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Deep representation learning of electronic health records to
unlock patient stratification at scale
Isotta Landi 1,2, Benjamin S. Glicksberg 3,4,5, Hao-Chih Lee4,5, Sarah Cherng4,5, Giulia Landi6, Matteo Danieletto3,4,5, Joel T. Dudley4,5,
Cesare Furlanello 1,7,8 and Riccardo Miotto 3,4,5,8✉

Deriving disease subtypes from electronic health records (EHRs) can guide next-generation personalized medicine. However,
challenges in summarizing and representing patient data prevent widespread practice of scalable EHR-based stratification analysis.
Here we present an unsupervised framework based on deep learning to process heterogeneous EHRs and derive patient
representations that can efficiently and effectively enable patient stratification at scale. We considered EHRs of 1,608,741 patients
from a diverse hospital cohort comprising a total of 57,464 clinical concepts. We introduce a representation learning model based
on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE) to transform patient trajectories into low-
dimensional latent vectors. We evaluated these representations as broadly enabling patient stratification by applying hierarchical
clustering to different multi-disease and disease-specific patient cohorts. ConvAE significantly outperformed several baselines in a
clustering task to identify patients with different complex conditions, with 2.61 entropy and 0.31 purity average scores. When
applied to stratify patients within a certain condition, ConvAE led to various clinically relevant subtypes for different disorders,
including type 2 diabetes, Parkinson’s disease, and Alzheimer’s disease, largely related to comorbidities, disease progression, and
symptom severity. With these results, we demonstrate that ConvAE can generate patient representations that lead to clinically
meaningful insights. This scalable framework can help better understand varying etiologies in heterogeneous sub-populations and
unlock patterns for EHR-based research in the realm of personalized medicine.
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INTRODUCTION
Electronic health records (EHRs) are collected as part of routine
care across the vast majority of healthcare institutions. They
consist of heterogeneous structured and unstructured data
elements, including demographic information, diagnoses, labora-
tory results, medication prescriptions, free-text clinical notes, and
images. EHRs provide snapshots of a patient’s state of health and
have created unprecedented opportunities to investigate the
properties of clinical events across large populations using data-
driven approaches and machine learning. At the individual level,
patient trajectories can foster personalized medicine; across a
population, EHRs can provide a vital resource to understand
population health management and help make better decisions
for healthcare operation policies1.
Personalized medicine focuses on the use of patient-specific

data to tailor treatment to an individual’s unique health
characteristics. However, even seemingly simple diseases can
show different degrees of complexity that can create challenges
for identification, treatment, and prognosis, despite equivalence at
the diagnostic level2,3. Heterogeneity among patients is particu-
larly evident for complex disorders, where the etiology is due to
an amalgamation of multiple genetic, environmental, and lifestyle
factors. Several different conditions have been referred to as
complex, such as Parkinson’s disease (PD)4, multiple myeloma
(MM)5, and type 2 diabetes (T2D)6. Patients with complex
disorders may differ on multiple systemic layers (e.g., different
clinical measurements or comorbidity landscape) and in response
to treatments, making these conditions difficult to model. Multiple

data types in patient longitudinal EHR histories offer a way to
examine disease complexity and present an opportunity to refine
diseases into subtypes and tailor personalized treatments. This
task is usually referred to as “EHR-based patient stratification”.
This follows a common approach in clinical research, where
attempts to identify latent patterns within a cohort of patients can
contribute to the development of improved personalized
therapies7.
From a computational perspective, patient stratification is a

