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Abstract

In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts 

present in each cell are sequenced. This leads to unreliable quantification of lowly and moderately 

expressed genes which hinders downstream analysis. To address this challenge, we introduce 

SAVER (Single-cell Analysis Via Expression Recovery), an expression recovery method for UMI-

based scRNA-seq data that borrows information across genes and cells to obtain accurate 

expression estimates for all genes.

A primary challenge in the analysis of scRNA-seq data is the low capturing and sequencing 

efficiency affecting each cell, which leads to a large proportion of genes, often exceeding 

90%, with zero or low read count. Although many of the observed zero counts reflect true 

zero expression, a considerable fraction is due to technical factors. The overall efficiency of 

current scRNA-seq protocols can vary between <1% to >60% across cells, depending on the 

method used1.

Existing studies have adopted varying approaches to mitigate the noise caused by low 

efficiency. In differential expression and cell type classification, transcripts expressed in a 

cell but not detected due to technical limitations are sometimes accounted for by a zero-
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inflated model2–4. Recently, methods such as MAGIC5 and scImpute6 have been developed 

to directly estimate the true expression levels. Both MAGIC and scImpute rely on pooling 

the data for each gene across similar cells. However, we demonstrate later that this can lead 

to over-smoothing and may remove natural cell-to-cell stochasticity in gene expression, 

which has been shown to lead to biologically meaningful variations in gene expression, even 

across cells of the same type or of the same cell line7–9. In addition, MAGIC and scImpute 

do not provide a measure of uncertainty for their estimated values.

Here, we propose SAVER (Single-cell Analysis Via Expression Recovery), a method that 

takes advantage of gene-to-gene relationships to recover the true expression level of each 

gene in each cell, removing technical variation while retaining biological variation across 

cells (https://github.com/mohuangx/SAVER). SAVER receives as input a post-QC scRNA-

seq dataset with unique molecule index (UMI) counts. SAVER assumes that the count of 

each gene in each cell follows a Poisson-Gamma mixture, also known as a negative binomial 

model. Instead of specifying the Gamma prior, we estimate the prior parameters in an 

empirical Bayes-like approach with a Poisson Lasso regression using the expression of other 

genes as predictors. Once the prior parameters are estimated, SAVER outputs the posterior 

distribution of the true expression, which quantifies estimation uncertainty, and the posterior 

mean is used as the SAVER recovered expression value (Fig. 1a, Online Methods).

First, we assessed SAVER’s accuracy by comparing the distribution of SAVER estimates to 

distributions obtained by RNA FISH in data from Torre and Dueck et al.10 In this study, 

Drop-seq was used to sequence 8,498 cells from a melanoma cell line. In addition, RNA 

FISH measurements of 26 drug resistance markers and housekeeping genes were obtained 

across 7,000 to 88,000 cells from the same cell line. After filtering, 15 genes overlapped 

between the Drop-seq and FISH datasets (Supplementary Fig. 1).

Since FISH and scRNA-seq were performed on different cells, the FISH and scRNA-seq 

derived estimates can only be compared in distribution. Accurate recovery of gene 

expression distribution is important for identifying rare cell types, identifying highly 

variable genes, and studying transcriptional bursting. We applied SAVER to the Drop-seq 

data and calculated the Gini coefficient11, a measure of gene expression variability, for the 

FISH, Drop-seq, and SAVER results for these 15 overlapping genes. The Gini coefficient 

has been shown to be a useful measure for identifying rare cell types and sporadically 

expressed genes in the original FISH-based study of this cell line9. Thus, accurate recovery 

of the Gini coefficient would allow the same analysis to be performed with scRNA-seq.

For all genes, SAVER effectively recovered the FISH Gini coefficient, which Drop-seq 

grossly overestimates (Fig. 1b). In addition, we can compare the distributions of each gene’s 

expression across cells and observe that, as compared to Drop-seq, SAVER recovered 

expression distributions match much more closely with the FISH distributions (Fig. 1c, 

Supplementary Fig. 2). In comparison, Gini estimates and recovered distributions obtained 

from MAGIC and scImpute do not match as well with the FISH estimates (Supplementary 

Fig. 3a-c).
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Not only is SAVER capable of recovering gene expression distributions and distribution-

level features, it is also able to recover true biological gene-to-gene correlations that are 

observed in FISH but dampened in Drop-seq. For example, SAVER can recover the strong 

correlation between housekeeping genes BABAM1 and LMNA, which is lost in the Drop-

seq data (Fig. 1d). In comparison, the correlations derived from MAGIC results are much 

higher than those derived from FISH, suggesting that MAGIC induces spurious correlation. 

