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Simple Summary: In breast cancer development, the expression of Ki-67 is strongly associated with
cancer proliferation and is a known indicator of prognosis and outcome. Ki-67 expression levels are
also useful to inform treatment decision making in some cases. As a result, routine measurement of
Ki-67 is now widely performed during pathological tumour evaluation. However, the Ki-67 appraisal
is not without its limitations and shortcomings—the aim of this study was to provide an overview
of Ki-67 use in the clinical setting, the current challenges associated with its measurement, and
the novel strategies that will hopefully enhance Ki-67 proliferation indices for prospective breast
cancer patients.

Abstract: The advent of molecular medicine has transformed breast cancer management. Breast
cancer is now recognised as a heterogenous disease with varied morphology, molecular features,
tumour behaviour, and response to therapeutic strategies. These parameters are underpinned by
a combination of genomic and immunohistochemical tumour factors, with estrogen receptor (ER)
status, progesterone receptor (PgR) status, human epidermal growth factor receptor-2 (HER2) status,
Ki-67 proliferation indices, and multigene panels all playing a contributive role in the substratification,
prognostication and personalization of treatment modalities for each case. The expression of Ki-67 is
strongly linked to tumour cell proliferation and growth and is routinely evaluated as a proliferation
marker. This review will discuss the clinical utility, current pitfalls, and promising strategies to
augment Ki-67 proliferation indices in future breast oncology.
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1. Introduction
Biomarkers

The biomolecular era, initiated by Crick, Franklin, and Watson following their precise
description of the structure of deoxyribose nucleic acid in 1953, led to a substantial expan-
sion of our understanding of the molecular basis of disease and the subsequent utility of
biomarkers in clinical practice. A biomarker, a portmanteau of ‘biological marker’, is a
characteristic that is objectively measured as an indicator of normal biological processes,
pathological processes, pharmacological responses to a therapeutic intervention [1], or
to predict incidence or outcome of disease [2]. Biomarkers are used to provide informa-
tion concerning human biology, and the development of novel oncological biomarkers
remains at the forefront of translation research priorities. There are several categories of
biomarkers; diagnostic biomarkers are used to distinguish diseased from healthy individ-
uals, while predictive, prognostic and therapeutic biomarkers may influence therapeutic
decision-making and management strategies with the aim of personalising disease treat-
ment [3,4]. Prognostic biomarkers focus upon identifying the likelihood of a clinical event
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in the setting of disease [5]. Unfortunately, sometimes prognostic biomarkers are a blunt
measure of stratifying outcomes, and their reliability is limited through interindividual
variability (i.e., differing values for a spectrum of patients), intraindividual variability
(i.e., differing scoring by histopathologists providing Ki-67 measurement), and sensitivity
and specificity implications [3]. Consequentially, biomarkers are not always absolute in
predicting outcomes.

Breast cancer is responsible for 1.7 million new cancer diagnoses worldwide each
year [6]. Traditionally, breast cancer was considered a homogenous entity [7], with radical
resection through mastectomy the cornerstone of effective cancer control [8]. The molecu-
lar era has transformed breast cancer management [9]: We now consider invasive breast
carcinoma a heterogenous disease with varied morphology, tumour behaviour, response to
therapeutics and molecular features [10]. Furthermore, the discovery and development
of diagnostic, prognostic and therapeutic biomarkers have transformed the international
perception such that at least four heterogeneous molecular subtypes are recognised in
clinical practice [11,12]. Distinguishing these subtypes relies on the genetic expression
of estrogen receptor (ER) status, progesterone receptor (PgR) status, human epidermal
growth factor receptor-2 (HER2) status, and Ki-67 proliferation indices due to their critical
role in the substratification, prognostication, and personalization of treatment modalities
for each subtype [10,12–19]. Mandatory ER, PgR, and HER2 immunohistochemical ap-
praisals are recommended to approximate the genetic expression of these in all cases of
invasive breast cancer according to the American Society of Clinical Oncology/College of
American Pathologists (ASCO/CAP) guidelines [20,21], as these are established predictive
and prognostic biomarkers in breast oncology, proving crucial in therapeutic decision mak-
ing [18,22–24]. Additionally, Ki-67 proliferation indices remain critical in the 2011 St. Gallen
Consensus for differentiating Luminal A and Luminal B molecular subtypes [12]. Ki-67
expression is strongly associated with aggressive tumour biology and tumour proliferation,
and recognition has grown for Ki-67 as an excellent prognostic biomarker [25,26].

Currently, certain authors report the inherent value of Ki-67 in breast oncology [27],
while controversy exists as to the reliability of Ki-67 in independently predicting responses
to therapy and survival. This review will focus on the current clinical utility of Ki-67
indices, highlight current pitfalls of the biomarker, and outline strategies that may enhance
Ki-67 application in future practice.