data-driven, unsupervised learning task that groups patients
according to their clinical characteristics8. Previous work in this
domain aggregates clinical data at a patient level, representing
each patient as multi-dimensional vectors, and derives subtypes
within a disease-specific population via clustering (e.g., in autism9)
or topological analysis (e.g., for T2D10). Deep learning has been
applied to derive more robust patient representations to improve
disease subtyping8,11. Baytas et al.8 used time-aware long short-
term memory (LSTM) networks to leverage stratification of
longitudinal data of PD patients. Similarly, Zhang et al.11 used
LSTM to identify three subgroups of patients with idiopathic PD
that differ in disease progression patterns and symptom severity.
These studies, however, only focused on curated and small
disease-specific cohorts, with ad hoc manually selected features.
This approach not only limits scalability and generalizability, but
also hinders the possibility to discover unknown patterns that
might characterize a condition. Because EHRs tend to be
incomplete, using a diverse cohort of patients to derive disease-
specific subgroups can adequately capture the features of
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heterogeneity within the disease of interest12. However, it is
challenging to create large-scale computational models from EHRs
because of data quality issues, such as high dimensionality,
heterogeneity, sparseness, random errors, and systematic biases.
Advances in machine learning, specifically in representation
learning13 and deep learning14, are introducing different compu-
tational models to leverage EHRs for personalized healthcare15,16.
This work fits into this landscape by presenting an unsupervised
patient stratification pipeline that aims to automatically detect
clinically meaningful subtypes within any condition by using
patient representations learned from a heterogeneous and large
cohort of EHRs.
In particular, this paper proposes a general framework for

identifying disease subtypes at scale (see Fig. 1a). We first propose
an unsupervised deep learning architecture to derive vector-based
patient representations from a large and domain-free collection of
EHRs. This model (i.e., ConvAE) combines (1) embeddings to
contextualize medical concepts, (2) convolutional neural networks
(CNNs) to loosely model the temporal aspects of patient data, and
(3) autoencoders (AEs) to enable the application of an unsuper-
vised architecture. Second, we show that ConvAE-based repre-
sentations learned from real-world EHRs of ~1.6M patients from
the Mount Sinai Health System in New York improve clustering of
patients with different disorders compared to several commonly
used baselines. Last, we demonstrate that ConvAE leads to
effective patient stratification with minimal effort. To this end, we
used the encodings learned from domain-free and heterogeneous
EHRs to derive subtypes for different complex disorders and
provide a qualitative analysis to determine their clinical relevance.

This architecture enables patient stratification at scale by
eliminating the need for manual feature engineering and explicit
labeling of events within patient care timelines, and processes the
whole EHR sequence regardless of the length of patient history. By
generating disease subgroups from large-scale EHR data, this
architecture can help disentangle clinical heterogeneity and
identify high-impact patterns within complex disorders, whose
effect may be masked in case–control studies17. The specific
properties of the different subgroups can then potentially inform
personalized treatments and improve patient care.

RESULTS
We first evaluated the extent to which ConvAE-based patient
representations can be used to identify different clinical diagnoses
in the EHRs (i.e., disease phenotyping18). To this end, we
performed clustering analysis using patients with the following
eight complex disorders: T2D, MM, PD, Alzheimer’s disease (AD),
Crohn’s disease (CD), breast cancer (BC), prostate cancer (PC), and
attention deficit hyperactivity disorder (ADHD). We used SNOMED
—CT (Systematized Nomenclature of Medicine—Clinical Terms)19

to find all patients in the data warehouse diagnosed with these
conditions; see Supplementary Table 2 and the “Multi-disease
clustering analysis” subsection in “Methods” for more details.
Evaluation was organized as a 2-fold cross-validation experi-

ment to show model generalizability and to assess replication of
the stratification results. To this aim, we randomly split the dataset
in half, obtaining two independent cohorts of ~800,000 patients
that we used to train and test the models (and vice versa). While

Fig. 1 Patient stratification framework and ConvAE architecture. a Framework enabling patient stratification analysis from deep
unsupervised EHR representations; b Details of the ConvAE representation learning architecture.
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we used all patients in each cohort for training, in the test sets we
retained only the patients diagnosed with one of the eight
disorders under consideration, obtaining ~94,000 test patients per
fold (see the “Dataset” subsection in “Methods” for more details).
Table 1 shows the results using hierarchical clustering for