On the other hand, scImpute averages the correlations, leading to biased estimates of the true 

correlation (Supplementary Fig. 3d). The fact that SAVER does not introduce spurious 

correlation for gene pairs that have no biological correlation is further demonstrated by a 

permutation study (Supplementary Note 1), which shows that for such gene pairs, the 

correlation estimates are shrunk to zero by SAVER, but inflated by MAGIC and scImpute 

(Supplementary Fig. 4).

Next, we evaluated whether SAVER can accurately recover the true expression level within 

each individual cell for each gene. Since it is difficult to determine the actual number of 

mRNA molecules in each cell, we performed down-sampling experiments on four 

datasets12–15 to generate realistic benchmarking datasets. For each dataset, we first selected 

a subset of highly expressed genes and cells to act as the reference dataset, which we treat as 

the true expression. We then simulated the capture and sequencing process at low 

efficiencies while introducing cell-to-cell variability in library size (Online Methods). We 

ran SAVER, MAGIC, and scImpute on each of the observed datasets, as well as 

conventional missing data imputation algorithms.

To evaluate the performance of each method, we calculated the Pearson gene-wise 

correlation (pg
a) across cells and the cell-wise correlation (pc

a) across genes between the 

reference and observed data, as well as between the reference and recovered datasets 

(Supplementary Fig. 5). SAVER improves on both the gene-wise and cell-wise correlations 

across all datasets, while MAGIC, scImpute, and conventional missing data imputation 

algorithms usually perform worse than simply using the observed data (Fig. 2a, 

Supplementary Fig. 6, 7a). Next, we assessed the recovery of gene-to-gene and cell-to-cell 

correlation matrices, needed, respectively, for gene network reconstruction and cell type 

identification. To compare, we calculated the correlation matrix distance (CMD)16 between 

the reference matrix and the observed/recovered matrix. SAVER lowers the gene-to-gene 

and cell-to-cell CMD for all datasets, MAGIC and scImpute perform similarly as the 

observed, and conventional missing data imputation algorithms perform worse than 

observed (Fig. 2b, Supplementary Fig. 7b).

To investigate the effect of SAVER on downstream analyses, we performed differential 

expression and cell clustering on the down-sampled data. In the Zeisel study, two subclasses 

of cells — 351 CAPyr1 and 389 CA1Pyr2 cells — were identified by the original authors. 

We performed differential expression analysis of these two subclasses using several 

differential expression methods2,3,17. After down-sampling, the number of differentially 

expressed genes detected is much lower than for the reference, but SAVER detects the most 

genes in the down-sampled data set while maintaining accurate FDR control (Fig. 2c, 

Supplementary Table 1).
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Next, we performed cell clustering on the reference, observed, and recovered datasets using 

Seurat18. The reference-derived cell type clusters were treated as the truth and clustering 

accuracy on the observed and recovered datasets was assessed by the Jaccard index and by t-

SNE19 visualization. SAVER achieves a higher Jaccard index than the observed for all 

datasets, while MAGIC and scImpute have a consistently lower Jaccard index (Fig. 2d, 

Supplementary Fig. 8). Even though the Jaccard index for SAVER in the Chen and La 

Manno datasets are only slightly higher than the observed, the t-SNE plots reveal that 

SAVER clustering of the cells is a more accurate representation of the reference data than 

the observed. SAVER also gives more stable results across different numbers of principal 

components, a critical parameter choice for dimension reduction in Seurat prior to the 

application of t-SNE (Supplementary Fig. 9).

Finally, we demonstrated SAVER in the analysis of a mouse visual cortex dataset where 

47,209 cells were classified into main cell types and subtypes through extensive analysis20. 