2. Ki-67 Proliferation Indices

Antigen Ki-67, also known as Ki-67 or Marker of Proliferation Ki-67 (MKI67), is a
protein in humans encoded by the MKI67 gene [28]. Ki-67 encodes two protein isoforms
with molecular weights of 345 and 395 kilodaltons and was initially identified in Hodgkin
lymphoma cell nuclei 1983 by Gerdes and Scholzer [29]. The name of this biomarker is
derived from its city of origin, Kiel, and its location within the 96-well plate [30]. The
quantity of Ki-67 present at any time during the cell cycle is regulated by a precise balance
between synthesis and degradation, as indicated through its short half-life of 60–90 min-
utes [31,32]. Ki-67 remains active during the G1, S, G2, and M phases of the cell cycle [33],
making it an excellent marker of cell proliferation [34,35] and an accepted hallmark of
oncogenesis [36]. During interphase, the Ki-67 antigen can be exclusively detected within
cell nuclei, whereas in mitosis, most of the protein is relocated to the surface of cellular
chromosomes [37]. Ki-67 remains absent during the quiescent G0 phase, and levels reduce
significantly during anaphase and telophase [38]. Immunohistochemical evaluation of
Ki-67 is now incorporated into the paradigm for several cancer types due to its reliable
correlation with the proliferative activity of cancer cells [39]. Reliable prognostication
using Ki-67 as a solitary biomarker has been validated in a number of cancers, including
breast, prostate, cervical, lung, soft tissue, neuroendocrine cancers, and gastrointestinal
stromal tumours [40–45]. In contemporary clinical practice, Ki-67 is often considered a
reliable indicator of responses to systemic therapeutic strategies and acts as a prognostic
biomarker in certain malignancies [46,47]. In spite of this, difficulties surrounding the
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evaluation, utilisation, and credibility of Ki-67 have hampered the uniform uptake of Ki-67
in routine practice.

2.1. Ki-67: Inconsistencies in Detection

Extensive efforts have been made over the past three decades to evaluate the pre-
dictive value of the Ki-67 proliferation index [48–50]. In spite of these endeavours, this
biomarker has not been completely integrated as a standard component of clinical decision
making or pathological reporting [51], largely due to the difficulty standardising methods
of Ki-67 appraisal [25,52]. As outlined by the International Ki-67 Working Group [52],
inconsistencies in scoring are possible at the preanalytical, analytical, interpretation, and
data analytic phases of Ki-67 evaluation. During the preanalytical phase, a number of
parameters could all potentially contribute to differences in the assessment of Ki-67. These
include specimen type, fixative type, cold ischaemic time (i.e., time taken from the removal
of the specimen at surgery to the placement to the fixation of the tissue), as well as the
length of fixation [53]. Although it has been shown that fixation for up to 154 days may
not negatively impact Ki-67 staining, in practice, the standard methods used for fixation,
i.e., buffered formalin as a fixative for 8–72 hours, are adequate for ensuring accurate Ki-67
results [21]. The type of specimen, such as cytology or histology, could potentially lead to
differences in Ki-67 scoring as they utilised different fixatives. Another important practical
consideration is the surgical procedure. A mastectomy can produce significantly more
tissue than a wide local excision, which, if not correctly handled, may prevent fixation
of central tumour tissue as formalin has a penetrance of mm per hour. A lack of fixation
increases the cold ischaemic time and can cause cells to drop out of the cell cycle, decreasing
Ki-67 scores [52,52,54]. However, standard histopathology tissue handling practices, in
general, prevent this from occurring. Moreover, following processing and embedding, the
tissue remains stable in a paraffin block for a longer time than a cut section, and so freshly
cut sections should always be used for a standard assessment approach.

In the setting of immunohistochemistry analysis, antigen retrieval, antibody selection,
colorimetric detection, as well as adequate counterstaining of the negative nuclei all require
standardisation to ensure the clinical reliability of Ki-67, which will be the case in a clinically
accredited laboratory. Misinterpretations of scoring may lead to inconsistencies in Ki-67 re-
porting; this may occur through interpersonal variability. Controversary surrounding data
analysis within Ki-67 is apparent due to the lack of recommended consensus guidelines,
with uncertainty surrounding the selection of relevant cut-off points for this biomarker.
Furthermore, there are several means of staining and evaluating Ki-67, which can poten-
tially lead to inconsistencies in scoring, while variability in interlaboratory methodology
can also limit the reproducibility of this biomarker. For example, cytoplasmic staining and
occasional membrane staining of breast cancer cells for the Ki-67 antigen can occur with
the MIB1 antibody [20], although only nuclear staining (plus mitotic figures) should be
included in Ki-67 scoring. The Ki-67 score is defined as the percentage of positively stained
cells among the total number of cancer cells assessed [55]. In using MIB1 staining, probably
the single most confounding factor in accurate assessment is the heterogeneity of expres-
sion. The gradient of increasing staining between tumour hot spots and tumour peripheries
(the leading edge is expected to the most biologically active site of the tumour) can cause
difficulties in judging where is most representative of the tumour overall. Currently, MIB1
is the most commonly used clone for Ki-67 appraisal [56] and has built up a long and vali-
dated track record, making it considered by many as the ‘gold standard’ [52,57]. However
other clones can be used and these include: SP6, 30-9, K2, and MM1. [58–61]. Interestingly,
the rabbit anti-human Ki-67 monoclonal antibody SP6 recognises the identical repeated
Ki-67 epitope as MIB1 and looks promising to enhance sensitivity for quantitative image
analysis [62,63], as validated in several recent studies [64,65]. The most recent edition of the
American Joint Committee on Cancer (AJCC) describes recommendations relating to the
routine measurement of Ki-67 expression as ‘AJCC Level of Evidence: III’, encapsulating
the variability of this biomarker in histopathological cancer staging.
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2.2. Ki-67 Guidelines and Therapeutic Decision Making
2.2.1. Ki-67 Clinical Interpretation