different ConvAE architectures (one, two, and multikernel CNN
layers) and baselines in terms of entropy and purity scores
averaged over the 2-fold cross-validation experiment. ConvAE
performed significantly better than other models largely used in
healthcare for representation learning, including Deep Patient20,
for both entropy and purity scores (ps < 0.001, t tests comparisons
with Bonferroni correction). The configuration with one CNN layer
yielded the best overall performance and the learned encodings
produced clusters associated with the largest number of distinct
diseases (i.e., 6.50, based on purity score analysis). It is worth
saying that, without a predictive theory of clustering21,22,
validation metrics frequently fail to correlate with clustering
errors23. However, such theoretic structure is not applicable in this
context because the heterogeneity of the external complex
disorder classes do not provide a reliable probabilistic framework.
For this reason, we used, rather than estimation error analysis,
transparent external metrics, such as entropy and purity scores,
which evaluate cluster composition and also account for possible
subgroups of complex diseases24.
Figure 2 visualizes the distribution of the different patient

representations along with their disease cohort labels obtained
using UMAP (uniform manifold approximation and projection for
dimension reduction25). ConvAE captures hidden patterns of
overlapping phenotypes while still displaying identifiable groups
of patients with distinct disorders. Figure 3 shows the same
patient distribution highlighting clustering labels and purity
percentage scores of each cluster dominating disease. These
figures refer to only one of the cross-validation splits; results for
the second split are similar and are available in Supplementary
Figs. 1 and 2). ConvAE (with one CNN layer) also led to better
clustering, visually, than all baselines. Patients with ADHD were
the most separated and detected with 80% purity by hierarchical
clustering. Visible clusters with >50% purity were also identified
for T2D, PC, and PD. Comparing the encoding projections (Fig. 2)
to the clustering visualization (Fig. 3), we observe that patients
whose disease is not correctly identified by clusters tend to not
clearly separate in this low-dimensional space. As an example, AD
patients were randomly scattered in the plot and did not lead to
distinguishable clusters. This might be due to factors such as sex
and age, intrinsic biases, or noise, but it might also reflect a shared
phenotypic characterization that drives the learning process into

displaying these patient EHR progressions closely together
irrespective of disease labels.
We then evaluated the use of ConvAE representations for

patient stratification at scale and the identification of clinically
relevant disease subtypes. We considered six diseases: T2D, PD,
AD, MM, PC, and BC. These are all age-related complex disorders
with late onset (i.e., averaged increased prevalence after 60 years
of age)26–31. We decided to focus on these conditions to avoid, to
some extent, the confounding effect of age that could affect
learning and the evaluation of different subtypes. Figure 4 shows
results running hierarchical clustering on the ConvAE-based
patient representations of each different disease cohort. To
determine the optimal number of clusters, we empirically selected
the smallest number of clusters that minimizes the increase in
explained variance (i.e., Elbow method). We were able to identify
different subtypes for each disease with no additional feature
selection and using representations derived from a domain-free
cohort of patients. Supplementary Table 3 reports the number of
patients in each cohort and the number of subgroups identified.
Similar results were obtained for the second split and are reported
in Supplementary Fig. 3.
In the following sections, we present the clinical characteriza-

tion of T2D, PD, and AD subgroups via enrichment analysis of
medical concept occurrences (see Supplementary Material for the
characterization of the other conditions). We compare T2D and PD
results to related studies based on ad hoc cohorts10,11. Conversely,
there are no published EHR-based stratification studies for AD,
MM, PC, and BC to use for comparison. All subtypes were reviewed
by a clinical expert to highlight meaningful descriptors and we
used multiple pairwise chi-squared tests to assess group
differences. For each disease, we list sex and age statistics of
the cohort (between group comparisons are performed via
multiple pairwise chi-squared tests and t tests), as well as the
five most frequent diagnosis, medications, laboratory tests, and
procedures, ordered according to in-group and total frequencies,
in Supplementary Tables 4–9. The results for the second split are
reported in Supplementary Tables 10–15.

