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The purpose of this study was to establish a hospital supply chain management (HSCM) model in which three kinds of drugs in
the same class and with the same indications were used in creating an optimal robust design and adjustable ordering strategies to
deal with a drug shortage.The main assumption was that although each doctor has his/her own prescription pattern, when there is
a shortage of a particular drug, the doctor may choose a similar drug with the same indications as a replacement. Four steps were
used to construct and analyze the HSCMmodel. The computation technology used included a simulation, a neural network (NN),
and a genetic algorithm (GA). The mathematical methods of the simulation and the NN were used to construct a relationship
between the factor levels and performance, while the GA was used to obtain the optimal combination of factor levels from the
NN. A sensitivity analysis was also used to assess the change in the optimal factor levels. Adjustable ordering strategies were also
developed to prevent drug shortages.

1. Introduction

Recently, one of the most important strategy issues for
hospital administrators is to measure the performance of
supply chain management (SCM). Bhatnagar and Sohal
[1] researched competitiveness among SCMs, including the
impact of plant location, uncertainty of supply, andmanufac-
turing practices; they found a significant relationship among
these factors. Marucheck et al. [2] studied product safety
and security in the global SCM to address certain research
problems, including regulation, product lifecycle manage-
ment, and supplier relationships. Bendavid and Boeck [3]
presented a radiofrequency identification (RFID) technique
to improve hospital supply chain management (HSCM) in
order to improve in turn the end-to-end traceability of
medical products.

He and Lai [4] constructed an SCM model in order to
identify the relationships between operational and strategic

integration.Their results showed that while customer-action-
based service has a direct positive effect on strategic integra-
tion, operational integration has a direct positive effect on
product-based service. Kelle et al. [5] studied a case of an
SCM in a pharmacy and itsmanagerial practices in a hospital.
They found that the conflicting goals of various stakeholders
created a tradeoff effect among the operational, tactical,
and strategic levels. They determined that decision-support
tools are necessary to facilitate and improve performance in
management practices. Ghandforoush and Sen [6] presented
a prototype supply chain decision-support system (DSS) for
platelet production and the schedule of a blood mobile run
by a regional blood center. Their goal was to optimize the
delivery of platelets from production centers to hospitals
using the supply chain DSS. Their results suggested that
applying the supply chain DSS to the platelet production
plan and the mobile assignment schedule was a better
means of meeting daily demand. Lin et al. [7] investigated
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the innovation of channel integration and its effect on SCM
performance: their results indicated that there is a significant
relationship between market orientation and SCM perfor-
mance and that value cocreation and value constellations are
positively associated with SCM performance. Zhang et al.
[8] constructed a conceptual model with inventory visibility,
which is a critical part of SCM.Their results emphasized that
inventory visibility enables companies to make their SCM as
effective as possible.

Based on the literature summarized above, most SCM
research had paid attention to the product production
for suppliers, manufacturers, and customers. There is little
research on HSCM. Also, in Taiwan, most of hospitals’
purchasing professionals have slight recognition or may not
be familiar with the concept of supply chain [9]. Besides,
because, according to the medical law, hospitals cannot
market medical products, most hospitals do not know how to
use the e-health purchasing system, to improve the business
performance. Therefore, to establish a HSCM model and to
connect the e-health purchasing systemwith the SCMplan in
Taiwanwill be an important issue in the hospitalmanagement
in the future.

In addition, to explore theHSCM’s performance, the total
system cost (TSC) should also be taken into consideration.
Lapierre and Ruiz [10] proposed an innovative approach to
schedule inventory activities based on total cost of logistics
to improve hospital supply system. The study tested a real
hospital case in Montreal, Canada, and found that, with
better coordination of purchasing and procurement, the
hospital logistic management may be improved. de Vries [11]
redesigned the inventory systems in a health care setting
and suggested that project managers should understand how
to manage inventory in order to reduce costs. Thus, the
project managers can assist the decision-making process
in hospital inventory systems. Wang et al. [12] proposed a
purchasing policy on certain surgical materials in the Chang
Gung Memorial Hospital, Taiwan, attempting to construct a
model to minimize the total cost of consignment inventory,
including a deteriorating item, in the condition that the
buyer has warehouse capacity constraint. This model enables
managers to understandhow to obtain lower holding cost and
how to enjoy more flexible cash management. Chakraborty
et al. [13] researched the impact of supply chain collaboration
and its components in the context of healthcare service sector.
The result helped to construct the supply chain collaboration
with value cocreation and firm performance.

