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Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised oncology and are now standard-of-care for the treatment of
a wide variety of solid neoplasms. However, tumour responses remain unpredictable, experienced by only a minority
of ICI recipients across malignancy types. Therefore, there is an urgent need for better predictive biomarkers to iden-
tify a priori the patients most likely to benefit from these therapies. Despite considerable efforts, only three such bio-
markers are FDA-approved for clinical use, and all rely on the availability of tumour tissue for immunohistochemical
staining or genomic assays. There is emerging evidence that host factors – for example, genetic, metabolic, and
immune factors, as well as the composition of one’s gut microbiota – influence the response of a patient’s cancer
to ICIs. Tantalisingly, some of these factors are modifiable, paving the way for co-therapies that may enhance the
therapeutic index of these treatments. Herein, we review key host factors that are of potential biomarker value for
response to ICI therapy, with a particular focus on the proposed mechanisms for these influences.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Though previously underappreciated, the relationship
between cancer and host immunity is now fundamental
to modern oncology practice. This has been catalysed
by the discovery of ‘immune checkpoints’, immune
self-tolerance pathways that cancer may leverage to ‘pla-
cate’ the immune system and avoid immunological
rejection [1]. Their breakthrough discoveries have led
to the development of monoclonal antibody inhibitors
capable of preventing this immune escape, sparking an
ongoing ‘immuno-oncology revolution’. In 2011, the
US Food and Drug Administration (FDA) approved
the first immune checkpoint inhibitor (ICI) targeting
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4
or CD152), after it became the first drug ever shown to

improve survival for patients with advanced melanoma
[2]. Since then, ICIs targeting programmed cell death pro-
tein 1 (PD1 or CD279) and its ligand (PDL1 or CD274)
have been approved for a varied and ever-growing list of
solid-organ malignancies including melanoma, non-small
cell lung carcinoma (NSCLC), renal cell carcinoma
(RCC), and urothelial carcinoma, amongstmany others [3].
However, important caveats have tempered the suc-

cess of ICIs. Firstly, in the blockade of these immune
homeostatic pathways, a subset of patients will develop
auto-immune or auto-inflammatory disease, collectively
labelled ‘immune-related adverse events’ (irAEs). The
patterns and proportions vary by ICI class, with reports
of clinically significant irAEs for metastatic melanoma
patients of approximately 15%, 20%, and 55% for
anti-PD1, anti-CTLA4, and combination ICI therapy
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respectively [4,5]. Secondly, though tumour responses
to ICIs are often durable and clinically meaningful, they
too are capricious and only occur in approximately
10–50% of patients with differing tumour histologies
[3]. As such, extensive work has been invested in
defining pre-treatment biomarkers: reliably-assessed
biological signs that predict a priori who will clinically
benefit. Thus far, only three such biomarkers have been
approved by the FDA for clinical use: namely, tumour tissue
PDL1 protein, tumour mutational burden (TMB), and mis-
match repair (MMR) deficiency [6]. Unfortunately, both
PDL1 and TMB are limited by issues of disharmony
between assays, variable relevance across cancer types,
and poor specificity (with responses still observed when
the assay is deemed ‘negative’ and vice versa) [7,8]. Though
MMR deficiency powerfully enriches for ICI response, it
occurs in less than 5% of advanced cancers, limiting its
applicability [9]. Further work has involved exploring char-
acteristics of the tumour immunemicroenvironment, includ-
ing tumour-infiltrating lymphocytes (TILs), innate immune
cell characteristics, and immune gene expression scores.
However, none have been approved for clinical use [10].
Notably, the bulk of ICI biomarker discovery efforts

are ‘tumour-centric’, and are thus fundamentally reliant
on tumour tissue. This may necessitate a further invasive

procedure for patients where no contemporary archival
tumour tissue is available, introducing their associated
risk and the possibility of sampling error due to intrale-
sional heterogeneity [11]. Additionally, tumour-centric
assays are less likely to be generalisable across cancer
types – important when we consider the ever-expanding
indications for ICI therapy. For example, we observed
that TMB failed to associate with the responsiveness of
a mixed cohort of advanced biliary tree, neuroendocrine,
and rare gynaecological cancers treated with combina-
tion ICIs [12]. Just as ICI efficacy relies on the interface
of the tumour and host immunity, we envision that opti-
mal a priori prediction of ICI responsiveness will
require consideration of both tumour and host features,
for example, using ‘immunogram’-like approaches [13].