We applied SAVER to a random subset of 7,387 cells and performed t-SNE visualization of 

the observed versus the SAVER-recovered cells (Fig. 2e). A population of excitatory 

neurons is highlighted, and the individual subtypes are colored according to labels given by 

Hrvatin et al. In the t-SNE plot of the original counts, the subtypes are not well separated 

and are mostly indistinguishable. SAVER distinguished the individual subtypes with clear 

separation. This example is common in our general experience with SAVER: It does not 

affect well-separated cell types but identifies cell types and states for which the evidence in 

the original data may be weak.

We have shown that SAVER is able to accurately recover both population-level expression 

distributions and cell-level gene expression values, both of which are necessary for effective 

downstream analyses. Additional in-depth exploration in Supplementary Note 2 reveals how 

the performance of SAVER depends on factors such as sequencing depth, number of cells, 

and cell composition. In almost all scenarios, analyses using SAVER estimates improves 

upon analyses using the original counts, while in the worst-case scenario, SAVER does not 

hurt. The robust performance of SAVER is due to its adaptive estimation of gene-level 

dispersion parameters and its cross-validation-based model selection, which safeguard 

against unnecessary model complexity. By reducing noise and amplifying true biological 

relationships, SAVER improves the signal for downstream analyses.

Online Methods

Data Pre-processing and Quality Control

SAVER can be applied to the matrix of raw UMI counts. However, in a standard scRNA-seq 

data set, many genes have zero total counts across all cells, or have non-zero count in at 

most 1 or 2 cells. Genes exhibiting such extremely sparse expression would not benefit from 

the SAVER procedure, since there is little data to form a good prediction; however these 

genes do not affect the estimates of the other genes, and thus are harmless if left in. As we 

show in Figure 9 of Supplementary Note 2, SAVER gives the most improvement for genes 

with medium to low expression, and for these extremely low abundance genes, the SAVER 

recovered values would be similar to the observed value. Thus, to reduce computational 

time, we recommend removing these genes at the start. There are several existing 
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workflows21–23 that perform a conservative filtering of low abundance genes, which can be 

applied prior to application of SAVER.

SAVER

Let Ygc be the observed UMI count of gene g in cell c. We model Ygc as a negative binomial 

random variable through the following Poisson-Gamma mixture

Ygc     Poisson scλgc
λgc ∼ Gamma αgc,   βgc

(1)

where λgc represents the normalized true expression. The Poisson model has been shown to 

be a good approximation of the noise in scRNA-seq data using UMIs24,25. Datasets without 

UMIs are subject to strong amplification bias and would violate the Poisson model assumed 

here. A gamma prior is placed on λgc to account for our uncertainty about its value. The 

shape parameter αgc and the rate parameter  βgc are reparameterizations of the mean μgc and 

the variance vgc, see details in Supplementary Note 3. sc represents the size normalization 

factor. In the following analyses, we use a library size normalization defined as the library 

size divided by the mean library size across cells, although other size factors such as those 

calculated by methods such as scran26, BASiCS27, SCnorm28, or through ERCC spike-ins 

can be used. SAVER can also accommodate pre-normalized data.

Our goal is to derive the posterior gamma distribution for λgc given the observed counts Ygc

and use the posterior mean as the normalized SAVER estimate λgc. The variance in the 

posterior distribution can be thought of as a measure of uncertainty in the SAVER estimate.

We adopt an empirical Bayes-like technique to estimate the prior mean and prior variance. 

First, we estimate the prior mean μgc. We let μgc be a prediction for gene g derived from the 

expression of other genes in the same cell. Specifically, we use the log normalized counts of 

all other genes g′ as predictors in a Poisson generalized linear regression model with a log 

link function,

logE Ygc/sc|Yg′c = logμgc =   γg0 + ∑
g′ ≠ g

γgg′log
Yg′c + 1

sc
. (2)

Since the number of genes often far exceeds the number of cells, a penalized Poisson Lasso 

regression is used to shrink most of the regression coefficients to zero. In a Lasso regression, 

a penalty parameter lambda is added to the likelihood to control the number of predictors 

that have nonzero coefficients. A large penalty would correspond to a model with very few 

nonzero coefficients while a small penalty would correspond to a model with many nonzero 

coefficients. The genes that have nonzero coefficients can be thought of as genes that are 
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good predictors of the gene that is being estimated. We believe that this accurately reflects 

true biology since genes often only interact with a limited set of genes.