Type 2 diabetes
Patients with T2D clustered into three different subgroups that
relate to different stages of progression for the disease (see Fig. 4a
and Supplementary Table 4 for details).
Subgroup I included 18,325 patients and represents the mild

symptom severity cohort, characterized by common T2D symp-
toms (e.g., metabolic syndrome), which were treated with
Metformin, an oral hypoglycemic medication. Moreover, it also
included patients exposed to lifestyle risk factors, such as obesity6.

Table 1. Multi-disease clustering performances of ConvAE configurations and baselines.

Entropya Puritya Disease numberb

ConvAE 1-layer CNN 2.61 (0.04, [2.58, 2.67])*** 0.31 (0.02, [0.31, 0.35])*** 6.50 (0.62)***

ConvAE 2-layer CNN 2.75 (0.02, [2.74, 2.78]) 0.26 (0.01, [0.26, 0.29]) 5.93 (0.50)

ConvAE multikernel CNN 2.66 (0.03, [2.64, 2.70]) 0.30 (0.02, [0.29, 0.33]) 5.94 (0.47)

RawCount 2.90 (0.02, [2.88, 2.92]) 0.18 (0.01, [0.18, 0.20]) 4.76 (0.70)

SVD-RawCount 2.90 (0.01, [2.90, 2.92]) 0.19 (0.01, [0.18, 0.20]) 5.13 (0.79)

SVD-TFIDF 2.85 (0.02, [2.84, 2.87]) 0.21 (0.01, [0.21, 0.23]) 5.83 (0.76)

Deep Patient 2.81 (0.02, [2.80, 2.84]) 0.24 (0.01, [0.23, 0.25]) 5.96 (0.74)

The scores reported are averaged over a 2-fold cross-validation experiment. ConvAE 1-layer CNN significantly outperforms all other configurations and
baselines on all measures. Multiple pairwise t tests with Bonferroni correction are used to compare performances.
CNN convolutional neural network, SVD singular value decomposition, TFIDF term frequency-inverse document frequency.
***p < 0.001.
aMean (s.d., CI).
bMean (standard deviation).
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Subgroups II/III, which were composed by 22,659 and 7704
patients, respectively, showed concomitant conditions associated
to T2D progression and worsening symptoms. Specifically,
subgroup II clustered patients characterized by microvascular
problems, such as diabetic nephropathy, neuropathy, and/or
peripheral artery disease. The significant presence of creatinine
and urea nitrogen laboratory tests, which estimate renal function,
suggests monitoring of kidney diseases, which are often related to
T2D32. The presence of pain in limb, combined with analgesic
drugs (i.e., paracetamol, oxycodone), indicates the presence of
vascular lesions at the peripheral level, manifested as ischemic rest
pain or ulceration. This was confirmed by peripheral vascular
disease diagnoses, which accounts for 50% of terms in the T2D
cohort.
Subgroup III showed severe cardiovascular problems, identified

by a significant presence of medical concepts related to coronary
artery diseases, for example, coronary atherosclerosis, angina
pectoris, which are serious risk factors for heart failure. These
subjects were often treated with antiplatelet therapy (i.e.,
acetylsalicylic acid, clopidrogel) to prevent cardiovascular events
(e.g., stroke) and were likely to receive invasive procedures to treat
severe arteriopathy. For instance, 30% of patients in subgroup III
underwent percutaneous transluminal coronary angioplasty, a
procedure to open up blocked coronary arteries.
Our results confirm, in part, what was observed by Li et al.10,

which used topology analysis on an ad hoc cohort of T2D patients
and identified three distinct subgroups characterized by (1)
microvascular diabetic complications (i.e., diabetic nephropathy,

diabetic retinopathy); (2) cancer of bronchus and lungs; and (3)
cardiovascular diseases and psychiatric disorders. In particular, we
detected the same microvascular and cardiovascular disease
groups, which are consequences of T2D. In contrast, we were
unable to detect a subgroup significantly characterized by
cancer, an epiphenomenon that can be caused by secondary
immunodeficiency in patients with T2D33,34. See Supplementary
Material for further description and a clustering comparison via
Fowlkes–Mallows index.