Therefore, in this review we highlight the evidence
supporting a myriad of host-based factors as potential
features in future ICI biomarker discovery efforts
(Figure 1). We begin by reviewing circulating immune
factors that may have pre-treatment prognostic or predic-
tive value. We then describe germline genetic traits as
well as general phenotypic host factors (such as body
habitus and gender) that have been implicated in ICI
response. Additionally, we briefly summarise evidence
supporting the relevance of key exogenous factors

Figure 1. Overview of the host factor domains discussed.

514 A Gunjur et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 513–525
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


(concurrent medications and diet) in modulating host
immunity, and thus ICI efficacy. Finally, we end by
reviewing the growing literature connecting the compo-
sition and diversity of our gut microbiota and ICI effi-
cacy, complemented by a thorough discussion of the
potential mechanisms for this relationship that have thus
far been elucidated.

The circulating immune compartment

A prerequisite of anti-cancer immunity (and ICI efficacy)
is the recruitment of immune cells to the tumour from pri-
mary and secondary lymphoid organs, facilitated by the
release of signalling molecules (cytokines) and involving
diverse immune cell populations [14]. Indeed, peripheral
blood contains a complex milieu of diverse white blood
cells (WBCs) and soluble factors whose quantities may
indirectly reveal a cancer’s ‘immune phenotype’ [15]. As
such, there has been considerable interest in whether their
baseline measurement might insinuate a cancer’s suscepti-
bility to ICI therapy.

Peripheral WBCs may be classified morphologically,
with neutrophils and lymphocytes usually the most abun-
dant subtypes. A high baseline blood neutrophil-to-
lymphocyte ratio (NLR) has long been noted to confer a
negative prognosis, irrespective of cancer or therapy
[16]. This negative relationship holds true for ICI-therapy
recipients; for example, high pre-treatment NLRwas asso-
ciated with worse overall survival (OS), progression-free
survival (PFS), and objective response rate (ORR) in a
large, pan-cancer cohort [17]. Biologically, peripheral
neutrophilia may correlate with tumour microenvironment
(TME) neutrophil infiltration [18], where they might act to
suppress anti-cancer T-cell trafficking. Supporting this,
Kargl et al found an inverse relationship between infiltrat-
ing neutrophils and CD8-expressing T cells (CD8+ T
cells) in NSCLC tumour samples [19], with their subse-
quent analysis linking this intratumoural NLR to poor
ICI efficacy [20]. Using a murine lung cancer model, they
demonstrated that neutrophil antagonism restored tumour
CD8+ T cell infiltration as well as anti-PD1 efficacy [20].

Conversely, pre-treatment eosinophilia appears to be
associated with better outcomes in retrospective analyses
of anti-PD1- [21] and anti-CTLA4-treated [22,23] mela-
noma and anti-PD1-treatedNSCLCpatients [24], and lower
neutrophil-to-eosinophil ratio correlated with outcomes for
combination anti-PD1/anti-CTLA4-treated metastatic
RCC patients [25]. Preclinically, Carretero et al demon-
strated that eosinophils play a key role in attracting CD8+

T cells through the release of chemokines,whichmaymedi-
ate this increased ICI susceptibility [26].

Flow andmass cytometry revealed relevant associations
between certain WBC subtypes and ICI efficacy, such as
high baseline T regulatory cells (Tregs) (FoxP3+CD4+

T cells) associating with ipilimumab (anti-CTLA-4) effi-
cacy [22] and classical (CD14+CD16�) monocytes asso-
ciating with anti-PD1 efficacy in melanoma [27]. The
high dimensionality of mass cytometry data has also led

to more complicated WBC response ‘signatures’ being
defined [28], with efforts underway to harmonise bio-
marker panels for future work [29]. Next-generation
sequencing (NGS) of sorted peripheral WBC subtypes
has increased this dimensionality of data even further, with
intriguing signals regarding its utility in predicting ICI effi-
cacy. For example, the baseline and dynamic significance
of peripheral blood T-cell receptor (TCR) repertoire has
garnered much interest; however, bulk NGS approaches
have reached differing conclusions about their association
with ICI susceptibility [30–33]. By cell sorting before
NGS, Gros et al observed in melanoma that the TCR rep-
ertoire of specifically the peripheral PD1+CD8+ T cell
subset matched that found on TILs, suggesting these are
tumour-reactive T-cell populations circulating in the
peripheral WBC compartment [34]. Building on this,
Han et al found an association between the TCR diversity
of these cells and better disease control and PFS for
NSCLC patients receiving anti-PD(L)1 therapy, suggest-
ing this assay’s predictive biomarker potential [35].
Cytokines are essential mediators for intercellular

