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Abstract: In the last two decades, there have been massive advancements in high throughput tech-
nologies, which resulted in the exponential growth of public repositories of gene expression datasets
for various phenotypes. It is possible to unravel biomarkers by comparing the gene expression
levels under different conditions, such as disease vs. control, treated vs. not treated, drug A vs.
drug B, etc. This problem refers to a well-studied problem in the machine learning domain, i.e.,
the feature selection problem. In biological data analysis, most of the computational feature selection
methodologies were taken from other fields, without considering the nature of the biological data.
Thus, integrative approaches that utilize the biological knowledge while performing feature selection
are necessary for this kind of data. The main idea behind the integrative gene selection process is to
generate a ranked list of genes considering both the statistical metrics that are applied to the gene
expression data, and the biological background information which is provided as external datasets.
One of the main goals of this review is to explore the existing methods that integrate different types
of information in order to improve the identification of the biomolecular signatures of diseases and
the discovery of new potential targets for treatment. These integrative approaches are expected to
aid the prediction, diagnosis, and treatment of diseases, as well as to enlighten us on disease state
dynamics, mechanisms of their onset and progression. The integration of various types of biological
information will necessitate the development of novel techniques for integration and data analysis.
Another aim of this review is to boost the bioinformatics community to develop new approaches for
searching and determining significant groups/clusters of features based on one or more biological
grouping functions.

Keywords: feature selection; feature ranking; grouping; clustering; biological knowledge

1. Introduction

Biological systems are massively complex and heterologous in nature. To resolve the
mysteries behind complex biological systems, large-scale studies have been conducted
which yielded massive volumes of biological data, including the genetic variations asso-
ciated with specific phenotypes. Currently, we are encountering an -omics revolution in
which genome, epigenome, transcriptome, and other -omics can be readily characterized.
With advancements in various -omics approaches, it is now possible to generate multi-
omics data to answer various biological problems. Nowadays, several types of -omics data
are considered as depicted in Figure 1, and the numbers of different -omics data types
are increasing day-by-day [1]. Additionally, there are complex cascades and interactions
among different -omics data types. For example, genomic and epigenomic variations have
the capacity to control or modulate the transcriptome and in turn affect the proteome.
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Here, epigenomics refers to the measurement of DNA methylation, histone modifications
(methylation, acetylation, phosphorylation, DP-ribosylation, and ubiquitination), and non-
coding RNAs (microRNAs, long noncoding RNAs, small interfering RNAs). Similarly,
the epigenome of an organism refers to the entire collection of the molecules that modify
the genome and control the genes to turn on and off. Since the epigenome shows how
environmental factors influence the activity of genes, the study of the epigenome integrated
with the study of the genome is crucial to fully account for phenomics. Accounting for such
molecular deviations is crucial for making tangible improvements in biomarker analysis.
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functional behavior of an organism; exposomics—study of an organism’s environment and bibli-
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Traditional analyses attempted to untangle the molecular mechanisms of complex 
diseases using a single -omics dataset which contributes towards the identification of dis-
ease-specific mutations and epigenetic alterations. However, in the postgenomic era, it 
has been noticed that a single -omics dataset is not sufficient to explain disease hallmarks. 
It requires the combined analysis of various -omics datasets. As such, recent studies are 
shifting towards multi-omics data analysis, where each of these different -omics data 
types are critical for deciphering the molecular signatures of human diseases. Therefore, 
the integrated analysis of different data types has become a recent trend. For a holistic 
understanding of complex biological problems, it is becoming clear that integrations of 

Figure 1. Machine learning (ML) applications that combine multi-omics and phenotypic data. Multi-omics data are
classified into the following groups: genomics/DNA-Seq—the study of the genetic material for an organism, it assesses
DNA sequence and structural variations including single-nucleotide polymorphisms (SNPs), insertions and deletions,
copy number variations (CNVs), and inversions; epigenomics—the measurement of DNA methylation, histone modifications
(methylation, acetylation, phosphorylation, DP-ribosylation, and ubiquitination), and noncoding RNAs (microRNAs,
long noncoding RNAs, small interfering RNAs); transcriptomics/RNA-Seq—the study of the transcriptome of an organism;
exomics/exome-seq—the study of the exome of an organism (coding regions); proteomics—the study of the total proteins
within an organism; metabolomics—the study of the total metabolites; proteogenomics—combined study of genomics
and proteomics; interactomics—interactions between nucleotides, proteins and metabolites; connectomics—study of the
connections, neural pathways in the brain; pharmocogenomics—the application of genomics to pharmacology; phenomics—
observable phenotypes; physiomics—functional behavior of an organism; exposomics—study of an organism’s environment
and bibliomics (the literature concerning a topic).

Traditional analyses attempted to untangle the molecular mechanisms of complex
diseases using a single -omics dataset which contributes towards the identification of
disease-specific mutations and epigenetic alterations. However, in the postgenomic era,
it has been noticed that a single -omics dataset is not sufficient to explain disease hallmarks.
It requires the combined analysis of various -omics datasets. As such, recent studies are
shifting towards multi-omics data analysis, where each of these different -omics data
types are critical for deciphering the molecular signatures of human diseases. Therefore,
the integrated analysis of different data types has become a recent trend. For a holistic
understanding of complex biological problems, it is becoming clear that integrations of
different -omics data types are essential steps. However, it is a notorious task, as handling
heterogeneous and noisy biological data is a challenging issue [2].