Existing guidelines are inconsistent with regard to interpreting clinically relevant
cut-off points in Ki-67 expression: In 2011, the 12th St. Gallen Expert Consensus panel
established a measurement of less than 14% in ER positive (ER+) disease to represent the
Luminal A molecular subtype, while scores in excess of this fitted with the Luminal B
(HER2 negative) molecular class [12]. Updates from the 2013 St. Gallen consensus statement
redefined greater than 20% as the new threshold for substratifying Luminal subtypes [66]
based on the work of Prat et al., which highlighted the relevance of this cut-off to predict
survival outcomes within the ER+ cohort [10,67]. This shift in the accepted threshold
was modelled from data suggesting tumours with a greater Ki-67 expression were more
likely to benefit from cytotoxic chemotherapy. Additionally, Enrico et al. described an
optimal cut-off of 23.4% for differentiating Luminal breast cancer molecular subtypes [68],
following validation in 506 stage I–III breast cancer patients in 2018. Although this is
somewhat of an unrealistic conventional cut-off, the authors also highlighted a 20% cut off
to be clinically relevant for recurrence and survival (hazard ratio (HR): 7.14, 95% confidence
interval (CI): 3.87–13.16). Furthermore, Petrelli et al. outlined the prognostic significance of
Ki-67 expression levels greater than or equal to 25% for predicting mortality in their review
of over 64,000 breast cancer patients (HR: 2.05, 95% CI: 1.66–2.53) [69]. More recently, Tian
et al. describe Ki-67 utilisation in isolation as valid for those with scores less than 15%
and greater than 30%, with patients with borderline scores falling between these values
best supplemented with the 70-gene (MammoPrint) or 80-gene signatures (BluePrint) [70].
Of note, the rate of miscalculation of Ki-67 was just 11% in cases carrying expression less
than 15% or greater than 30%; hence, their conclusions implying genomic testing should
augment therapeutic decision making in this group. Zhu et al. also suggested a cut-off of
30% to be clinically relevant in ‘de-escalating’ aggressive systemic therapy prescription in
their series of 1800 triple negative breast cancer (TNBC) cases [27]. Baseline levels of Ki-67
expression in TNBC are expected to be higher than in Luminal tumours [71], and definitions
of cut-offs within triple negative disease are diverse and inconsistent, withreported values
of as low as 10% and as high as 35% within TNBC disease [72,73], and a recent meta-
analysis of 35 independent studies of almost 8000 patients with resected TNBC suggests
a cut-off of 40% is associated with a greatest risk of disease recurrence and mortality [74]
(Table 1).

Table 1. Studies assessing the validity of Ki-67 as a biomarker in invasive breast cancer.

Author Year N Patients Findings

Fasching [47] 2011 552 Early breast cancer
Using greater than 13% as a cut-off for Ki-67, Ki-67 predicted

pCR ro NAC (OR: 3.5, 95% CI: 1.4–10.1) and OS (HR: 8.1,
95% CI: 3.3–20.4) and DDFS (HR: 3.2 95% CI: 1.8–5.9)

Brown [76] 2013 105 Received NAC Ki-67 expression correlated directly to pCR

Niikura [77] 2014 971 ER+/HER2-
Patients with low Ki-67 expression indices had significantly
better RFS and OS than those with intermediate- and high-

Ki-67 expression (all p < 0.001)

Petrelli [69] 2015 64,196 All subtypes
In this meta-analysis, Ki-67 expression levels greater than or
equal to 25% predicted OS in 64,196 breast cancer patients

(HR: 2.05, 95% CI: 1.66–2.53)

Enrico [68] 2018 506 Stage I-III
Illustrated the 20% Ki-67 expression cut off as clinically

relevant for recurrence and survival (HR: 7.14,
95% CI: 3.87–13.16)

Ellis [75] 2008 228 ER+ stage II/III
Per 2.7% increase in Ki-67 expression levels, there is an

increased risk of RFS in patients treated with NET (HR: 1.3,
95% CI: 1.05–1.50)
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Table 1. Cont.