communication and can confer pro- or anti-tumourigenic
climates, and, as such, have also been studied in relation
to malignancy and ICI efficacy [36]. For example,
interleukin (IL) 8 (encoded by CXCL8) is a potent pro-
inflammatory neutrophil and myeloid-derived suppres-
sor cell (MDSC) chemoattractant with a short circulating
half-life, known to reflect systemic tumour volume
[37,38]. In a large post hoc analysis of three trials testing
atezolizumab (anti-PDL1) for metastatic RCC or urothe-
lial cancer, Yuen et al consistently found a negative cor-
relation between high plasma IL-8 and efficacy (OS or
ORR). Through a single-cell RNA sequencing analysis
of a sub-group of peripheral blood mononuclear cells
(PBMCs) and tumour samples, CXCL8 mRNA was
associated most strongly with the myeloid compartment
of both PBMCs and tumour samples, connecting it with
myeloid-mediated immune suppression [39].
Finally, associations are also emerging between base-

line circulating auto-antibodies and ICI efficacy, includ-
ing those that are associated with auto-immunity (such
as rheumatoid factor) [40]. Further efforts have used
wider auto-antibody profiles, particularly incorporating
tumour-associated antibodies (TAAs) [41–43]. Two
studies have associated baseline anti-NY-ESO-1 with
ICI efficacy for NSCLC patients, suggesting that this
may be a relevant TAA. However, though intriguing,
more work is needed to validate these associations, the
mechanism underpinning them, and their generalisabil-
ity across cancer types.

Germline genetic features

The human leukocyte antigen class I (HLA-I) complex is
responsible for antigen presentation to CD8+ T cells, with
its encoding genes (HLA-A, -B, and -C) amongst the most
highly polymorphic in the human genome. There is con-
siderable variability in the peptide-binding characteristics
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between HLA gene alleles, and it is therefore plausible
that some may present cancer neoantigens more (or less)
effectively than others. Recently, Naranbhai et al demon-
strated that in a pan-cancer cohort, harbouring one or two
HLA-A*03 alleles was associated with a poorer OS after
ICI therapy [44]. They went on to externally validate this
in multiple other pan-cancer cohorts and importantly
established its ‘predictiveness’ (i.e. ICI specificity) by
finding no difference in OS for non-ICI-treated patients.
However, these findings were not replicated in another
recent pan-cancer analysis of pembrolizumab (anti-
PD1)-treated patients; thus, its clinical use remains inves-
tigational [45].
Other work has focused on more global HLA-I attri-

butes. Akin to reports in HIV [46], Chowell et al demon-
strated an HLA-I ‘heterozygote advantage’, whereby
homozygosity for at least one HLA-I gene was associated
with worse OS in an advanced NSCLC and melanoma
cohort [47]. Conversely, they found better OS in mela-
noma anti-CTLA4 recipients harbouring an HLA-B44
supertype allele. Similarly, further work by the same group
evaluated the relevance of HLA-I evolutionary divergence
(HED), a measure of the difference of the peptide binding
sites of each HLA-I allele [48]. They found that greater
mean HED was associated with better OS and ORR in
melanoma and NSCLC patients, consistent with the
‘divergent allele advantage’ theory (wherebymore diverse
HLA-I allele pairs would plausibly present more diverse
cancer neoantigens). However, the relationship of HLA-I
zygosity and/or mean HED and better ICI efficacy has
not been consistently found in more recent analyses for
non-melanoma cohorts [45,49–51]. Importantly, the
HLA-B44 supertype seemed to impart an opposite, nega-
tive effect in NSCLC, potentially due to NSCLC’s distinct
neoantigen landscape (leading to worse presentation on
HLA-B44) [52]. Therefore, caution must be applied when
extrapolating HLA-I associations between cancer types.
In a related vein, Manczinger et al developed a score of