In addition to the ‘omics’ realm, another major reason for phenotypic differentiation
is post-translational modifications (PTM). They can be both in physiologically reasonable
and pathologically anomalous forms. Methods for bioinformatically incorporating PTM
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effects are emerging from the gradual improvement of sequence motifs, or less directly
from compensatory expression patterns that emerge when an organism seeks to correct for
aberrant biochemistry arising from anomalous structural modifications.

Due to the recent advancements in next-generation sequencing and microarray tech-
nologies, the cost of obtaining the gene expression profile of a sample is rapidly decreasing,
and hence expression profiling has become a routine protocol in biological laboratories.
The high turnaround of expression data is also coupled by the massive increase in the use
of the revolutionary RNA-Seq method [3]. It is best exemplified by the large oncogenomic
expression profiles hosted at The Cancer Genome Atlas (TCGA) [4]. Mutations are the
core causative agents of diseases such as different cancers [5] when coupled with gene
expression profiles. These datasets provide sufficient information to scientists and physi-
cians for deciphering the disease mechanisms. It is becoming clear that the proper design
of the RNA-seq can be used for mutational profiling as well as expression profiling [6].
This information also enables the design of platforms to assist diagnosis, to assess patients’
prognosis, and to create patient treatment plans. For instance, van’t Veer et al. had collected
gene expression profiling datasets of primary breast tumors derived from a cohort of
117 young patients [7]. Machine Learning (ML) with feature selection was used to unravel
a gene expression signature, which served as a signal for distant metastases, even divergent
conditions such as lymph node negative [7].

Data analysis approaches to gene expression profiling have evolved rapidly as there
are massive shifts from DNA microarray to RNA-seq-based profiling. The earlier methods
involved clustering approaches and traditional ML approaches. Since a large volume
of biological knowledge has become available, in the literature there are obvious shifts
from the pure data-oriented approaches to biological domain knowledge-based integrative
approaches. This fact has triggered bioinformatics researchers to suggest and develop
advanced tools that consider the emerging biological knowledge, and hence they exploit
this knowledge for deep analysis of the data. There are many resources of biological knowl-
edge, such as textual knowledge, as more and more literature emerges, different databases
and repositories such as miRTarBase [8] for microRNA, DNA Sequence Databases, Im-
munological Databases, Gene Expression Omnibus (GEO), Proteomics Resources, Protein
Sequence Databases, TCGA, Gene Ontology (GO) and others.

Most feature selection algorithms that are applied on gene expression data are based on
statistics and ML. However, most of them neglect the biological knowledge of the data that
could contribute to perform better feature selection. R. Bellazzi and B. Zupan [9] discussed
recent developments in gene expression-based analysis methods, focusing on studies (such as
associations and classification) and implications (such as reverse-engineering of gene–gene
networks and resulting phenotypes). Authors surveyed the clustering approaches that group
the genes using different distance measures, such as Euclidean distance and/or Pearson’s
correlation. Moreover, incorporating biological knowledge in the clustering algorithm is a
very challenging task. The GOstats package [10] allows one to define semantic similarity
between the genes via incorporating the GO [11]. An additional study by Kustra and
Zagdanski [12] used the incorporation of GO annotation to expression data by inducing a
correlation-based dissimilarity matrix to derive a GO-based dissimilarity matrix.

The flood of -omics data and the need for more informative results urge the need for
integrative approaches. The book of Ref. [13] is the first book on integrative data analysis
and visualization in this area. It outlines essential techniques for the integration of data
derived from multiple sources. It is one of the first systematic books that overviews the
issue of biological data integration using analytical approaches. The book provides a
framework for the creation and implementation of integrative analytical methods for the
study of biological data on a systematic scale. Additionally, a recent review [2] describes
the principles of biological data integration along with different approaches and methods
indicating the importance of utilizing ML for biomedical datasets. However, to the best of
our knowledge, in the literature, there is no comprehensive survey on biological domain
knowledge-based feature selection methods, except from the study of Perscheid et al. [14]
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that compares the performances of traditional gene selection methods against integrative
ones. Moreover, authors also proposed a straightforward method to integrate external
biological knowledge with traditional gene selection approaches. They introduced a
framework for the automatic integration of external knowledge for selected genes and
their evaluation. Herein, we aimed to provide a selective review on such gene selection
approaches. In this regard, for the analysis of gene expression datasets, we present the
traditional and integrative gene selection approaches in Sections 2.1 and 2.2, respectively.