The regression is fit using the glmnet R package version 2.0-529. For gene g, the response is 

the normalized observed expression Ygc/sc
 and the predictors are log

Yg′c + 1
sc

. The regression 

model at the penalty with the lowest five-fold cross-validation error is selected 

(Supplementary Fig. 10). We then use the selected model to get our regression predictions 

μgc, which we treat as the prior mean for each gene in each cell.

The next step is to estimate the prior variance by assuming a constant noise model across 

cells denoted by a dispersion parameter ϕg. We consider three models for ϕg: constant 

coefficient of variation ϕg
cv, constant Fano factor ϕg

F, or constant variance ϕg
v. A constant 

coefficient of variation corresponds to a constant shape parameter αgc = αg in the gamma 

prior and a constant Fano factor corresponds to a constant rate parameter βgc = βg (see 

Supplementary Note 3). To determine which model for ϕg is the most appropriate, we 

calculate the marginal likelihood across cells under each model and select the one with the 

highest maximum likelihood, and then set ϕg to the maximum likelihood estimate. Given ϕg

and the choice of noise model, we can derive vgc.

Now that we have both μgc and vgc, we can reparametrize, based on the chosen model for ϕg, 

into the usual shape and rate parameters of the gamma distribution, αgc and βgc .  The 

posterior distribution is then

λgc   Ygc,   αgc,   βgc ∼ Gamma Ygc +   αgc,   sc +   βgc (3)

The SAVER estimate λcg is the posterior mean, a weighted combination of the regression 

prediction and the normalized observed expression:

λgc =  
Ygc +   αgc
sc +   βgc

=  
sc

sc +   βgc
 

Ygc
sc

+  
βgc

sc + βgc
  μgc . (4)

As seen from the above equation, the recovered expression λgc is a weighted average of the 

normalized observed counts Ygc/sc and the prediction μgc. The weights are a function of the 

size factor sc and, through the βgc term, the gene’s predictability ϕg and its prediction μgc. 

Genes for which the prediction is more trustworthy (small ϕg) have larger weight on the 

prediction μgc. Genes with higher expression have larger weight on the observed counts and 

rely less on the prediction. Cells with higher coverage have more reliable observed counts 

and also rely less on the prediction. Supplementary Figure 11 shows example scenarios.
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Estimating ϕg and computing the posterior distribution is fast computationally. The 

melanoma Drop-seq data with 12,241 genes and 8,498 cells took under 10 minutes total on 

one core of a standard desktop with an i7-3770 CPU. However, performing the prediction 

with the Lasso regression is computationally intensive. For the melanoma data, the Lasso 

regression took on average about 20 seconds per gene. However, this prediction step is 

highly parallelizable in the SAVER software and gene selection filters can be applied to 

reduce the dimensionality of the problem. An approximation to the prediction step is the 

default option, which reduces the computation time of the melanoma data to under an hour 

over 8 compute cores.

Calculating correlations with SAVER

The SAVER estimate λgc cannot be directly used to calculate gene-to-gene or cell-to-cell 

correlations since we need to account for its posterior uncertainty. Let the correlation 

between gene g and gene g′ be represented by ρgg′ = Cor(λg,   λg′), where λg and λg′ are the 

true expression vectors across cells. We can estimate ρgg′ by calculating the sample 

correlation of the SAVER estimate λgc and scaling by an adjustment factor, which takes into 

account the uncertainty of the estimate:

ρgg′ =   Cor λg,   λg′ ×
Var λg Var λg′

Var λg + E Var λg Z Var λg′ + E Var λg′ Z
(5)

where Var λg Z  is a vector of posterior variances. The same adjustment can be applied to 

cell-to-cell correlations. See Supplementary Note 4 for derivation of this adjustment factor.

Distribution recovery

SAVER can be used to recover the distribution of either the absolute molecules counts or the 

relative expression values. Recovery of the absolute counts requires knowledge of the 

efficiency loss through ERCC spike-ins or some other control. To recover the absolute 

counts, we sample each cell from a Poisson-Gamma mixture distribution (i.e. negative 

binomial), where the gamma is the SAVER posterior distribution scaled by the efficiency. If 

the efficiency is not known or if relative expression is desired, we sample the expression 

level for each gene in each cell from the gene’s posterior gamma distribution.