Parkinson’s disease
Individuals diagnosed with PD divided into two groups (Fig. 4b
and Supplementary Table 5): one dominated by motor symptoms
(1368 patients) and another (1684 patients) characterized by non-
motor/independent features and longer course of disease.
Subgroup I is characterized as a tremor-dominant cohort (i.e.,

manifested by motor symptoms) because of the significant
presence of diagnosis such as essential tremor, anxiety state,
and dystonia. It is interesting to note that motor clinical features
likely led to a common misdiagnosis of essential tremor, which is
an action tremor that typically involves the hands. Parkinsonian
tremor, on the contrary, although it can be present during
postural maneuvers and action, is much more severe at rest and
decreases with purposeful activities. However, when the tremor is
severe, it is difficult to distinguish action tremor from resting
tremor, leading to the aforementioned misdiagnosis35. Moreover,
anxiety states, emotional excitement, and stressful situations can
exacerbate the tremor, and lead to a delayed PD diagnosis. Brain

Fig. 2 Uniform manifold approximation and projection (UMAP) encoding visualization. a ConvAE 1-layer CNN; b SVD-RawCount; c SVD-
TFIDF; d Deep Patient. AD Alzheimer’s disease, ADHD attention deficit hyperactivity disorder, BC breast cancer, CD Crohn’s disease, MM
multiple myeloma, PC prostate cancer, PD Parkinson’s disease, T2D type 2 diabetes.
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magnetic resonance imaging (MRI), usually nondiagnostic in PD,
was ordered for several patients in this subgroup (13%),
suggesting its use for differential diagnosis, for example, to
investigate the presence of chronic/vascular encephalopathy.
Subgroup II included non-motor and independent symptoms,

such as constipation and fatigue. Patients in subgroup II were
significantly diagnosed with coronary artery disease that is
prevalent in older patients (>50 years old). Constipation and
fatigue are among the most common non-motor problems related
to autonomic dysfunction, diminished activity level, and slowed
intestinal transit time in PD36,37.
In their study about PD stratification with PPMI (Parkinson’s

progression markers initiative) data, Zhang et al.11 identified three
distinct subgroups of patients based on severity of both motor
and non-motor symptoms. In particular, one subgroup included
patients with moderate functional decay in motor ability and
stable cognitive ability; a second subgroup presented with mild
functional decay in both motor and non-motor symptoms; and
the third subgroup was characterized by rapid progression of both
motor and non-motor symptoms. EHRs do not quantitatively
capture PD symptom severity; therefore, our analyses cannot
replicate these findings. However, unlike Zhang et al.11, we can
discriminate between specific motor and non-motor symptoms
and also suggest a longer, but not necessarily more severe,
disease course for the non-motor symptom subgroup.

Alzheimer’s disease
Patients with AD separated into three subgroups marked by AD
onset, disease progression, and severity of cognitive impairment
(see Fig. 4c and Supplementary Table 6).

Subgroup I is characterized by 399 patients with early-onset AD,
that is, patients whose dementia symptoms have typically
developed between the age of 30 and 60 years, and initial
neurocognitive disorder. Early-onset AD affects 5% of the
individuals with AD in the United States38, and, because clinicians
do not usually look for AD in younger patients, the diagnostic
process includes extensive evaluations of patient symptoms. In
particular, given that a certain AD diagnosis can only be provided
postmortem through brain examination, clinicians first rule out
other causes that can lead to early-onset dementia (i.e., differential
diagnosis). We find evidence of this practice in this subgroup,
which includes postmenopausal women, identifiable by mean age
>50, osteoporosis diagnosis with calcium supplement therapy,
and menopausal hormone treatment (i.e., estradiol). Patients in
this group are also tested for infectious diseases (e.g., HIV, syphilis,
hepatitis C, chlamydia/gonorrhea) that are possible causes of
early-onset dementia39, and screened via structural neuroimaging,
for example, MRI/positron emission tomography brain. As
cognitive dysfunctions that may be mistaken for dementia can
also be caused by depression and other psychiatric conditions, the
presence of psychiatric service/procedure suggests psychiatric
evaluations to exclude depressive pseudodementia. After the
differential diagnosis process and the exclusion of other possible
causes, eventually these patients received a diagnosis of AD.
Subgroup II includes 1170 patients with late-onset AD, mild