On the other hand, multi-dimensional biological data are another challenge as these
data are often derived from limited numbers of samples because of the associated costs of
biological data generation. This is an example of the ‘curse of dimensionality’ problem,
as initially reported by Bellman [15] in 1961. It means that the dimensions of gene features
and/or functional parameters are critical input variables, and there are requirements of a
minimal number of samples for the estimation of an arbitrary function, where an increase
in sample size improves the chance of function prediction. In Section 3 of this manuscript,
we present a prospective solution to this problem by defining a novel grouping of features
and estimating their contribution to the machine learning model for two-class classification
problems. We evaluate the methods that select the features using a classifier in a traditional
way in Section 3.1, and we present integrative approaches that incorporate biological
domain knowledge into ML to group and rank the genes in Section 3.2. In Section 4,
we conclude our review with discussions and future prospects.

2. Gene Selection Approaches for Gene Expression Datasets

Gene selection approaches for gene expression datasets can be mainly categorized into
two classes, such as traditional gene selection and integrative gene selection. While tradi-
tional gene selection approaches are solely based on statistical and computational analyses
of the expression levels, integrative gene selection approaches incorporate domain knowl-
edge from external biological resources during gene selection.

2.1. Traditional Gene Selection

Traditional gene selection approaches are heavily based on statistical and computa-
tional analyses of the actual expression levels. Recent reviews have summarized various
methods for describing the selection process of disease-specific features from large gene ex-
pression datasets [16,17]. Primarily, these approaches are classified into three major classes,
as (i) filtering-based, (ii) wrapping-based, and (iii) embedding-based approaches. Briefly,
the filtering approaches are based on F-statistic (ANOVA, t-test, etc.), not based on ML.
Wrapping-based approaches are primarily learning techniques and these are used for the
exploration of usefulness of features, whereas embedding-based approaches are combining
the feature selection and the classifier construction. Wei Pan carried out a comparative
study on different filtering methods in Ref. [17] and he summarized similar and dissimilar
points among three main methods (namely t-test method, regression modeling approach
and mixture model approach).

Additional comparisons of filtering techniques are available in Ref. [16]. I. Inza [17]
also carried out a comparison between filter metrics and the wrapper sequential search
procedure, which are both applied on gene expression datasets. Additionally, hybrid,
and ensemble approaches, which combine multiple approaches, are two additional cate-
gories of gene selection. Cindy et al. [14] presents an overview of the recent gene selection
methods, where each method is classified according to these five categories.

The traditional gene selection approach has several drawbacks. For example, the fil-
tering approach evaluates the significance of each gene individually without considering
the relationships and the interactions between the genes. Although the wrapping-based
approaches can find the optimal set, it might be specific to the model used, such as SVM, de-
cision trees or other models. In other words, it might be overfitting the data [18]. The main
disadvantages of such methods are their difficulties for biological interpretation, and they
are unlikely to generate new biological knowledge.
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2.2. Integrative Gene Selection

Although the traditional gene selection approaches became popular for a long time,
they have several drawbacks when one needs to precisely identify the underlying biolog-
ical processes. Alternatively, integrative gene selection approaches incorporate domain
knowledge from external biological resources during gene selection [9,18], which improves
interpretability and predictive performance. One of the widely used external ontology
resources is the Gene Ontology (GO) [19], which provides (i) cellular component (CC),
(ii) molecular function (MF), and (iii) biological process (BP) terms for the products of each
gene. GO captures biological knowledge in a computable form that consists of a set of
concepts and their relationships to each other. The first attempt to integrate biological
background into a statistical analysis/ML analyses was to incorporate Gene Ontology
(GO) [19] in clustering gene expression data [10]. Another widely used external ontology
resource is the Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a path-
way knowledge-base providing manually curated pathways [20]. Yet another widely used
external biological resource is DisGeNET, which is a meta knowledge-base on gene–disease–
variant associations [20].

One example of the integrative gene selection approach is proposed by Qi and Tang,
where they utilize the power of biological information contained in GO annotations to rank
the genes [21]. The algorithm is designed in an iterative manner that starts by applying
Information Gain (IG) to compute discriminative scores for each gene. The genes that have a
score of zero are removed from the analysis. The second step is to integrate the biological
knowledge, which is achieved by annotating those surviving genes with a GO term. The third
step is to score the GO terms as the mean of their associated genes’ discriminative scores,
which were computed before using IG. The final gene set is created as follows: Starting from
the highest ranked GO terms, the genes with the highest discriminative scores are chosen.
These genes are removed from the annotated genes and this procedure is repeated until the
final gene set is complete. Using multiple cancer datasets, Qi and Tang showed that their
proposed method can achieve better results, as compared to using IG only.

Another example of the integrative gene selection approach is SoFoCles [22], which uses
GO terms to find semantically similar genes. In order to assign a discriminative score to
each gene, SoFoCles utilizes a classic filter approach, such as χ2, ReliefF, or IG. The initial set
of candidate genes is composed of the top n ranked genes. Genes receive a similarity score
based on their associated GO terms. Then, the genes which have a high similarity score,
i.e., the genes that are semantically very similar to the candidate genes, are added to the set
of candidates. The experiments conducted on SoFoCles showed that the incorporation of
biological knowledge into the gene selection process improves the results.