‘HLA-I promiscuity’ based on estimating the diversity of
peptides binding to each individual’s HLA-I alleles. They
found that HLA-I promiscuity was associated with worse
OS and ORR after ICI therapy, mediated by increased
expression of immune tolerance genes intratumourally.
This alignswith the theory that greater HLA-I promiscuity
limits the ability to distinguish self epitopes versus tumour
neoepitopes [53].Once again,HLA-I promiscuity is partly
informed by the variety of binding tumour neoepitopes,
marrying with the concept of tumour ‘immune fitness’
and likely varying by tumour histology types [54].
Another immune receptor implicated in anti-CTLA4

response is the Fc-γ receptor (FcγR). Previous work impli-
cates antibody-dependent cell cytotoxicity of CTLA-
4-positive Tregs by FcγR-expressing immune cells as part
of the mechanism of action of ipilimumab (an IgG1 anti-
CTLA4construct) [55].Concordantly,aV158Fsinglenucle-
otide polymorphism (SNP) (rs396991) of FCGR3A (encod-
ing FcγRIIIA) was associated with improved ORR and OS
in ipilimumab-treated melanoma cohorts, specifically for
those tumours with higher insertion–deletion (indel) bur-
den [56].

There are emerging signs that germline alleles associ-
ated with the development of autoimmune syndromes or
cancer may also predict ICI efficacy. In a genome-wide
association study, Chat et al associated the rs17388568
SNP (related to colitis and type 1 diabetes) with melanoma
anti-PD1 response [57]. Similarly, several groups have
associated ICI susceptibility with polygenic risk scores
for rheumatoid arthritis [58], autoimmune thyroid, and der-
matological conditions, respectively [59,60]. Finally,
germline polymorphisms of the genes encoding relevant
immune checkpoints (CTLA4, PDCD1, and PDL1) have
been implicated in cancer risk [61], with signals from small
retrospective studies starting to emerge that particular
allelesmayalso associatewith ICIbenefit [62–65].Though
intriguing and biologically plausible, these associations
need large-scale clinical and experimental validation prior
to further development as biomarkers for ICI efficacy.

Phenotypic and external features

In 2018, a pooled analysis found an unexpected associa-
tion between obesity (measured by body mass index;
BMI) and better OS for anti-CTLA4- or anti-PD1/
PDL1-treated patients with advanced melanoma [66].
Since then, several other post hoc analyses have been
published, with most (though not all) supporting an
‘obesity paradox’ for ICI efficacy [67]. Preclinical
efforts demonstrated that for diet-induced obese mice,
engrafted B16 melanoma cells demonstrated a more
aggressive phenotype with more glucose uptake and
ulceration/necrosis than their lean counterparts [68].
Interestingly, this phenotype appeared to be mediated
by leptin promoting PD1 expression on intratumoural
CD8+ T cells. Consequently, the relative benefit of
anti-PD1 therapy was far greater in obese (versus lean)
mice. In contrast, Murphy et al found no anti-CTLA4
efficacy in Renca (RCC) engrafted leptin-induced obese
mice, potentially reflecting the differing targets of these
ICI classes, or biological differences in the tumour
models used [69].

A similar ‘cholesterol paradox’ is also emerging. For
example, in a retrospective review of NSCLC patients
receiving anti-PD1 therapy, high total cholesterol corre-
lated with both PFS and OS after adjustment for other
covariates (such as gender, BMI, and smoking status)
[70]. Intriguingly, this relationship was not seen in a
chemotherapy-treated cohort, suggesting potential ICI
specificity. Like obesity, it was found that tumour cho-
lesterol content also influenced a PD1+CD8+ T-cell
phenotype in murine melanoma TILs dose-dependently,
thus once again potentially providing more substrate for
anti-PD1 efficacy [71].

Gender may also be relevant to ICI efficacy. A post
hoc meta-analysis of 20 published randomised con-
trolled trials of anti-CTLA4 or anti-PD1 therapies found
that males appeared to derive significantly more relative
benefit from ICIs, particularly anti-PD1 therapies [72].
Like cholesterol and obesity, this may relate to rates of
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intratumoural CD8+ T-cell exhaustion, with an analysis
of pre-treatment melanoma samples finding those from
men exhibiting higher CD8+ TIL fractions strongly pos-
itive for CTLA4 and PD1. However, a more recent meta-
analysis (which included trials of anti-PDL1 therapies,
and more recent trials of combination chemo-immuno-
therapy) did not find any significant interaction of gender
on OS [73]. As such, the relationship between gender
and ICI efficacy remains controversial.