Author Year N Patients Findings

Wu [74] 2019 7,716 Resected TNBC
In this meta-analysis, Ki-67 expression levels greater than

40% predicted DFS (HR: 2.30, 95% CI: 1.54–3.44) and OS (HR:
2.95, 95% CI: 1.67–5.19)

Zhu [27] 2020 1800 Early stage TNBC Using a 30%, high Ki-67 indices independently predicted
worse OS (HR: 1.947, 95% CI: 1.108–3.421)

Tian [70] 2020 1008 ER+/HER- Ki-67 expression profiles correlated with the 70-gene assay;
for patients with Ki-67 less than 15%, 81.4% were GLR

N; number, ER+; estrogen receptor positive, RFS; recurrence-free survival, NET; neoadjuvant endocrine agents, HR; hazards ratio, CI;
confidence interval, pCR; pathological complete response, NAC: neoadjuvant chemotherapy, OS; overall survival, DDFS; distant-disease
free survival, HER2-; human epidermal growth factor receptor-2 negative, RFS; recurrence-free survival, DFS; disease-free survival, TNBC;
triple negative breast cancer, GLR; genetic low-risk following 70-gene signature stratification.

2.2.2. Ki-67 Guidelines

The current guidelines surrounding Ki-67 and its role in therapeutic decision making
are controversial: The most recent update from the International Ki-67 Working Group
accepted Ki-67 as a prognostic marker in breast carcinoma, however, concluded that clinical
utility is evident only for prognostic estimation in Luminal disease to guide therapeutic
decision-making regarding adjuvant chemotherapy prescription. Additionally, consensus
suggests that Ki-67 ≤ 5% or ≥30% can be useful in estimating prognosis in early-stage,
luminal disease [52]. This is congruent with previous guidelines: In 2016, ASCO released
clinical practice guidelines, which distinctly outlined that the ‘Protein encoded by the
MKI67 gene labelling index by immunohistochemistry should not be used to guide choice
on adjuvant chemotherapy’, and hesitancy in relying upon ‘Ki-67 protein levels in tu-
mour cells to make recommendations about the type of hormonal therapy prescribed after
surgery’, as well as ‘cancer cells with high levels of Ki-67 don’t respond well to aromatase
inhibitors’ [22]. These recommendations, derived from studies of intermediate levels of
evidence, added further to the ambiguity of Ki-67 evaluation in clinical practice. Moreover,
the moderate strength of recommendation in relation to implementing these guidelines
added even further obfuscation [22]. Furthermore, there has been recent evidence high-
lighting the Ki-67 score observed on core biopsy is systematically different from those
observed on the excised cancer specimen, limiting the consistency of the biomarkers’ utility
in certain settings [78].

In order to address some of these challenges, the International Ki-67 Working Group
has developed a systemic multiphase program assessing whether Ki-67 scoring may be
analytically standardised and validated across laboratories worldwide [52,79,80]. Phase I
studies illustrated substantial interobserver variability among some of the world-leading
experts in breast pathology on TMA of whole tissue specimens [79], while phase II reduced
variability by applying a standardised, practical visual scoring method [80]. Furthermore,
the phase III study demonstrated that it is possible for pathologists to achieve high in-
terobserver agreement in scoring Ki-67 on cut biopsies using only a conventional light
microscope and manual field selection [81]. This was achieved using the scoring system
validated in the phase II study [80].

2.2.3. Ki-67 and Endocrine Therapies

In 2015, the International Ki-67 Working Group provided an update concerning the
validity of utilising Ki-67 as a clinical marker of response to neoadjuvant therapies [82]:
In neoadjuvant endocrine therapies (NAET), Ki-67 is a predictive biomarker of response
and long-term clinical outcomes, hence its inclusion in several prospective trials evaluating
response to NAET in breast carcinoma, including the Immediate Preoperative Anastrozole,
Tamoxifen, or Combined with Tamoxifen (IMPACT), and Arimidex, Tamoxifen Alone,
or Combined (ATAC) trials [83–86]. A recent meta-analysis illustrated the value of the
21-gene assay (which includes Ki-67) as a valuable tool in predicting response to NAET [87].
Moreover, Ki-67 has been assessed as a marker to substratify patients with partial response
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to neoadjuvant chemotherapy (NAC) who may require extended systemic therapy due
to a higher predicted risk of relapse and those who can proceed to primary surgery [88].
Residual cancer burden has been identified as correlative to long-term clinical outcomes fol-
lowing NAC in breast cancer patients, and increased Ki-67 in the interim between finishing
NAC and undergoing resection indicates poorer outcomes [89–91]. In spite of this explicit
prognostic information, Ki-67 measurement remains inconsistent and irreproducible be-
tween patients, limiting updates to current guidelines surrounding the routine inclusion of
Ki-67 staining in standard breast cancer immuno-histochemical workup.