Yet another study by Fang et al. [18] combines KEGG and GO terms with IG. The au-
thors initially apply IG on the dataset as the filtering step and then check the GO and
KEGG annotations of the remaining genes. Then, the authors use association mining
and calculate the interestingness of the frequent itemsets by averaging the original dis-
criminative scores (from IG) of the included genes. The final gene set is generated via
selecting the highest ranked genes from the top n frequent itemsets. They evaluated this
method using GO, using KEGG, and using both terms against IG only and against Qi and
Tang’s approach. Although their proposed approach slightly increased the overall accuracy,
the main advantage of this approach was that it used a much lower number of genes.

The integrative gene selection approach that is proposed by Raghu et al. [23] makes
use of KEGG, DisGeNET, and further genetic meta information [20]. In their approach,
for each gene, (i) the importance score and (ii) the gene distance metrics are computed.
The importance score is calculated via combining a gene–disease association score from
DisGeNET with the gene expression levels in the data. The gene distance is defined as
the physical distance between two genes (in terms of their chromosomal locations) and
their associations to the same diseases. Both of the scores (importance score and gene
distance) are later used to find maximally relevant and diverse gene sets. As compared
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to variance-based gene selection techniques, the use of the top n genes according to the
importance score resulted in a slightly better performance in predictive modeling task.

The integrative approach of Quanz et al. aims to map genes into KEGG pathways and
then uses these pathways as features for further pattern mining [24]. In their approach,
they make use of a global test to extract KEGG pathways which are related to the phe-
notypes of a dataset. In their feature extraction step, the genes in each pathway are then
transformed into one single feature by applying mean normalization or logistic regression.
In this way, the data are represented as the number of pathways, which can be considered
as a feature reduction step and it provides dramatic reduction. For instance, for the di-
abetes data, 17 pathways, out of approximately 300 pathways, are selected and thus for
the classification task the dimensionality is reduced from 22,283 to 17. Even though this
approach was not tested on multiclass problems such as cancer (sub-) type classification,
the experiments on binary classification problems showed an improved performance over
different traditional approaches.

Mitra et al. adopted the clustering large applications based upon randomized search
(CLARANS) method to the feature (gene) selection problem via utilizing biological knowl-
edge [25]. Their reduced feature set is composed of gene clusters, which are the medoids of
biologically enriched sets. Later on, the authors attempted to use a fuzzy clustering technique
instead of CLARANS, and developed a technique called FCLARANS for feature selection [26].

In Ref. [27], the authors proposed an integrative gene (feature) selection approach
based on the sample clustering technique, which utilizes gene annotation information from
GO. On the generated gene–GO term matrix, they applied Partitioning Around Medoids
clustering. In their method, the optimal number of clusters (k) is chosen by comparing
their silhouette index values. For the selected k number of clusters, the medoids are used
as the selected gene subset. They reported that the integration of biological knowledge
during the gene selection process not only reduces the dimensionality of the feature space,
but also increases the accuracy of sample classification.

The related studies that are presented until this point are highly specific to a single
knowledge-base, e.g., KEGG pathway or GO terms. On the other hand, Perscheid et al. [14]
proposed an approach that can flexibly combine traditional gene selection approaches
with several knowledge-bases. They comparatively evaluated the performance of tradi-
tional gene selection approaches with integrative gene selection approaches. Their study
concluded that the integration of external data especially improves on simple traditional
filter approaches, e.g., information gain. Once external biological data are integrated,
such traditional filter approaches become compatible with more complex machine learning
approaches at very similar classification accuracies, but far lower computational running
times and a more transparent and thus interpretable computation processes.

The above-mentioned studies proposed predictive models, but most of the time,
instead of obtaining high predictive accuracies in these models, the scientists are curious
about the biological meaning of the predictive model. The ‘black box’ nature of the
predictive model can hamper its interpretation. The information excerpted from the
model may require further processing, and careful interpretation with corresponding
biological knowledge may be needed. The interpretation of the complicated cases may
be quite challenging, and such an interpretation may currently be out of reach. Although
the joint analysis of multiple biological data types has the potential to enlighten our
understanding of complex biological phenomena, the data integration is challenging due
to the heterogeneity of different data types. For example, an expression profile, as obtained
from a transcriptomic study, is a vector of real values and the length of a vector is equal
to the number of genes in the genome. However, the genetic variants as obtained from
a genomic study are categorical, and they have different vector lengths. While different
studies [1,4] proposed several strategies for data integration, the best practices by which
-omics data types can be integrated and information on how to integrate these biological
data are still needed.
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Feature selection and discovering the molecular explanation of diseases describe the
same process, where the first one is a computer science term and the second one is used in
the biomedical sciences. In 2007, Yousef et al. proposed a new feature selection method,
support vector machines–recursive cluster elimination (SVM-RCE), to group/cluster genes
for gene expression data analysis. This study invented the “recursive cluster elimination”
phrase for the first time in the machine-learning domain and introduced it to the compu-
tational community. As such, this study became a pioneer study in this field. Interests
in this approach have increased over time and several studies have successfully applied
the SVM-RCE approach to identify the features/genes that are directly associated with a
disease/condition [28]. This growing interest is based on the reconsideration of how feature
selection in biological datasets can benefit from incorporating the biomedical relationships
of the features in the selection process. The usefulness of SVM-RCE then led to the develop-
ment of maTE [29], which uses the same approach based on the interactions of microRNAs
(miRNA) and their gene targets. Additionally, in the literature, the biological information
buried in genetic interaction networks is utilized for classification studies. For example,
SVM-RNE (SVM with recursive network elimination) integrates network information with
recursive feature elimination based on SVM [30]. It is shown that SVM-RNE has a good
performance and also improves the biological interpretability of the results. Studies similar
to SVM-RCE and SVM-RNE were later carried out by different groups [31,32], which indi-
cates the importance and the merit of the SVM-RCE approach. The study of Ref. [33] has a
slightly modified SVM-RCE algorithm in the disease state prediction step. Additionally,
they used the already invented term of “recursive cluster elimination”.