Coined our ‘exposome’ [74], several exogenous and
endogenous environmental factors may also interact with
host immunity tomodulate ICI efficacy. For example, con-
current medications are likely relevant, with exogenous
corticosteroids being perhaps the most studied. In vivo,
dexamethasone (a corticosteroid) was found to partially
abrogate anti-PD1 tumour growth inhibition by impairing
peripheral CD8+ T-cell responses [75], and clinically, a
meta-analysis of 16 trials found a negative association
between their use and OS/PFS. Importantly, on sub-group
analysis by indication, this negative effect was only seen
when theywere used for supportive care, and not for those
treating irAEs [76]. Conversely, similar post hoc clinical
analyses have implicated a potential benefit to ICI efficacy
from concurrent pan-β-blocker [77], statin [78,79], and
antihistamine use [80]. Though retrospective associations
may be confounded by indication bias (for example, the
cutaneous toxicity that prompts antihistamine use may
itself be positively associated with ICI efficacy [81]),
in vivo work has demonstrated that histamine may pro-
mote a pro-tumour M2 macrophage phenotype intratu-
mourally, biologically supporting the potential benefit of
concurrent antihistamine therapy [80].

Finally, other medications (e.g. antibiotics [82], proton-
pump inhibitors [83]) or dietary choices (e.g. high-fibre
intake [84]) may impact ICI efficacy (negatively or posi-
tively, respectively) via influencing our gut microbiome
– the composition and diversity of resident microbiota liv-
ing in our gastrointestinal tract. As elaborated next, there is
an emerging understanding of the relevance of the gut
microbiome to systemic ICI efficacy, the mechanisms
underpinning this, and its potential utility in selecting
patients for these therapies.

Gut microbial and related features

The human gut microbiota harbours �1014 microbes
and is dominated by bacteria from the Bacteroidetes,
Firmicutes, Actinobacteria, and Proteobacteria phyla
[85]. An adult harbours hundreds of species and hun-
dreds of strains of anaerobic bacteria that provide bene-
ficial properties impacting immunological development
and regulation [86,87]. Gut microbiome profiling with
16S rRNA sequencing (lower-resolution taxonomic pro-
files, usually to genus level) and shotgun metagenomic
sequencing (high-resolution taxonomic profiling up to
subspecies level and functional profiling) have linked
its composition and functions to a growing list of can-
cers, and to cancer therapy efficacy.

Much of our early understanding linking gut micro-
biota and cancer therapies is based on studies in murine
models. In 2013, Viaud et al demonstrated that the
anti-cancer immune effects of cyclophosphamide were
reliant on the gut microbiota, with gut integrity disrup-
tion allowing microbial translocation into secondary
lymphoid tissue and triggering systemic cell-mediated
immunity [88]. In 2015, in vivo work demonstrated
how responses to anti-CTLA4 and anti-PD1 were
predicated on the presence of enteric Bacteroides and
Bifidobacterium genera, respectively [89,90]. In 2018,
concurrent publications linked the composition [91–93]
and diversity [91] of baseline gut microbiota with
anti-PD1 response in diverse clinical cancer cohorts.
Compellingly, each group would demonstrate the reca-
pitulation of response or non-response in vivo by faecal
microbiota transplant (FMT) of human patient stool to
mice engrafted with murine melanoma (B16.SIY and
BP), sarcoma (MCA-205), and renal cancer (Renca),
providing evidence of causality and a link between
human and murine systems. Finally, in 2021, the results
of two phase I trials demonstrated this recapitulation
human-to-human, with responders’ stool reinvigorating
anti-PD1 response in a subset of melanoma patients with
resistant or refractory tumours [94,95].
However, we observe relatively little consensus when

we examine the annotated species correlated ‘positively’
and ‘negatively’ by studies profiling baseline stool in ICI
recipients, both in meta-analyses of the pivotal 2018 data
using uniform bioinformatic pipelines [96–98] and in sub-
sequent patient cohort publications (Table 1, with contra-
dictory species-efficacy associations underlined). These
discrepancies could be due to differences in clinical
(e.g. patient geography, cancer histology, ICIs used) or
methodological approaches (e.g. stool collection and stor-
age, DNA extraction and sequencing, clinical endpoints
used). They could also be explained by the immunomodu-
latory properties of phylogenetically-distant gut microbial
species converging through common functions, such as
common metabolite production. For example, Mager
et al found that both Bifidobacterium pseudolongum and
Akkermansia muciniphila might synergise with anti-
CTLA4 efficacy through their common production of
inosine, which might help to shift tumour-associated
CD4+ T cells to a Th1 (anti-tumour) phenotype by agon-
ism of adenosine receptors [110]. Another explanation
for the lack of a common microbiome signal between the
various studies is that the clinical response may be due to
complex combinations of evolutionarily distinct anaerobic
bacteria. For instance, Tanoue et al recently found a com-
bination of 11 specific strains, themselves a tiny contribu-
tor to average gut microbiome complexity, that could
robustly induce cytotoxic T-cell responses and enhance
ICI efficacy [111]. As such, herein we focus on the poten-
tial mechanisms that may explain the powerful influence
of gut microbiota on ICI efficacy (Figure 2).
As previously mentioned, gut bacteria often provide