2.2.4. Ki-67 and Triple Negative Breast Cancer

The introduction of immune checkpoint inhibitors (ICIs) into breast oncology has been
limited when compared to other cancers such as non-small cell lung (NSCLC), malignant
melanoma, bladder and rectal cancers [92–95]. Currently, the IMPASSION 130 and Keynote
522 trials indicate promise with respect to the role of ICIs in treating TNBC in the early-stage
(HR: 0.63, 95% CI: 0.43–0.99) and metastatic settings (HR: 0.80, 95% CI: 0.69–0.92) for com-
bined ICI and conventional chemotherapy compared to placebo and chemotherapy [96,97].
Programmed cell-death ligand 1 (PD-L1, B7-H1 or CD274), the complimentary ligand of
Programmed cell-death 1 (PD-1), is expressed on the surface of cancer cells and recruited
immune cells and suppresses the local immunological response to cancer cells by inducing
apoptosis of tumour infiltrating lymphocytes (TILs), leading to propagation of tumour
proliferation. Consequentially, high PD-L1 expression is indicative of tumour ‘escape’ from
the host immune response [98,99]. Bayraktar et al. illustrated that tumours with increased
mutational burden are more likely to possess high levels of Ki-67 antigen expression [100];
these cancers are subsequently more likely to benefit from ICIs. Both Davey et al. and
Ghebah et al. demonstrated a strong correlation between high PD-L1 expression with
aggressive microscopic tumour features such as ER and PgR negativity, high grade, and
increased Ki-67 expression within breast tumour cells [101–104]. Muenst et al. and Bae et al.
reiterated these findings surrounding the correlation between increased Ki-67 expression
and increased PD-L1 [105,106]. More recently, Asano et al. described increased PD-L1
expression to be associated with reduced Ki-67 [107], which is perhaps unsurprising as
simple measures of PD-L1 expression does not capture differential enrichments across
patients, tumour, and immune cell subtypes, as well as the spatial proximity of these cell
types within tissues. Furthermore, these relational features may be critical for further
evaluating the complex stimulatory and inhibitory processes that depend on the interplay
between individual cells in the tumour microenvironment (TME). The bona fide validity
of Ki-67 in predicting response to systemic and endocrine agents is evident in modern
practice [85,108,109]; however, recent analyses suggest proliferative markers, including
Ki-67, may be predictive of resistance to immune checkpoint inhibition in NSCLC [110].
On the contrary, a small pre-clinical trial of early-stage NSCLC patients described that
Ki-67 expression correlates with increased immune checkpoint expression on both tumour
and TILs within the TME [111], advocating that evaluating pre-treatment Ki-67 levels may
present predictive value for those indicated to undergo combined cytotoxic chemotherapy,
ICI, or novel combinations. Thus, it is imperative that the scientific community delve
further into the relatability of Ki-67 expression in invasive breast cancers as a biomarker of
responses to targeted therapies to inform therapeutic decision making in future practice.