The study of Zhao, X. et al. [34] has used the SVM-RCE tool for comparison and used
expression profiles for identifying microRNAs related to venous metastasis in hepatocellu-
lar carcinoma. Another similar study to SVM-RNE is carried out by Johannes M. et al. [35]
for integration of pathway knowledge into a reweighted recursive feature elimination
approach for the risk stratification of cancer patients. A recent tool, SVM-RCE-R [36], is an
updated version of SVM-RCE, which is implemented in Knime [37], and uses a random
forest classifier with additional important features such as suggesting a new approach of
ranking the clusters.

The term “knowledge-driven variable selection (KDVS)” is a similar term to “integra-
tion of biological knowledge”, and both of them are used in the process of feature selection.
An additional similar study that applied KDVS to SVM-RNE is presented by Ref. [38],
in which the authors proposed a framework that uses a priori biological knowledge in
high-throughput data analysis.

The RCE algorithm [28] considers similar features/genes and applies a rank function to
the feature group. Since it uses k-means as the clustering algorithm, we refer to these groups
as clusters, but it could include other biological or more general functions combined with
the features, as was suggested in several studies [29,30]. In the original paper of SVM-RCE,
the contribution to the accuracy is achieved in distinguishing specific classes for ranking
the clusters. The data for that ranking are divided into training and testing, with the data
represented by each gene/feature being assigned to a specific cluster of features. The rank
function is then applied as the mean of m times repeats of the training–testing performance
while recording different measurements of accuracy (sensitivity, specificity, etc.).

In Table 1, we summarize the specifications, advantages and disadvantages of the
presented integrative gene selection approaches.
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Table 1. Summary table of the presented methodologies that integrate biological knowledge. While “A” refers to the
advantages, “D” refers to the disadvantages of the methods.

Tool Name Incorporated
Biological Knowledge Methodology Advantage/Disadvantage Ref

N/A GO

Rank the genes uses
information gain (IF)
incorporated with Gene
Ontology GO terms

A: The novelty of this work is to evaluate
genes based on not only their individual
discriminative powers but also the powers
of GO terms that annotate them.

[21]

N/A GO χ2, ReliefF, or IG A: Including biological knowledge in the
gene selection process improves results. [22]

N/A Combines KEGG and
GO terms

Utilizes graphical causal
modeling IG as an initial filter
search for GO and KEGG
annotations’ frequent items

A: Method is capable of intelligently
selecting genes for learning effective causal
networks. D: No significant improvement
in accuracy.

[18]

N/A
KEGG, DisGeNET,
and further genetic
meta information

Gene–disease association score
from DisGeNET Gene distance
metrics

[23]

N/A KEGG pathways
Uses these pathways as
features for further pattern
mining

A: Reduce the dimension of the data by
transforming to KEGG feature space.
A: Improved performance over different
traditional approaches.

[24]

N/A Gene ontology (GO) Randomized search
(CLARANS) A: Reducing the dimension dramatically. [25]

SVM-RCE Genes related are
correlated SVM and K-means

A: Discover significant of clusters. D: Might
lose important genes because they were in
lower-ranked clusters.

[28,36]

SVM-RNE
GXNA for creating
subnetworks from gene
expression

SVM, GXNA

A: Reducing the dimension of the data by
considering subnetworks. D: The
subnetworks are created as a prediction of
the gene expressions data.

[30]

maTE microRNA genes
targets

Random forest groups the
genes that associated with
microRNA

A: A novel approach of integrating
microRNA into gene expression. D: The
size of the groups might be large and might
rank these groups highly as a result of that.

[29]

CogNet Random forest, based on
pathFindR tool

A: Improve the results of the pathFindR tool
by ranking its groups. [39]

miRcorrNet
Random forest based on the
correlation with miRN
expressions

A: Novel approach for integrating miRNE
and mRNA expressions using machine
learning.

[40]

3. Grouping and Ranking of the Genes for Classification Problem

The genes that are involved in the same biological process are likely to be co-expressed [41].
Therefore, one potential way of discovering gene function is to group genes with a similar
expression profile. Thus, different clustering algorithms [42] were considered to perform
the grouping step. This was the first approach, and more advanced approaches that use
biological information in order to group the genes are later proposed. In this section,
we will introduce a generic approach to grouping that is accompanied by ranking and
classification. The presented model is used by different studies and other similar studies
are still ongoing.

