sections (4-μm thick) of mouse tissues were directly
autoclaved in citrate buffer (pH 6.0; Nichirei Biosciences, Inc., Tokyo,
Japan) for 20min. After blocking with SuperBlock T20 (PBS) Blocking
Buffer (Thermo Fisher Scientific Inc.), sections were incubated with
mPMab-1 (1 μg/ml) or mPMab-1 (1 μg/ml) plus peptides (5 μg/ml) for
1 h at room temperature and treated using an Envision+ kit (Agilent
Technologies Inc.) for 30min. Color was developed using 3,3-diami-
nobenzidine tetrahydrochloride (DAB; Agilent Technologies Inc.) for
2min. Sections were counterstained with hematoxylin (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan).

3. Results and discussion

In a previous study, we developed a rat anti-mPDPN mAb PMab-1
by immunizing the PLAG domain of mPDPN [5]. We further produced a
rat–mouse chimeric antibody, mPMab-1 of mouse IgG2a, which was
derived from a rat PMab-1 mAb [6]. Immunohistochemical analysis
showed that both PMab-1 and mPMab-1 are capable of detecting po-
docytes of the kidney, lymphatic endothelial cells of the colon, and type
I alveolar cells of the lung. Interestingly, mPMab-1 was shown to be
more sensitive than original PMab-1 [6] probably because a high-sen-
sitivity immunohistochemical kit can be used for mouse IgG. In the
present study, we produced point mutants of mPDPN (proteins and
synthesized peptides) and investigated the critical epitope of PMab-1
for mPDPN detection.

Because PMab-1 was developed by immunizing rats with amino
acids 38–51 of mPDPN, we produced a series of point mutants of

Fig. 1. Epitope mapping of PMab-1 using point mutants of mPDPN. Point mutants of mPDPN were analyzed using flow cytometry. Point mutants were expressed
on CHO-K1 cells and then incubated with PMab-1 (2 μg/ml) or buffer control for 30min at 4 °C, followed by treatment with corresponding secondary antibodies.
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mPDPN using a QuikChange Lightning Site-Directed Mutagenesis Kit.
As shown in Fig. 1, PMab-1 reacted with G38A, G40A, V42A, P43A,
P44A, G45A, I46A, E47A, D48A, K49A, I50A, and T51A in flow cyto-
metry. In contrast, it did not react with D39A and M41A, indicating that
Asp39 and Met41 of mPDPN are critical for PMab-1 recognition.

Next, we synthesized a series of point mutants of mPDPN peptides
from the 38th to the 51st amino acid (Supplementary Table 1). Using
ELISA, PMab-1 detected G38A, G40A, V42A, P43A, P44A, G45A, I46A,
E47A, D48A, K49A, I50A, and T51A. In contrast, it did not recognize
D39A and M41A, confirming the result from the flow cytometric

analysis (Fig. 2).
We performed a blocking assay using flow cytometry. PMab-1 re-

acted with the CHO/mPDPN cell line (Fig. 3). This reaction was com-
pletely neutralized by G38A. In contrast, D39A and M41A did not block
the reaction of PMab-1 with CHO/mPDPN, indicating that Asp39 and
Met41 of mPDPN are critical for PMab-1 detection.

We further performed a blocking assay using im-
munohistochemistry. A rat–mouse chimeric mAb mPMab-1 reacted
with type I alveolar cells (Fig. 4A), renal podocytes (Fig. 4B), and
lymphatic endothelial cells of the colon (Fig. 4C and Supplementary

Fig. 2. Illustration of mPDPN and epitope of PMab-1. mPDPN possesses four PLAG domains. PMab-1 was produced by immunizing PLAG2 and PLAG3 domains.
Asp39 and Met41 are critical amino acids for PMab-1 recognition to mPDPN.

Fig. 3. Flow cytometry using PMab-1 and point mutants of mPDPN. PMab-1 (1 μg/ml) or PMab-1 (1 μg/ml) plus peptides (G38A, D39A, and M41A; 10 μg/ml)
were reacted with CHO/mPDPN cells for 30min at 4 °C, followed by the addition of secondary antibodies.
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Figure 1). These reactions were completely or partially neutralized by
G38A. In contrast, D39A and M41A did not block these reactions of
mPMab-1 with mouse tissues, indicating that Asp39 and Met41 of
mPDPN are critical for PMab-1 detection.

Taken together, the critical epitope of PMab-1 is Asp39 and Met41
of mPDPN. These findings can be applied to the production of more
functional anti-mPDPN mAbs.
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