2.3. Ki-67 and Multigene Panels

Contemporary oncology has advanced in concordance with our increased apprecia-
tion of genetic properties and application of genomics in cancer management [112]. Several
genetic signatures have been developed to assist clinicians in personalising therapies specif-
ically to each patient on the basis of the molecular properties of their disease [113]. In
the management of breast cancer, genomic tools have been revolutionary in subtyping
the molecular properties of breast cancer, guiding therapeutic decision making and pre-
dicting disease recurrence [114]. Multigene panels, such as the OncotypeDX® 21-gene
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recurrence score (Genomic Health Inc., Redwood City, CA, USA) (RS), have been recog-
nised by major oncology societies such as ASCO, National Comprehensive Cancer Network
(NCCN),European Society of Medical Oncology (ESMO), National Institute for Health and
Care Excellence (NICE) and St. Gallen Consensus panel, all of whom have incorporated the
21-gene assay into their guidelines [22,115–118], allowing RS to influence multidisciplinary
decision making in well-resourced healthcare systems [119]. Within the multigene assay, a
comparison between 16 cancer-related genes and 5 reference (or ‘house-keeping’) genes are
made, generating a RS indicative of the likelihood of disease recurrence. Of the 16 cancer
genes in the panel, five are directly related to proliferation, with one corresponding with
Ki-67 antigen expression [120] (Figure 1). In recent times, there has been a critical vogue
surrounding the degree of discordance between pathological parameters such as nuclear
grade and Ki-67 indices alone/in isolation [121–125], rendering RS testing favourable in
aiding prognosis, in spite of its limitations [126]. Therefore, it is somewhat unsurprising
that the data from several studies highlight the correlative nature of RS and Ki-67 protein
expression in Luminal breast cancer (p < 0.001) [114,127,128], particularly in cancers with
high Ki-67 expression. In MammaPrint® (Agendia, Amsterdam, The Netherlands), a 70-
gene panel boasting comprehensive measurement of the six hallmarks of cancer-related
molecular biology [129], their 70 genes were selected from genome-wide expression data
using a data-driven approach in an unbiased fashion; there were no predefined assump-
tions as to whether certain genes were more likely to increase the risk of distant recurrence
development in patients with early-stage breast cancer [130]. Despite Ki-67 being consid-
ered a practical biomarker of cancer proliferation, it was not included in the signature [131];
however, it has been proposed that Ki-67 may be a comparable biomarker to the 70-gene
signature in guiding adjuvant therapeutic decision making (p < 0.001), which is unsur-
prising as increased Ki-67 is useful in predicting disease recurrence [70,132,133]. In recent
times, long-term results of this prospective analysis involving almost 7000 patients diag-
nosed with node negative breast cancers or with 1–3 positive nodes suggests the 70-gene
assay ‘de-escalates’ the requirement for adjuvant chemotherapy prescription in cases of
low disease burden [134], while a prospective evaluation of RS testing in patients with
1–3 positive axillary nodes is underway in the treatment (Rx) for POsitive NoDe, Endocrine
Responsive breast cancer (or RxPONDER, SWOG S1007) trial [135]. The correlation be-
tween the 21-gene and 70-gene signatures and Ki-67 indices remains explicit [70,127,132],
with Pronzato et al. and Tian et al. presenting respective datasets of 305 and 1008 patients
reinforcing such findings (p < 0.001). Therefore, the utility of Ki-67 in identifying groups of
patients with ER+ disease is valid based on comparisons with the aforementioned “gold
standard” multigene assays. Despite the reported limitations of Ki-67 as a consistent or
independent marker to inform therapeutic decision making, its correlation with the RS
and MammaPrint® indicate its inescapable relevance in this space. Through the applica-
tion of RS testing in the well-resourced healthcare economies of the western world, Ki-67
currently remains embedded into decision making in relation to cytotoxic chemotherapy.
Moreover, the authors acknowledge that RS testing uses a polymerase chain reaction to
evaluate Ki-67 expression; perhaps a routine assessment of the biomarker through these
methods may improve standardisation and reproducibility of Ki-67 reporting in modern
histopathological practice.
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including traditional immunohistochemistry [127] and novel machine learning techniques [114].

2.4. Improving Ki-67—Future Considerations
2.4.1. Standardisation

As described in the current review, difficulty ascertaining a standard measure of Ki-67
across all breast carcinoma tissue has provided a challenge in histopathological evaluation.
In their recent publication, Aung et al. present a novel methodology relating to the
standardisation of an immunohistochemical cell line microarray (CMA) with TMA across 6
varying commercially available Ki-67 antibody clones [136]. Their results advocate TMA
is capable of normalising the staining of these antibodies, with data validated across two
Ki-67 expressing (Jurkat cells and Kaprass 299) and one Ki-67 negative (Sf9 (Spodoptera
Frugiperda 9)) cell lines, as well as in a cohort of 109 TNBC patient samples. Briefly,
using a bench-top protocol, the paraffin-embedded CMA and TMA slides were first de-
paraffinised before the respective Ki-67 antigens were retrieved using citrate buffer (pH 6.0).
Thereafter, each slide was incubated with the commercially available monoclonal Ki-67
antibodies at their recommended concentrations prior to incubating in hematoxylin and
3′-diaminobenzidine, with the aim to detect immunohistochemical reactivity. These results
were standardised and validated in three independent laboratories at Yale University,
and digital image analysis (DIA) was then performed to determine percentages of Ki-67
positive cells on stained slides; these means of standardisation between antibodies should
prove promising in the quest to standardise Ki-67 staining for prospective histopathological
tumour appraisal.