The main aim of the generic approach is to search for and determine significant
groups/clusters of features based on one or more biological grouping function (will be
referred as bioF() throughout the rest of this paper) that are integrated with the ML algo-
rithms. The generic approach is presented in Figure 2. The advantage of those systems
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is that the grouping of the genes/features is in the hand of the researcher, that is, it is
actually based on available biological knowledge. The researcher will provide how genes
or features should be grouped and then the algorithm will proceed to score and rank those
groups in terms of the classification problem. The final model will be built from the top n
groups according to the researcher’s settings. The outcome of the algorithm is different
from the traditional current approaches (such as SVM-RFE [43]), where the algorithm
takes as input the data of gene expression with class labels. Then the outcome is just a
list of significant genes that are able to distinguish the two classes. With the integration
framework, the researcher will get a more informative list of significant groups/clusters
with its genes list that is able to distinguish the two classes. Additionally, the researcher can
use the computational approach of grouping that is based on clustering approaches such
as k-means or others, and specify different measurements for ranking the groups/clusters
based on their interest and their research aims. The outcome of the algorithm will be more
specific to the researcher’s interest.
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The generic approach mainly consists of two main components. The first component
is the grouping step relying on the bioF() function that is based on biological knowledge to
group the genes into groups. For example, bioF() might be disease-related genes; then the
function will group the genes into groups where each group is associated with one disease.
Another possibility is grouping the genes that are targeted by specific miRNAs, such as
in the maTE [29] tool. One interesting use of bioF() is that it allows one to create different
biological groupings, such as creating groups related to miRNA, groups related to disease,
groups related to KEGG pathways, and others. However, the grouping can also be based
on clustering algorithms such as k-means, as suggested in SVM-RCE [28] for grouping
correlated genes. Similarly, SVM-RNE [30] incorporates another tool, GXNA [44], to create
the groups. GXNA utilizes gene expression profiles and prior biological information to
suggest differentially expressed pathways or gene networks.

3.1. Traditional Approach of Feature/Gene Selection Using a Classifier

There are many classifiers that were used to fit the data in order to rank the features
and perform the process of features selection. The most simple one is the linear model,
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where the coefficients of the variable/features can serve as a measurement of the feature’s
rank. We will be describing the first approach that suggests the RFE procedure. RFE refers
to recursive feature elimination. The approach uses SVM as the linear model.

SVM-RFE (Support Vector Machines with Recursive Feature Elimination)

Let us assume that we are given a set of points called S. S consists of m points xi ∈ Rd
in dimension d. Let us assume that we have two class labels, denoted by yi ∈ { −1, +1}.
We call S a linear separable set if there is a hyperplane of equation w·x + w0 = 0 (we refer
to it as hyperplane (w, w0)) that separates the points with label + 1 from the points with
label −1. The signed distance di of a point xi to the separating hyperplane (w, w0) is given
by di = (w·xi + w0)/||w||.

For simplicity, let us define the optimal separating hyperplane to be f(x) = w0 + w1× 1
+ w2 × 2 + . . . + wd × d, where the (x1, x2, . . . , xd) is the features and w = (w1, w2, . . . ,
wd) is the corresponding weights. SVM is actually the solution of finding the optimal linear
function, as developed by Vapnik [45]. It is obvious that the contribution of features with
lower weights is non-significant to the sign of the f(x). So one can consider removing those
features in order to perform dimension reduction of the feature space.

SVM-RFE, which stands for support vector machines with recursive feature elimina-
tion, was firstly introduced by Isabelle Guyon et al. [43] and applied to gene expression
data. The primary goal of SVM-RFE is to use SVM (linear SVM) to compute the weights
of the features. The weights are actually the ranks of the features. SVM-RFE performs an
iterative step to remove features with low ranks. The RFE procedure can be described as:

1. Train the classifier on the given data;
2. Assign rank for each feature as its weight;
3. Remove one feature or percentage (10%) with the smallest weight;
4. Repeat steps 1–3 until reaching a predefined number of genes.

Different studies [46] have emerged as extended variations of the original SVM-RFE
algorithm. However, SVM-RFE has some limitations that other studies have reported to
suggest an improvement approach. One such limitation is that SVM-RFE is designed as a
greedy method and tries to find out superlative possible combinations leading to binary
classification, where these combinations may not be biologically significant. To overcome
this limitation, a novel feature selection algorithm, sigFeature [47], based on SVM and
t statistic, was developed.

3.2. Biological Domain Knowledge Based ML Approaches

ML is becoming a very powerful computational approach in the field of bioinformatics.
In this respect, the first step in utilizing ML is to apply unsupervised and supervised
algorithms on biological data. However, in the era of big biological data, we come up with
emerging approaches that integrate biological knowledge with ML. A recent review [48]
on ML and complex biological data discusses the challenges and hurdles of the analysis
and discovery of complex biological data. They predict that in the very near future,
more researchers will be interested in applying ML to complex biological data. In this
section, we will review different approaches that consider the biological structure or
knowledge for the process of feature selection. The following approaches follow the
generic approach presented in Figure 2.