RNA FISH and Drop-seq analysis

The raw Drop-seq dataset contained 32,287 genes and 8,640 cells. Genes with mean 

expression less than 0.1 as well as cells with library size less than 500 or greater than 20,000 

were removed. The filtered dataset contained 12,241 genes and 8,498 cells. RNA FISH 

measurements of 26 drug resistance markers and housekeeping genes were obtained across 

7,000 to 88,000 cells from the same cell line. SAVER, MAGIC, and scImpute were 

performed on the Drop-seq data. MAGIC was performed using the Matlab version 0.1 with 

default settings and library size normalization. scImpute version 0.0.2 was used with default 
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settings. The 16 genes that were left after filtering are: 9 housekeeping genes (BABAM1, 
GAPDH, LMNA, CCNA2, KDM5A, KDM5B, MITF, SOX10, VGF) and 7 drug-resistance 

markers (C1S, FGFR1, FOSL1, JUN, RUNX2, TXNRD1, VCL) (Supplementary Table 2).

Since the FISH and Drop-seq experiments have different technical biases, we normalized by 

a GAPDH factor for each cell, defined as the expression of GAPDH divided by the mean of 

GAPDH across cells in each experiment. GAPDH read counts have been used as a proxy for 

cell size30. Since some cells have very low or very high GAPDH counts, we filtered out cells 

in the bottom and top 10th percentile. For the Gini coefficient analysis where we assume we 

do not know the efficiency, we sampled the SAVER dataset from the SAVER posterior 

gamma distributions. We then filtered out cells in the bottom and top 10th percentile of 

GAPDH expression in the sampled SAVER dataset and normalized the remaining by the 

GAPDH factor. For the distribution recovery, we calculated the efficiency loss for each gene 

in each dataset as the mean FISH expression divided by the mean dataset expression. We 

scaled the Drop-seq, MAGIC, and scImpute dataset by the efficiency loss, filtered by 

GAPDH, and then normalized by the GAPDH factor. We scaled the SAVER posterior 

distributions by the efficiency loss and sampled from the Poisson-Gamma mixture to get the 

absolute counts as described above. We then performed the filtering and normalization by 

the GAPDH factor on the sampled SAVER dataset.

Correlation analysis was performed for pairs of genes in unnormalized FISH, Drop-seq, 

SAVER. Since the SAVER and MAGIC estimates were returned as library size normalized 

values, we rescaled by the library size to get the unnormalized values and used those to 

calculate the adjusted gene-to-gene correlations described above.

Generating reference and down-sampled datasets—To generate a reference dataset 

from real scRNA-seq data, we selected high quality cells and highly expressed genes from 

the original dataset to treat as the true expression λgc. We generated down-sampled observed 

datasets by drawing from a Poisson distribution with mean parameter τcλgc, where τc is the 

cell-specific efficiency loss.

We selected the cells, genes, and efficiency level so that the down-sampled dataset and the 

original full dataset are similar in mean expression and percentage of zero entries 

(Supplementary Table 3). We aimed to select roughly 50-60% of the cells with the largest 

library size and 10-20% of genes with the highest proportion of cells with nonzero 

expression (Supplementary Fig. 12).

The specific filters used for each dataset are as follows.

Baron: Human pancreatic islet data contained 20,125 genes and 1,937 cells. Genes 

with mean expression less than 0.001 and non-zero expression in less than 3 cells 

were filtered out. The filtered dataset contained 14,729 genes and 1,937 cells. To 

generate the reference dataset, we selected genes that had non-zero expression in 25% 

of the cells and cells with a library size of greater than 5,000. We ended up with 

2,284 genes and 1,076 cells.
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Chen: Mouse hypothalamus data contained 23,284 genes and 14,437 cells. Cells with 

library size greater than 15,000 were filtered out. Genes with mean expression less 

than 0.0002 and non-zero expression in less than 5 cells were filtered out. The filtered 

dataset contained 17,053 genes and 14,216 cells. To generate the reference dataset, 

we selected genes that had non-zero expression in 20% of the cells and cells with a 

library size of greater than 2,000. We ended up with 2,159 genes and 7,712 cells.