Along with reducing the TSC, improving the patient
safety level (PSL) is also an important issue to enhance high
quality care in the performance of HSCM in Taiwan; Liao’s
research on HSCM [14] investigated how to dispatch the
obtaining quantity tominimize total cost while taking patient
safety into account. The result showed that a centralized
purchasing center is useful to effectively coordinate the
hospitals’ cost and the PSL. Liao and Chang [15] adopted
an optimal approach for parameter settings to establish the
adjustable contracting capacity for the hospital supply chain
logistics system, using the hospitals in the North Alliance
of the Department of Health of Taiwan. The results showed
that the proposed optimal approach can effectively predict

responses, the TSC, and the PSL. Uthayakumar and Priyan
[16] made research to optimize SCM for a pharmaceutical
company and a hospital in order to improve health policy,
public health, patient safety, and strategic decision-making.
Liao et al. [17] developed the aggregate production planning
strategies for the applications of SCM to the hospital. The
strategies can be selected to apply the SCM to the hospital
in the consideration of hospitals’ PSL and total cost.

The study attempted to construct a HSCM model for
drug delivery to avoid the drug shortage and to explore
the relationship among the cost management, purchasing
strategy, the logistic system, and e-health purchasing system.
The concept of HSCM is based on the concept that when
the actual demand occurs, the adjustable strategies for the
dispatched quantity from different pharmaceutical compa-
nies will be computed to adjust the shortage demand. To
achieve the optimal overall performance of the HSCM, it
is necessary to pay attention to the variations in different
ordering quantities and dispatched quantities of the required
product when the hospital has the instability of the demand
forecasting. The variations of the major parameters will be
taken into consideration in order to determine the optimal
supply chain’s overall performance.

Furthermore, to explore the computational technology,
Liao et al. [18] made a research on the optimal parameter
settings, in which the regression models were developed
and the genetic algorithm (GA) was applied to find out the
optimal parameter settings for the HSCM. Vera Candioti
et al. [19] explored the experimental design and multiple
response optimization and found that the response surface
methodology and the neural network (NN) are suggested to
set the relationship between the factors and performances.
This study used the simulation method to simulate the
HSCM’s dynamic character. The important factors and per-
formances affecting HSCM were analyzed, and a simulation
and NNs were used to identify the relationship between the
HSCM factor levels and their performances. The objective
of the study was to establish a robust HSCM with which to
create adjustable ordering strategies. Section 2 will present
the scenario and the factor level settings in the HSCM, and
Section 3 will present the conclusions.

2. The Scenario and Factor Level
Settings in the HSCM

In this section, the HSCM and its factor level settings will be
defined. In the framework of the HSCM, medical (product)
purchase demands were compiled by the e-health purchasing
system. Three pharmaceutical companies were contracted
to supply three different drugs (drug A, drug B, and drug
C). The e-health purchasing system included purchasing
and coordination distribution mechanisms to compute and
suggest the most robust HSCM factor level settings. The
three drugs had the same indications and thus could be
used to replace one another if there were a shortage. Orders
for these drugs were processed in the following way: the
hospitals sent their requests for each kind of drug to the
e-health purchasing system, which collated the requests,
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computed the total quantities to be ordered, and submitted
them to the pharmaceutical companies via the Internet.
The pharmaceutical companies then delivered the requested
quantities of the drugs ordered to the hospital. In order to
circumvent the seasonal variation that affects actual demand,
the pharmaceutical companies would maintain a safety stock
of drugs at the warehouse’s request. The warehouse would
then take any inventory shortages into consideration when
filling the hospital’s orders. Small lot sizes and multiple
deliveries could be implemented in order to save storage
space.

Some research onHSCMperformance has taken the total
system cost into consideration [10–13]. In addition, patient
safety is crucial to the quality of patient care and patient
satisfaction [14–17].Therefore, to explore the HSCM’s perfor-
mances, both the total system cost and patient safety should
be simultaneously taken into consideration in the study.Why
the patient safety is emphasized here is because, due to drug
patent protection, medicine suppliers are market monopo-
lies, which in some circumstances would lead to medicine
shortage and hence endanger patient safety. Therefore, while
exploring the patient safety for HSCM, the prevention of
medicine should also be investigated. In case that there is
any disruption in material flow of any medicine supplier,
medicine shortage may occur, later causingmedicine scarcity
in some hospitals and hence resulting in a threat to patient
safety [14–17, 20, 21]. Viewing that, patient safety is also taken
into consideration for HSCM performance in the study.