3.2.1. SVM-RCE (Support Vector Machines with Recursive Cluster Elimination)

SVM-RCE [28,36] is based on the concept of grouping and ranking, where the k-means
clustering algorithm is used for performing the related grouping of bioF(). Correlated genes
are hypothesized to have similar biological functions. Then, the rank component is applied
to assign a score for each cluster, indicating its significance in terms of the classification of
the two given classes. In order to perform the rank component, each cluster is considered
by representing the data based on the genes that belong to it while keeping the class labels
of the original data. Now the data are transferred to cluster genes representation. The rank
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component performs internal cross-validation and aggregates the performance outcome
as the score of the cluster. The RCE procedure is applied to remove the lowest ranked
groups. The SVM-RCE results show that the classification accuracy is superior to other
approaches, suggesting that the classification results are more interpretable, and this creates
new hypotheses for future investigation.

3.2.2. SVM-RNE (Support Vector Machines with Recursive Network Elimination)

SVM-RNE [30] is an extended version of the SVM-RCE approach that uses the tool
GXNA [42] as the bioF() for grouping the genes into subnetworks of genes. Then, a similar
procedure of ranking is applied as described in SVM-RCE. SVM-RNE also performs the
recursive elimination procedure by ranking firstly all the groups, and then removing the
least significant groups. The algorithm proceeds by applying again the GXNA to suggest
groups. This process is repeated until satisfying some predefined constraints on the number
of groups.

3.2.3. MaTE

Disease development mechanisms mainly involve changes in the transcript levels
and protein abundance. MicroRNAs (miRNAs) are instrumental in regulating the gene
expression, and hence they affect transcript levels and protein abundance. The fact that
microRNAs target more than one mRNA helps us to group the genes into groups where
each group consists of the list of genes targeted by a specific microRNA. In other words,
the bioF() biological grouping function here is the biological association between microRNA
and its set of targets. The bioF() grouping function is based on the database mirTarBase [8].
mirTarBase has accumulated more than three hundred and sixty thousand miRNA-target
interactions. Thus, a novel approach called maTE [29] has been developed.

Table 2 presents partially the result of applying bioF() on mirTarBase. Additionally,
it performs a computation procedure in order to score/rank the importance for each group
for the classification tasks.

Table 2. Example of microRNA and their targets list.

MicroRNA Group Name Target Genes List

HSA-MIR-147A VEGFA, ACVR1C, MCM3, NDUFA4, PSMA3, HIF3A, SLC22A3, MCM3, NDUFA4, PSMA3, HIF3A,
VEGFA, ACVR1C, MCM3, NDUFA4, PSMA3, HIF3A, SLC22A3

HSA-MIR-18B-5P ESR1, MDM2, CTGF, TNRC6B, HIF1A, SMAD2, FOXN1, IGF1, IGF1, CTGF, HIF1A, SMAD2,
FOXN1, ESR1, MDM2, CTGF, TNRC6B, HIF1A, SMAD2, FOXN1, IGF1, IGF1

HSA-MIR-19B-3P

BACE1, PTEN, PTEN, PTEN, ATXN1, HIPK3, ARID4B, MYLIP, ESR1, KAT2B, SOCS1, BCL2L11,
BCL2L11, TGFBR2, TGFBR2, BMPR2, BMPR2, TLR2, PPP2R5E, PPP2R5E, CYP19A1, GCM1, HIPK1,
SMAD4, MYCN, MXD1, BCL3, DNMT1, TNFAIP3, PKNOX1, MTUS1, PITX1, PTEN, PTEN, PTEN,
ATXN1, ESR1, NCOA3, KAT2B, SOCS1, TGFBR2, BMPR2, CUL5, TLR2, HIPK1, MXD1, BCL3,
TNFAIP3, MTUS1, PITX1, BACE1, PTEN, PTEN, PTEN, PTEN, ATXN1, HIPK3, ARID4B, MYLIP,
ESR1, NCOA3, KAT2B, SOCS1, BCL2L11, BCL2L11, TGFBR2, TGFBR2, BMPR2, BMPR2, CUL5,
TLR2, PPP2R5E, PPP2R5E, CYP19A1, GCM1, HIPK1, SMAD4, MYCN, MXD1, BCL3, DNMT1,
TNFAIP3, PKNOX1, MTUS1, PITX1

HSA-MIR-210-5P CFB

The inputs to the maTE tool are the gene expression data, and the list of microRNAs
and its target genes. The main function of the tool is to produce a group of genes based on
the miRNA target information and then rank each group by applying random forest with
cross-validation, which is repeated r times. The average of the accuracy for each iteration
is actually the rank for a specific group. Then the groups are ranked according to the rank
values. The model will be built considering the genes on the top j groups. The default value
of j is 2. We apply to the training part of the data a t-test statistics in order to remove noisy
genes. The test part of the data is used in order to estimate the performance of the tool.
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3.2.4. CogNet

The CogNet tool is a classification of gene expression data based on ranked active-
subnetwork-oriented KEGG pathway enrichment analysis [39]. CogNet is based on biological
knowledge as a function for grouping the genes for the task of ranks and classification.
The pathfindR tool serves to be the biological grouping function allowing the main algorithm
to rank active-subnetwork-oriented KEGG pathway enrichment analysis [49]. CogNet was
tested on 13 gene expression datasets of different diseases. In these experiments, CogNet
was shown to outperform maTE and obtain similar performance results with SVM-RCE.