humans with beneficial functions through their meta-
bolic products absorbed into our circulation, with the
gut microbiome sometimes referred to as ‘the neglected
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endocrine organ’ [116]. The connection between the
milieu of gut microbiota and circulating metabolites is
consistently seen, with plasma levels of the microbial–
host co-metabolite hippurate appearing to be a particu-
larly reliable marker of overall gut microbiome diversity
[117,118]. Interestingly, pre-treatment blood hippurate
levels correlate with anti-PD1 efficacy, supporting a
connection between a diverse gut microbiome and ICI
efficacy [119]. Gut microbiota are capable of metabolis-
ing tryptophan, with levels of its metabolite kynurenine
[120] and associated enzymes 3-hydroxyanthranilic acid
[121] and indoleamine-pyrrole 2,3-dioxygenase (IDO)
[122] all inversely associated with ICI efficacy.

Short-chain fatty acids are produced during bacterial fer-
mentation of dietary fibre, and appear to be particularly rel-
evant through their diverse immunomodulatory properties.
Butyrate in particular has been shown, on the one hand, to
enhance anti-tumour CD8+ T-cell function through
increasing IL-12 receptor [112] and memory T-cell sur-
vival [123] in vivo. Concordantly, faecal butyrate was asso-
ciated with better anti-PD1 responses in a cohort of mixed

histology patients [124]. On the other hand, butyrate has
been shown to promote regulatory CD4+ T cells and
impair dendritic cell maturation, thus negatively associat-
ing with anti-CTLA4 efficacy [125].
Microbe-associated molecular patterns (MAMPs) are

molecules that are widely essential to (and thus conserved
across) commensal microbiota. They are recognised by
the innate immune system via a variety of pattern-
recognition receptors, with this interaction also likely
affecting systemic anti-cancer immunity. For example,
Griffin et al isolated the anti-PD1 synergistic effect of
Enterococcus faecium to the SagA gene, responsible for
peptidoglycan breakdown into muropeptides. Exogenous
muropeptides recapitulated this effect only in the pres-
ence of host NOD2 receptor (specifically, by priming an
anti-tumour myeloid cell response), highlighting their
critical role [114]. As a second example, recent work by
two groups shed light on the importance of STING (stim-
ulator of interferon genes)-receptor activation. Si et al
found oral administration of Lactobacillus rhamnosus
GG to improve anti-PD1 efficacy in vivo, mediated by

Figure 2. Potential mechanisms of host factor influence on anti-PD1 non-response/response. Left panel – anti-PD1 non-response. Cortico-
steroids: induce T-cell apoptosis [75]. Antibiotics and a low-fibre diet: promote an unfavourable gut microbiota milieu, reducing its positive
impact on anti-PD1 efficacy (pictured in the right panel) [84,92]. Interleukin (IL) 8: produced by (and contributing to) tumour microenviron-
ment (TME) infiltration of neutrophil and myeloid-derived suppressor cells [39]. Histamine: promotes differentiation into M2 (pro-tumour)
macrophages (macs) within the TME [80]. Right panel – anti-PD1 response. Cholesterol and adipose tissue: increase PD1 expression on
CD8+ T cells [67,71]. Eosinophils: attract CD8+ T cells to the TME [26]. A high-fibre diet: promotes a favourable gut microbiota milieu, which:
increases production of short-chain fatty acids (SCFAs), which enhance CD8+ T-cell anti-tumour cytotoxicity [112]; allows cross-priming of
CD8+ T cells (‘molecular mimicry’) [113]; and stimulates innate immune receptors (e.g. NOD2, STING) that promote an anti-tumour myeloid
cell response [114,115].
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STING-dependent induction of type I interferons [126].
Similarly, Lam et al showed that microbial cyclic
dinucleotides activated STING receptors on intratumoural
monocytes, generating type I interferons to shift to an anti-
tumour immunemicroenvironment [115]. Lastly, Toll-like
receptors (TLRs) are another important microbial pattern-
recognition receptor, with exogenous TLR agonist admin-
istration augmenting anti-PD1 efficacy in head and neck
cancers [127].