In order to make the design of the HSCM as robust as
possible, four steps were proposed.

Step 1 (take the HSCM factors and their levels into consid-
eration). In this step, in order to arrive at a robust design
for the HSCM, the following important factors and their
settings were considered. First, the noise and control factors
were identified. In general, demand variability is difficult
to control, and decision-makers always use the forecasting
model to predict the quantities of the drugs that will be
needed. The noise factor was identified as the demand vari-
ability, calculated using the normal probability distribution,
𝑁(𝜇, 𝜎

2
), in which 𝜇 was the mean (units/month) and 𝜎

2

was the variance (units2/month2). In this study, the actual
demand for the period from January to April was calculated
as𝑁(800, 100

2
) and for the period fromMay to December as

𝑁(300, 250
2
).The different calculations of demand variability

highlighted the change in demand in different seasons.
The control factors were the safety stock (level 1: 400

units, level 2: 500 units, and level 3: 600 units), the maximum
inventory (level 1: 2,000 units, level 2: 2,500 units, and level
3: 3,000 units), the reliability of the HSCM (level 1: 99
percent, level 2: 97 percent, and level 3: 96 percent), and the
transportation capacity (level 1: 250 units, level 2: 500 units,
and level 3: 1,000 units).

Step 2 (identify the relationship between the factor levels and
performance). To explore the relationship between the factor
levels and performance, the mathematical function of the
HSCM performance was discussed. Generally, there are two
indexes of HSCM performance: the TSC and the PSL. In this

study, the TSC included the costs of purchasing, inventory,
transportation, and disposal. Equation (1) shows the TSC
function:

TSC =

3

∑

𝑚=1

12

∑

𝑡=1

(𝑃
𝑖𝑡
∗ 𝑄
𝑖𝑡
+ 𝐼
𝑚𝑡

∗ 𝑃
𝑚𝑡

∗ ℎ
𝑡
+ ⌈

𝑄
𝑚𝑡

𝑁
𝑚

⌉

∗ 𝑞
𝑚𝑡

+ 𝑂
𝑚𝑡

∗ 𝑑
𝑚𝑡

) ,

(1)

where 𝑃
𝑚𝑡

is the price of drug 𝑚 for the 𝑡th month, 𝑚 =

1, 2, 3, 𝑡 = 1, 2, . . . , 12;𝑄
𝑚𝑡

is the quantity of drug𝑚 ordered
for the 𝑡th month, 𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12; 𝐼

𝑚𝑡
is the

inventory level of drug 𝑚 for the 𝑡th month, 𝑚 = 1, 2, 3, 𝑡 =

1, 2, . . . , 12; ℎ
𝑡
is the rate of storage cost per unit for the 𝑡th

month, 𝑡 = 1, 2, . . . , 12; ⌈𝑄
𝑚𝑡

/𝑁
𝑚
⌉ is the ceiling function

to calculate the number of deliveries of drug 𝑚 for the 𝑡th
month,𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12; 𝑁

𝑚
is the transportation

capacity of drug 𝑚 for each vehicle; 𝑞
𝑚𝑡

is the transportation
cost of drug𝑚 for the 𝑡th month,𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12;
𝑂
𝑚𝑡

is the quantities of expired drug𝑚 for the 𝑡thmonth,𝑚 =

1, 2, 3, 𝑡 = 1, 2, . . . , 12; and 𝑑
𝑚𝑡

is the disposal cost per unit
for drug𝑚 for the 𝑡th month,𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12.

The TSC is subject to

𝐼
𝑚(𝑡−1)

+ 𝑄
𝑚𝑡

− 𝐷
𝑚𝑡

= 𝐼
𝑚𝑡

− 𝑆
𝑚𝑡

𝑄
𝑚𝑡

=
{

{

{

0, 𝑄min ≤ 𝐼
𝑡−1

≤ 𝑄max

𝑄max − 𝐼
𝑡−1

, 𝐼
𝑡−1

> 𝑄min

𝐼
𝑡
=

3

∑

𝑚=1

𝐼
𝑚𝑡

,

(2)

where𝐷
𝑚𝑡

is the actual demand for drug𝑚 for the 𝑡thmonth,
𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12; 𝑆

𝑚𝑡
is the shortage level of drug

𝑚 for the 𝑡th month, 𝑚 = 1, 2, 3, 𝑡 = 1, 2, . . . , 12; 𝑄min is the
maximum inventory level; 𝑄max is the minimum inventory
level; and 𝐼