La Manno: Human ventral midbrain data contained 19,531 genes and 1,977 cells. 

Genes with mean expression less than 0.001 and non-zero expression in less than 3 

cells were filtered out. The filtered dataset contained 19,518 genes and 1,977 cells. To 

generate the reference dataset, we selected genes that had non-zero expression in 30% 

of the cells and cells with a library size of greater than 5,000. We ended up with 

2,059 genes and 947 cells.

Zeisel: Mouse cortex and hippocampus data contained 19,972 genes and 3,005 cells. 

To generate the reference dataset, we selected genes that had non-zero expression in 

40% of the cells and cells with a library size of greater than 10,000 UMIs. We ended 

up with 3,529 genes and 1,800 cells. We also filtered out one cell that had abnormally 

low library size after gene selection to end up with 1,799 cells.

To mimic variation in efficiency across cells, we sampled τc as follows,

1. 10% efficiency: τc   Gamma(10,  100)

2. 5% efficiency: τc   Gamma 10,  200

The Baron, Chen, and La Manno datasets were sampled at 10% efficiency and the Zeisel 

dataset was sampled at 5% efficiency.

Implementation of methods on down-sampled data

We compared the performance of SAVER against using the library-size normalized observed 

dataset, MAGIC, and scImpute. The missing data imputation techniques were performed on 

the library size normalized observed data treating zeros as missing. KNN imputation was 

performed using the impute.knn function in the impute R package version 1.48.0, with 

parameters rowmax = 1, colmax = 1, and maxp = p. SVD imputation was performed on the 

row and column centered matrix using the soft.Impute function in the softImpute R package 

version 1.4, with parameters rank.max= 50, lambda= 30, and type= “svd”. Random forest 

imputation was performed on the matrix transpose with the missForest R package version 

1.4 with default parameters.

Percentage change over observed was defined as

%   change   over   observed =  
rmethod −   robserved

robserved
.
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Gene-to-gene and cell-to-cell correlation analysis

Pairwise Pearson correlations were calculated for each library size normalized dataset and 

imputed dataset. Since the SAVER estimates have uncertainty, we want to calculate the 

correlation based on λgc. Correlations were first calculated using the SAVER recovered 

estimates λgc and scaled by the correlation adjustment factor described above.

The correlation matrix distance (CMD) is a measure of the distance between two correlation 

matrices with range from 0 (equal) to 1 (maximum difference)16. The CMD for two 

correlation matrices R1,   R2 is defined as

d R1,   R2 = 1 −  
tr R1R2

R1 f
R2 f

. (6)

Differential expression analysis of down-sampled datasets

For each down-sampled dataset, ten SAVER sampled datasets were generated by sampling 

from the posterior gamma distribution. A Wilcoxon rank sum test was run on each of the 

sampled datasets and the combined p-value was obtained via Rubin’s rules for multiple 

imputation31. FDR control was set to 0.01 and no fold change cutoff was used. MAST 

version 1.0.5 was run on the library size normalized expression counts with the condition 

and scaled cellular detection rate as the Hurdle model input. The combined Hurdle test 

results were used. scDD version 1.2.0 was run on the library size normalized expression 

counts with default settings. Both the nonzero and the zero test results were used. SCDE 

version 2.2.0 was run on unnormalized expression counts with default parameters, except 

number of randomizations was set to 100. The p-value was calculated according to a two-

sided test on the corrected Z-score.

To calculate the estimated false discovery rate, we first performed a permutation of the cell 

labels and determined the number of genes called as differentially expressed according to 

the p-value threshold defined for the unpermuted data. This number divided by the number 

of differentially expressed genes in the unpermutated data is the false discovery rate for that 

one permutation. The final estimated false discovery rate is the average of the false 

discovery rates over 20 permutations. For SAVER, one sampled dataset was considered one 

permutation.