2.4.2. Digital Image Analysis

The single most likely methodology to revolutionise current practice, eliminate the
significant issue around heterogeneity, and produce clinically meaningful cut-offs is digital
image analysis (DIA). In histopathology, DIA involves the processing of whole-slide digi-
talised images through microscopy and computer-based analyses to extract meaningful
information that may inform histopathological reporting [137]. DIA has recently emerged
as a reproducible and more accurate method of evaluating Ki-67 when compared to manual
staining and scoring particularly over a large slide area [51,52,138]. While performing
visual assessment (VA), 500–1000 cells must be included in order to obtain acceptable error
rates and to correct for tumour heterogeneity (Figure 2) [52], with intra- and interobserver
variability remaining a limitation. Using DIA methodology, such variability is less likely to
impact the congruency of histopathological tumour appraisal for features such as Ki-67
expression due to the proposed algorithmic approach of DIA [128]. As previously outlined,
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the current clinical practice involves performing manual Ki-67 appraisal on whole tissue
sections, as advocated by the International Ki-67 in Breast Cancer Working Group [52].
However, several studies in the literature have attempted to refine this robust methodology,
and the data suggest considerable/robust concordance between manual scoring and DIA.
Klauschen et al. describe promising results validating computer-assisted Ki-67 scoring
in their analysis of over 1000 breast tumours [139], while Zhong et al. observed ‘almost
perfect agreement between VA and DIA’ in high cases of increased Ki-67 expression, as well
as a significant degree of homogeneity in staining among their 155 cases [140]. DIA based
on virtual double staining (VDS) with fused parallel cytokeratin and Ki-67 (MIB1) has been
described to be greater than 85% congruent with VA by Roge et al. in their evaluation of
140 core biopsies, further fuelling dispute as to the requirement for assessment of the whole
tissue specimen [141]. In recent years, Stalhammar et al. have observed DIA outperforming
VDS (with pancytokeratin CkMNF116 and Ki-67) in terms of sensitivity and specificity in
differentiating Luminal A and B tumour molecular subtypes, as stratified by Prediction
Analysis of Microarray 50 (or PAM50) [142]. Furthermore, VA and DIA matched one
another in prognostication of HR for overall survival in tumours with high Ki-67 (defined
as greater or equal to 20%) versus low Ki-67 expression. With promising results in support
of DIA Ki-67 antigen evaluation, several other considerations must also be mooted. There
can be an associated substantial investment to acquire digital pathology capacity as it is a
disruptive technology for pathology laboratories. However, its incremental use as a means
of enhancing precision medicine evaluation of biomarkers including Ki-67 as well as others
such as PDL1 or Her2 would be less disruptive and likely to strengthen the use of Ki-67 as
a clinically important biomarker. Thus, it is imperative that algorithmic techniques, such
as those described by Karsnas et al., are integrated into proposed digital histopathology to
ensure standardisation in reporting before the widespread adoption of this approach [143].
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2.4.3. Ki-67 and miRNA Analysis

Micro ribonucleic acids (miRNAs) are small, non-coding ribonucleic acids (RNAs)
approximately 19–22 nucleotides in length and are known to regulate gene expression [144].
First described by Lee et al. in 1993 [145], miRNAs have a key role in cancer proliferation,
with the clinical utility of prognostic, diagnostic and therapeutic avenues being explored
through measuring miRNA expression profiles [146,147]. Increased Ki-67 correlates with
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aggressive, highly proliferative disease, and efforts have been made to augment Ki-67
indices through supplementation with miRNA expression data: Sakurai et al. performed
hierarchical cluster analyses to elicit correlations between low, intermediate, and high levels
of Ki-67 expression and miRNA expression [148]. Low Ki-67 expression was considered
with scores of 0–14% (control group), and nine miRNAs were overexpressed in this group:
miR-let-7a, miR-let-7b, miR-let-7e, miR-29a, miR-143, miR-181a, miR-214, miR-218, and
small non-coding molecule, SNORD48. In the same analysis, almost 30 miRNAs were
associated with high Ki-67 expression (scores of >25%), while two of the most significantly
correlative of which were miR-191 (p = 0.080) and miR-7 (p = 0.051) (Table 2). Moreover,
the expression of miR-let-7e is inversely correlated to Ki-67. This is unsurprising as
the let-7 family is recognised as being involved in cancer differentiation [149]. Of note,
Sakurai et al. illustrated miR-21, miR-96, and miR-125b to overlap into a group expressing
increased HER2 positivity and Ki-67 [148]. On the contrary, miR-let-214 and miR-15a
were expressed in low HER2-expressing cancers, as well as the low Ki-67 group, while
miR-27a, miR-92a, miR-301a, miR-355a, and miR-16 were abundant within low HER2-
expressing tumours, yet overexpressed in cancers with high Ki-67 expression. Amorim et al.
evaluated the prognostic relevance of miRNA in patients diagnosed with Luminal breast
cancers [150]. Following stratification for Ki-67 index, miR-30c-5p, miR-182-5p and miR-
200-3p independently predicted endocrine resistance-free survival within this group, while
miR-30c-5p (p = 0.005), miR-200b-3p (p = 0.003), and miR-182-5p (p = 0.001) were predictive
of disease-free recurrence, once adjusted for Ki-67 status. These findings suggest that the
application of these biomarkers combined in an array or independently with the Ki-67 index
may be a clinically relevant approach to selecting patients at risk of endocrine resistance
within Luminal disease. Finally, Liu et al. correlated miRNA with Ki-67 expression;
the downregulation of miR-130b and miR-218, while the upregulation of miR-106b were
all associated with Ki-67 expression [151]. Trang et al. describe the potential for the
exploitation of Ki-67 as a miRNA target; mir-let-7 blockade suppressed Ki-67 levels in
murine lung tumours; however, prognostication following such experimentation is limited
given the paucity of subsequent data published [152]. At present, efforts to manipulate
the relevant mRNAs involved in molecular pathways driving cancer proliferation have
been limited, with a focus on Ki-67 and its associated miRNAs, which could be a potential
avenue for future translational research.