𝑡
is the total drug inventory level for the 𝑡thmonth,

𝑡 = 1, 2, . . . , 12.
The PSL was also explored here. The service level was

included in the PSL because shortage of drugs would cause
harm to patients [14–17]. The PSL was defined as
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∑
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Furthermore, the TSC and the PSL give rise to a tradeoff
effect because, in ordering larger quantities, the PSL increases
due to a decrease in the probability of an inventory short-
age; however, increasing the inventory would increase the
TSC. On the other hand, ordering smaller quantities would
decrease the PSL because it would heighten the probability
of an inventory shortage, which would cause a decrease of
the TSC. Hence, the TSC and PSL are integrated into one
function to aggregate multiple performances (MP). The MP
is based on the concept of desirability function. Harrington
[22] proposed the desirability function in 1965 as a criterion
for response optimization. In 1980, Derringer and Suich [23]
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Table 1: The parameter settings for the HSCM simulation.

𝑃
1𝑡
: 29∼37 ℎ

𝑡
: 0.25∼0.3 𝑑

1𝑡
: 10∼12 𝑞

1𝑡
: 7260∼7676

𝑃
2𝑡
: 36∼42 𝑑

2𝑡
: 11∼13 𝑞

2𝑡
: 15250∼16059

𝑃
3𝑡
: 48∼56 𝑑

3𝑡
: 13∼15 𝑞

3𝑡
: 33655∼33586

Table 2: The neural networks for the MP model.

Structures (input nodes-hidden
nodes-output nodes)

RMSE
Training Testing

4-6-1 0.02982 0.02634
4-5-1 0.02632 0.02471
4-4-1 0.02444 0.02170
4-3-1 0.02321 0.02018
4-2-1 0.02651 0.02485
4-1-1 0.03145 0.03059
Note. The learning rate was set to autoadjust to value between 0.01 and 0.3;
the momentum coefficient is 0.80; and the number of iterations is 15,000.

modified the function to make it more flexible in practical
applications in order to serve as useful tool to solve a
multiperformance problem.Derringer and Suich [23] defined
themultiperformance as𝐷 = (∏

𝑟

1
𝑑
1
∗𝑑
2
∗⋅ ⋅ ⋅∗𝑑

𝑟
)
1/𝑟, where 𝑟

denoted performances.𝑑
𝑖
denoted the desirability function of

𝑖th performance.Therefore, MP denoted the geometric mean
of the 𝑟desirability values.

Step 3 (obtain the optimal combinations of factor levels).
The parameter settings for the simulation are summarized in
Table 1. A total of 81 combinations (3 ∗ 3 ∗ 3 ∗ 3) for different
control factor levels were simulated.TheNNwas applied here
to construct the black-boxmathematical functions.The input
variables were the factors; the output variables were the nor-
malized TSC (NTSC), the normalized PSL (NPSL), and the
MP. The normalized mean of the TSC for each combination
(TSCmean) was defined as NTSC = TSCmin/TSCmean, where
the TSCmin was the minimum TSCmean. Thus, the larger the
NTSC the better, and the value was in the range of 0∼1. The
normalized mean of the PSL for each PSLmean was defined
as NPSL = PSLmean/PSLmax, where the PSLmax was the
maximum PSLmean. Thus, the larger the NPSL the better, and
the value was in the range of 0∼1. The MP was defined by the
desirability function: MP = √NTSC ∗NPSL. The larger the
MP the better, and the value was in the range of 0∼1. The MP
is expected to be maximized.

Three NN models (the MP model, the NTSC model, and
the NPSL model) were obtained. In selecting the three opti-
mal models, the lowest RMSE (the root mean-square error)
was taken into consideration. The MP model in Table 2 and
the NTSCmodel in Table 3 have a 4-3-1 (input nodes-hidden
nodes-output node) structure, and theNPSLmodel inTable 4
has a 4-4-1 structure. The GA was used to find the optimal
factor level combinations. The operational conditions of the
GA were set as follows: the number of generations was 1,500,
the population size was 100, the crossover rate was 0.85, and
the mutation rate was 0.082. Based on the MP model, the
results showed that the safety stockwas at level 1.2 (420 units),

Table 3: The neural networks for the NTSC model.