Cell clustering and t-SNE visualization

Seurat version 2.0 was used to perform cell clustering and t-SNE visualization following the 

workflow detailed at http://satijalab.org/seurat/pbmc3k_tutorial.html. Briefly, normalization 

without filtering, identification of highly variable genes, scaling, PCA, jackStraw, cell 

clustering, and t-SNE were applied to the reference, down-sampled, SAVER, MAGIC, and 

scImpute datasets. The number of principal components used for cell clustering and t-SNE 

were identified through the jackStraw procedure. For the reference datasets, 15 PCs were 

chosen for Baron, Chen, and La Manno and 20 PCs were chosen for Zeisel. The number of 

principal components chosen for each down-sampled dataset and method is shown in 
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Supplementary Figure 8. The resolution for each reference dataset was chosen such that the 

cell clustering had the most agreement with the t-SNE visualization. Resolutions of 0.7, 0.6, 

1.1, and 0.8 were chosen for Baron, Chen, La Manno, and Zeisel reference datasets 

respectively. Cell clusterings were calculated for each observed and recovered dataset at 

resolutions of 0.4-1.4 at intervals of 0.1. The Jaccard index was calculated at each resolution 

with the reference dataset, and the maximum Jaccard index was then reported. The Jaccard 

index was calculated using the R package clusteval version 0.1.

Hrvatin Study

Mouse visual cortex data contained 25,187 genes and 65,539 cells. Genes with mean 

expression less than 0.00003 and non-zero expression in less than 4 cells were filtered out. 

The filtered dataset contained 19,155 genes and 65,539 cells. 47,209 cells were classified 

into cell types by the authors. SAVER was run on a subsample of 10,000 cells. Out of these 

10,000 cells, 7,387 cells had a subtype label and Seurat was used to cluster these cells. 35 

principal components were chosen for the observed data and 30 principal components were 

chosen for the SAVER results as determined by the jackstraw procedure.

Software availability

SAVER v1.0.0 was used in this study with the setting do.fast = FALSE and is provided as 

Supplementary Software. The newest version of SAVER can be found at (https://github.com/

mohuangx/SAVER). Scripts for data and figure generation can be found at (https://

github.com/mohuangx/SAVER-paper).

Data availability

RNA FISH data from the melanoma cell line can be found at https://www.dropbox.com/s/

ia9x0iom6dwueix/fishSubset.txt?dl=0. Single-cell sequencing data can be found at 

GSE99330. Five other public datasets were used in this study: Baron (GSM2230757), Chen 

(GSE87544), La Manno (GSE76381), Zeisel (linnarssonlab.org/cortex), and Hrvatin 

(GSE102827).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RNA FISH validation of SAVER results on Drop-seq data. (a) Overview of SAVER 

procedure. (b) Comparison of Gini coefficient for each gene between FISH and Drop-seq 

(left) and between FISH and SAVER recovered values (right) for n = 15 genes. (c) Kernel 

density estimates of cross-cell expression distribution of LMNA (upper) and CCNA2 

(lower). (d) Scatterplots of expression levels between BABAM1 and LMNA. Pearson 

correlations were calculated across n = 17,095 cells for FISH and n = 8,498 cells for Drop-

seq and SAVER.
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Figure 2. 
Evaluation of SAVER by down-sampling and cell clustering. (a) Performance of algorithms 

measured by correlation with reference, on the gene level (left) and on the cell level (right). 

Number of genes and cells can be found in Supplementary Table 3. Box plots show the 

median (center line), interquartile range (hinges), and 1.5 times the interquartile range 

(whiskers); outlier data beyond this range are not shown. (b) Comparison of gene-to-gene 

(left) and cell-to-cell (right) correlation matrices of recovered values with the true 

correlation matrices, as measured by correlation matrix distance (CMD). (c) Differential 

expression (DE) analysis between CA1Pyr1 cells (n = 351) and CA1Py2 cells (n = 389) 

showing significant genes detected at FDR = 0.01 (left) and estimated FDR (right). (d) Cell 

clustering and t-SNE visualization of the Zeisel dataset (n = 1,799). Jaccard index of the 

down-sampled observed dataset and recovery methods as compared to the reference 

classification is shown. (e) t-SNE visualization of 7,387 mouse cortex cells for the observed 

data (left) and SAVER (right) colored by cell types determined by Hrvatin et al.
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