Finally, microbe–tumour molecular mimicry has been
proposed as a bacterial strain-specific mechanism for con-
ferring ICI sensitivity. Examples abound of bacterial
infections initiating and exacerbating autoimmune dis-
ease, including Streptococcus pyogenes triggering rheu-
matic heart disease or glomerulonephritis, and
Campylobacter jejuni triggering ankylosing spondylitis
or Guillain–Barré syndrome [128]. In each of these cases,
structural homology between bacterial and self-antigen
epitopes leads to cross-reactivity of T cells. It is plausible
that homology between gut microbiota and tumour-
specific antigens may also occur, with immune check-
points preventing the ensuing anti-tumour immunity (thus
released by ICIs) [129]. A retrospective analysis of
long-term pancreatic cancer survivors identified T cell-
inflamed tumours, with TILs cross-reactive to tumour
neoantigens and homologous infectious disease antigens
[130]. Subsequently, Bessel et al identified close homol-
ogy between a murine melanoma (B16.SIY) and
Bifidobacterium breve peptide epitope (SVY). They dem-
onstrated enhanced anti-B16.SIY immunity in mice inoc-
ulated with B. breve, with causality established through
recapitulation of this effect by transfer of gut microbiota
and SVY-specific T cells [131]. Finally, recent work
found the TMP epitope of Enterococcus hirae 13144 to
be immunogenic in murine cyclophosphamide recipients
and strongly homologous with the Psmb4 mouse tumour
antigen. Using highly sensitive culturomics, TMP1 was
found to be enriched in stool samples from RCC andmel-
anoma anti-PD1 recipients experiencing longer OS, pro-
viding (to our knowledge) the first clinical evidence
supporting this phenomenon [113].

Together, these data demonstrate the complex mecha-
nisms by which microbiota may influence ICI efficacy.
Though early in development, there are now emerging
examples of this science translating into clinically useful
predictors of ICI efficacy. For example, A. muciniphila
had previously been shown to induce Th1 CD4+T cell dif-
ferentiation and enhance ICI responses in murine models
[92]. Based on this work, Derosa et al recently reported that
detectable baseline stool Akkermansia sp. was (modestly)
associated with anti-PD1ORR in a cohort of 338 advanced
NSCLC patients (NCT04567446) – the largest such study
published so far [109].

Concluding remarks

In this review, we have attempted to highlight the key evi-
dence supporting the significant contribution that various

host factors have in the anti-cancer efficacy of ICIs. We
have covered host factors derived from the peripheral
immune compartment, germline genetics, host phenotype,
and the exposome (including our gut microbiome), and
have discussed the strength of their implications and poten-
tial mechanisms (Table 2). It is important to emphasise that
these factors are biomarker candidates only, and all require
robust validation through appropriately designed, prospec-
tive clinical trials, prior to clinical implementation [132].
Several of these candidate host factors are inherently

modifiable; so, beyond their predictive biomarker poten-
tial, they may even provide avenues for improved ICI
efficacy. Trials to assess this are ongoing in some cases:
for example, combining ICIs with potentially beneficial
concomitant medications (e.g. propranolol [133]) or
strategies to modify the gut microbiome with faecal
microbial transplantation, specific bacterial consortia,
or single strains (recently reviewed [134]).
It is also notable that although we have discussed factors

independently, we hypothesise that a multimodal approach,
considering these host factors as well as tumour and
tumour-microenvironment features concurrently, might
most optimally predict which patients will benefit from
ICIs. Developing such an integrative, multivariate model
would require sufficiently powered, richly annotated clini-
cal datasets, while using best practices to generate high-
quality, matched tumour, host, and gut microbiome feature
sets. To this end, the ongoing MITRE study
(NCT04107168) seeks to enrol up to 1800 NSCLC, RCC
or melanoma patients undergoing ICI therapy [135]. We
hypothesise that a prospective study of this scale, integrating
rich clinical andmulti-omic datasets, is necessary to confirm
the relevance of host, microbial, and tumour features (either
independently or in concert) to ICI efficacy, and ultimately
to help progress promising candidates towards clinical use
as predictive biomarkers.
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