Structures (input nodes-hidden
nodes-output nodes)

RMSE
Training Testing

4-6-1 0.03116 0.02824
4-5-1 0.02998 0.02755
4-4-1 0.02633 0.02463
4-3-1 0.02254 0.02092
4-2-1 0.02761 0.02537
4-1-1 0.02993 0.02495
Note. The learning rate was set to autoadjust to value between 0.01 and 0.3;
the momentum coefficient is 0.80; and the number of iterations is 15,000.

Table 4: The neural networks for the NPSL model.

Structures (input nodes-hidden
nodes-output nodes)

RMSE
Training Testing

4-6-1 0.03136 0.02888
4-5-1 0.02872 0.02564
4-4-1 0.02521 0.02338
4-3-1 0.02766 0.02462
4-2-1 0.02899 0.02317
4-1-1 0.03100 0.02891
Note. The learning rate was set to autoadjust to value between 0.01 and 0.3;
the momentum coefficient is 0.80; and the number of iterations is 15,000.

the maximum inventory was at level 1.4 (2,200 units), the
reliability of HSCMwas at 99 percent, and the transportation
capacity was at level 3 (1000 units). The MP value was 0.980.
At this factor level combination, the NTSC was 0.890 and
the NPSL was 0.875. To convert the NTSC into the TSCmean,
the TSCmean had to be 114,168. To convert the NPSL into the
PSLmean, the PSLmean had to be 0.921.

To complete the sensitivity analysis in order to discuss
the changes in the optimal factor levels based on the optimal
factor level combinations, Tables 5, 6, 7, and 8 show the
changes in the NTSC, the TSC, and the PSL when one factor
level was changed while the others were fixed. The results
were as follows:

(1) When the safety stock level was increased from 1.2 to
3, theMP decreased from 0.980 to 0.760, the TSCmean
increased from 114,168 to 147,217, and the PSLmean
decreased from 0.921 to 0.714.

(2) When the maximum inventory level was increased
from 1.4 to 3, the MP decreased from 0.980 to 0.843,
the TSCmean increased from 114,168 to 132,722, and the
PSLmean decreased from 0.921 to 0.792.

(3) When the reliability of the HSCMwas increased from
1 to 3, the MP decreased from 0.980 to 0.857, the
TSCmean increased from 114,168 to 124,218, and the
PSLmean decreased from 0.921 to 0.805.

(4) When the transportation capacitywas decreased from
3 to 1, the MP decreased from 0.980 to 0.900, the
TSCmean increased from 114,168 to 130,254, and the
PSLmean decreased from 0.921 to 0.846.
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Table 5: The values for the MP, the TSCmean, and the PSLmean resulting from a 20 percent change in the safety stock level.

MP 0.930 0.980 0.925 0.900 0.880 0.870 0.848 0.830 0.810 0.780 0.760
Safety stock 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
TSCmean 121106 114168 121956 124446 127345 129623 132539 134661 138439 144482 147217
PSLmean 0.874 0.921 0.869 0.846 0.827 0.817 0.797 0.780 0.761 0.733 0.714

Table 6: The values for the MP, the TSCmean, and the PSLmean resulting from a 20 percent change in the maximum inventory level.

MP 0.910 0.930 0.980 0.910 0.900 0.891 0.881 0.872 0.861 0.852 0.843
Maximum inventory 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
TSCmean 123050 120426 114168 122851 124226 125583 126966 128418 129747 131421 132722
PSLmean 0.855 0.874 0.921 0.855 0.846 0.837 0.828 0.819 0.809 0.801 0.792

Table 7: The values for the MP, the TSCmean, and the PSLmean
resulting from a change in the reliability of the HSCM.

MP 0.980 0.818 0.857
HSCM reliability 1 2 3
TSCmean 114168 122850 124218
PSLmean 0.921 0.868 0.805

Table 8: The values for the MP, the TSCmean, and the PSLmean
resulting from a change in the transportation capacity.

MP 0.980 0.910 0.900
Transportation capacity 3 2 1
TSCmean 114168 136878 130254
PSLmean 0.921 0.855 0.846

Step 4 (discuss the available adjustable ordering strategies
when there is a shortage of one of the three drugs). To explore
the adjustable ordering strategies for drugs A, B, and C,
Table 9 shows the optimal factor level combinations and their
respective MP when one of them is subject to a shortage.
When there is a shortage of drug A, B, or C, the following
adjustable ordering strategies should be discussed:

(1) When there is a shortage of drug C but drugs A and
B can be ordered, the MP would be 0.912, the factor
level combination would be adjusted to a safety stock
of 430 units, the maximum inventory level would be
2,300 units, theHSCMreliabilitywould be 99 percent,
and the transportation capacity would be 250 units. If
the factor level combination cannot be adjusted, the
MP would decrease to 0.825.