CogNet provides a list of significant KEGG pathways, including its genes that are
able to separate the classes of the data. The list would serve the biology researcher for
deep analysis and better interpretability of the role of KEGG pathways in the data, or the
case that is being studied. As a future work, we would develop CogNet to explore the
effectiveness of different combinations of the KEGG pathways in the data. In the current
version, we treat each KEGG pathway individually.

3.2.5. MiRcorrNet

Due to the advances in technology, both mRNA and microRNA expression profiles
can be generated allowing integrative analysis aiming to uncover the functional effects
of RNA expression in complex diseases, such as cancer. Most of the approaches that
integrate miRNA and mRNA are based on statistical methods, such as Pearson correlation,
combined with enrichment analysis approaches. In this study [40], a novel tool is used
called miRcorrNet, which performs machine learning-based integration to analyze miRNA
and mRNA gene expression profiles. miRcorrNet groups mRNA genes based on their
correlation to miRNA expression. Then, these groups are subjected to a rank function
for classification. We have tested our tool on TCGA data miRNA-seq and mRNA-seq
expression compared to other tools. The performance results show that the tool works
as well as other tools in terms of accuracy measurements, reaching an AUC above 95%.
Moreover, we conducted a deep biological analysis to explore the list of significant miRNAs.
Accumulated results suggest that miRcorrNet is able to accurately prioritize pan-cancer-
regulating high-confidence miRNAs.

4. Conclusions

As we have more advanced high-throughput technologies, big transcriptomic datasets
become available, and extracting insights from long lists of differentially expressed genes
becomes a challenge. Since the gene expression data typically have small samples size but
high dimensions and noise, the major challenge is the detection of disease-related informa-
tion from vast amounts of redundant data and noise. As such, the gene (feature) selection
and the removal of redundant/irrelevant genes has been a key step to address this problem.
For gene expression data analysis, most of the existing feature selection methods rely on
expression values alone to select the genes, and biological knowledge is integrated at the
end of the analysis in order to gain biological insights or to support the initial findings.
However, lately, the gene selection process has shifted from being purely data-centric to
more incorporative analysis with additional biological knowledge. Integrative gene selec-
tion approaches incorporate domain knowledge from external biological resources during
gene selection [9,18], which improves interpretability and predictive performance. One of
the more widely used external ontology resources is GO [19], which captures biological
knowledge in a computable form that consists of a set of concepts and their relationships to
each other. As another alternative, pathway-based analysis approaches aim to investigate
the aggregation of the genes that are part of a functional unit, where these functional units
are predefined by prior biological knowledge. These pathway-based methods rely on
statistical tests that aim to detect damaged functionalities, which may result in disease
phenotype. Several studies reported that the genetic variations occurring at multiple loci
often disturb signal transduction, and regulatory and metabolic pathways, which causes
severe changes in phenotype [18]. In this regard, a widely used external ontology resource
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is KEGG, which is a knowledge-base of manually curated pathways [20]. Yet another
widely used external biological resource is DisGeNET, which is a meta knowledge-base for
gene–disease–variant associations [20].

High-throughput profiling technologies currently enable us to concurrently measure
gene expression levels for tens of thousands of genes in a single experiment, but they have
some drawbacks. The high dimensionality of the gene expression data and relatively small
sample sizes make the interpretation of the data a complicated, and often overwhelming,
task. Although sample sizes have continued to grow in recent years, new and efficient
feature selection algorithms are still needed to overcome the challenges in the existing
methods [4]. As such, this is an active research topic in the field of bioinformatics.

At present, ML is applied to specific data in order to explain and answer a specific
biological query in the biological knowledge domain. One of the challenges of future
integrative model-based ML is the ability to combine different biological resources to
enhance our understanding of multiple biological questions. Once the full potential of the
available data is achieved, they can be used in the development of gene-based diagnostic
tests, drug discovery studies and in the development of therapeutic strategies for improving
public health.

To sum up, since biological systems are quite complex and they have an interconnected
nature, a single model that is trained on a single dataset can only benefit from a small
portion of the entire biomedical knowledge. For this reason, in order to get the complete
picture of molecular biology and medicine, the integration of diverse biological resources
and multi-omics data is crucial. In the field of gene expression data analysis, there are
still many challenges that the community needs to solve, such as the integration of gene
expression datasets that are generated by different research groups for the same phenotype
(which will help to overcome the batch effect), and an additional obstacle is the integration
of non-similar data, wherein each dataset tackles a specific disease.
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