Table 2. Micro-RNA and their associations with Ki-67 proliferation index expression [144,146].

Author and Year Country Tissue N Technique MicroRNA and Ki-67 Status

Sakurai 2018 [144] Japan Breast tumour 21 qRT-PCR

miR-let-7a, miR-let-7b, miR-let-7e, miR-29a,
miR-143, miR-181a, miR-214, and miR-218 were all

overexpressed in control breast cancer group,
defined as possessing Ki-67 indices of 0–14%
miR-7, miR-15b, miR-16, miR-18b, miR-20b,
miR-21, miR-25, miR-27a, miR-27b, miR-34a,

miR-92a, miR-96, miR-125a-5p, miR-125b, miR-132,
miR-133b, miR-146a, miR-148b, miR-149, miR-150,

miR-183, miR-184, miR-191, miR-199a-3p,
miR-200c, miR-203, miR-301a, miR-355, and

miR-363 were all upregulated in breast cancers
with high Ki-67 expression (greater than 25%)

Amorim 2019 [146] Portugal Breast tumour 139 qRT-PCR

miR-30c-5p, miR-182-5p, and miR-200-3p
expression profiles independently predict

endocrine resistance-free survival once adjusted
for Ki-67 status

miR-30c-5p, miR-200b-3p, and miR-182-5p levels
independently predict endocrine resistance-free

survival once adjusted for Ki-67 status
Predictive of disease-free recurrence, once adjusted

for Ki-67 status

N; number, qRT-PCR: quantitative real-time polymerase chain reaction.
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2.4.4. Ki-67 and Radiomic Analysis

Radiomics is an emerging translational field of research with the aim of extracting
mineable high-dimensional data from clinical imaging, with the hope that these findings
may aid diagnosis and assist in prognostication while guiding personalised therapeutic
decision making [153]. Conventional cancer diagnosis and classification is based on his-
tological evaluation of biopsied tissue; recent efforts have refocused diagnostics towards
minimally invasive techniques, with radiomics emerging as a promising tool for precision
medicine in cancer care [154]. While Ki-67 expression is measured from retrieved tumour
tissue, the utility of radiogenomics in the identification of key tumour characteristics could
facilitate the improvement of prognostication or prediction of therapeutic response, thereby
informing therapeutic decision making in relation to neoadjuvant therapy. Juan et al.
first described radiomic parameters (i.e., morphological tumour area, grey level skewness
and kurtosis, grey level co-occurrence matrix contrast, correlation, homogeneity, inverse
differential moment, etc., all p < 0.05) and their respective correlation with predicting Ki-67
indices in a series of 53 low Ki-67 (less than 14%), and 106 cases of high Ki-67 (greater to or
equal to 14%) invasive breast cancers were evaluated using dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) [155]. These findings imply preoperative tumour
imaging may potentially allow for the prediction of the overall Ki-67 expression in a cancer,
guiding respective neoadjuvant or adjuvant treatment decisions in a more cost and time ef-
ficient manner. Tagliafico et al. provided similar results using digital breast tomosynthesis
imaging in their series of 70 women diagnosed with invasive breast carcinoma; tumour
sphericity, autocorrelation (grey level co-occurrence matrix), interquartile range, robust
mean absolute deviation, and short-run high grey-level emphasis all show an association
with Ki-67 expression [156]. Ma et al. yielded similar results from their analysis using
DCE-MRI, with previously described parameters, such as tumour area, skewness, kurtosis,
and homogeneity, all correlating with Ki-67 indices [157], while Cui et al. have recently
illustrated the clinical utility of ultrasound sonography in determining Ki-67 status [158].
These analyses highlight the opportunities presented through machine and deep learning
radiomic techniques to further personalise medical treatment while promoting minimally
invasive techniques where feasible. Moreover, the promising concept of radiogenomics
(i.e., the clinical combination of radiologic phenotypes and molecular characteristics to aid
cancer diagnostics and treatment) poses great potential in the augmentation of practical
biomarkers, such as the Ki-67 proliferation indices [159,160]. Radiogenomics presents
a novel opportunity to add further value to the clinical applicability of Ki-67, where a
detailed appraisal of both radiomic and genomic data may aid the delineation of patients
subgroups who may derive greater benefit from certain therapies, such as conventional
chemotherapy prescribed in the neoadjuvant setting, as illustrated in Figure 3. As we
enter the multiomic era, these encouraging advancements in the fields of genomic and
radiomic medicine look certain to be at the forefront of future diagnostics, prognostication,
as well as therapeutic decision making in breast cancer management, and provide the
potential to enhance/augment the current value of Ki-67 proliferation indices in breast
tumour histopathological and immunohistochemical appraisal.
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