(2) When there is a shortage of drug B but drugs A and
C can be ordered, the MP would be 0.924, the factor
level combination would be adjusted to a safety stock
of 420 units, the maximum inventory level would be
2,100 units, theHSCM reliability would be 99 percent,
and the transportation capacity would be 1,000 units.
If the factor level combination cannot be adjusted, the
MP would decrease to 0.814.

(3) When there is a shortage of drug A but drugs B and
C can be ordered, the MP would be 0.990, the factor

level combination would be adjusted to a safety stock
of 580 units, the maximum inventory level would
be 2,800 units, the HSCM reliability would be 99
percent, and the transportation capacity would be
1,000 units. If the control factor level combination
cannot be adjusted, the MP would decrease to 0.889.

3. Conclusions

In this paper, the authors explored adjustable ordering strate-
gies for dealing with drug shortages. The HSCM simulation
model, which could handle three drugs from the same class
and with the same indications, was used to find the optimal
robust design and adjustable ordering strategies to cope
with a drug shortage, according to the hospital’s needs and
with the support of a purchasing alliance. Four steps were
applied here to construct the HSCM model: the HSCM
factors and their levels were taken into consideration; the
relationships between the factor levels were identified; the
optimal combinations of factor levels were obtained; and
finally the adjustable ordering strategies to use when there
was a shortage of one of the three drugs were discussed. The
most significant contribution of this study is that it takes the
adjustable ordering strategies of the HSCM into considera-
tion when dealing with practical problems. The concept of
adjustable ordering strategies will play an important role in
future research onHSCMs. Also, some other contributions in
the proposed computational technology are presented below:

(1) The study used the NN to effectively deal with
complex nonlinear relationship between the factor
levels and performance. In addition, GA was used to
obtain the optimal combination of factor levels from
the NN, from any values within the upper and lower
bounds for control factors.

(2) Different settings of the same factor could be optimal
for different performances. In the study, the per-
formances of TSC and PSL are usually in conflict.
A common method used for tackling the multiple
performances problem is to give a weighted value
to each performance, which needs to be judged
and decided by a human subject. However, the
desirability function proposed in the study does not
need any human judgment. Therefore, it could be
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Table 9: The control factor level combinations and their MPs when there is a shortage of drug A, B, or C.

Drugs to be ordered Safety stock Maximum inventory level HSCM reliability Transportation capacity MP
A, B 430 2300 99% 250 0.912
A, C 420 2100 99% 1000 0.924
B, C 580 2800 99% 1000 0.990

an attractive method in simplifying multiple perfor-
mance problems because it forthright employs the
upper and lower bound of each performance, without
any human judgment. Also, the value of composite
desirability MP derived in the study was 0.980, a
value very close to 1. Hence, the desirability function
in this study’s NN model for the optimization of
multiresponse problems can be a very useful tool to
predict surface roughness.

(3) In the study, the proposed methods, experimental
design, NN, and GA, can be used for analysis, mod-
eling, and optimization. Consequently, they can be
applied in concurrent design process in HSCM.

The limitation of the study is that the control factors’ levels
are based on the preference of and the control of HSCM
decision-makers. However, the noise factor’s levels are in the
control of external environment. Hence, while adjusting the
optimal combination of factor levels, the designer must take
the variations of the external environment into consideration.
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Goicoechea, “Experimental design and multiple response opti-
mization. Using the desirability function in analytical methods
development,” Talanta, vol. 124, pp. 123–138, 2014.

[20] C. E. Schmidt and T. Bottoni, “Improving medication safety
and patient care in the emergency department,” Journal of
Emergency Nursing, vol. 29, no. 1, pp. 12–16, 2003.



Computational and Mathematical Methods in Medicine 7

[21] A. Rogers, E. Jones, and D. Oleynikov, “Radio frequency
identification (RFID) applied to surgical sponges,” Surgical
Endoscopy, vol. 21, no. 7, pp. 1235–1237, 2007.

[22] E. C. Harrington, “The desirability function,” Industrial Quality
Control, vol. 21, pp. 494–498, 1965.

[23] G. C. Derringer and R. Suich, “Simultaneous optimization of
several response variables,” Journal of Quality Technology, vol.
12, no. 4, pp. 214–219, 1980.