neuropsychiatric symptoms, and cerebrovascular disease. Here,
the absence of behavioral disturbances in 39% of patients and
their high average age (M = 84.96, s.d. = 9.61) suggest a late AD
onset, with a progression characterized by a slower rate of
cognitive ability decline40. Moreover, the presence of acetylsa-
licylic acid, an antiplatelet medication, and intracranial hemor-
rhage diagnosis indicates the co-occurrence of cerebrovascular

Fig. 3 Uniform manifold approximation and projection (UMAP) clustering visualization. a ConvAE 1-layer CNN; b SVD-RawCount; c SVD-
TFIDF; d Deep Patient. AD Alzheimer’s disease, ADHD attention deficit hyperactivity disorder, BC breast cancer, CD Crohn’s disease, MM
multiple myeloma, PC prostate cancer, PD Parkinson’s disease, T2D type 2 diabetes.
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disease, which affects blood vessels and blood supply to the brain.
Cerebrovascular diseases are common in aging, and can often be
associated with AD41. In this regard, head computed tomography
may have been performed to prevent or identify structural
abnormalities related to cerebrovascular disease.

Subgroup III is characterized by 1632 individuals with typical
onset and mild-to-moderate dementia symptoms. A cohort of 409
patients was treated with donepezil, a cholinesterase inhibitor,
that is a primary treatment for cognitive symptoms and it is
usually administered to patients with mild-to-moderate AD,

Fig. 4 Complex disorder subgroups. A subsample of 5000 patients with T2D is displayed in a. b–f display patient subtypes for Parkinson’s and
Alzheimer’s disease, multiple myeloma, prostate and breast cancer cohorts, respectively.
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producing small improvement in cognition, neuropsychiatric
symptoms, and activities of daily living42. Patients in this subgroup
also showed both dementia with and without behavioral
disturbances.

DISCUSSION
This study proposes a computational framework to disentangle
the heterogeneity of complex disorders in large-scale EHRs
through the identification of data-driven clinical patterns with
machine learning. Specifically, we developed and validated an
unsupervised architecture based on deep learning (i.e., ConvAE) to
infer informative vector-based representations of millions of
patients from a large and diverse hospital setting, which facilitates
the identification of disease subgroups that can be leveraged to
personalize medicine. These representations aim to be domain
free (i.e., not related to any specific task since learned over a large
multi-domain dataset) and enable patient stratification at scale.
Results from our experiments show that ConvAE significantly
outperformed several baselines on clustering patients with
different complex conditions and led to the identification of
different clinically meaningfully disease subtypes.
Results identified disease progression, symptom severity, and

comorbidities as contributing the most to the EHR-based clinical
phenotypic variability of complex disorders. In particular, T2D
patients divided into three subgroups according to comorbidities
(i.e., cardiovascular and microvascular problems) and symptom
severity (i.e., newly diagnosed with milder symptoms). Individuals
with PD showed different disease duration and symptoms (i.e.,
motor, non-motor). AD profiles distinguished early- and late-onset
groups and separate patients with mild neuropsychiatric symp-
toms and cerebrovascular disease from patients with mild-to-
moderate dementia. Patients with MM were characterized by
different comorbidities (e.g., amyloidosis, pulmonary diseases) that
manifest alongside precise typical signs of MM. Patients with PC
and BC separated according to disease progression. These
findings showed that the features learned by ConvAE describe
patients in a way that is general and conducive to identifying
meaningful insights into different clinical domains. In particular,
this work aims to contribute to the next generation of clinical
systems that can (1) scale to include many millions of patient
records and (2) use a single, distributed patient representation to
effectively support clinicians in their daily activities, rather than
multiple systems working with different patient representations
derived for different tasks20.
To this aim, enabling efficient data-driven patient stratification

analyses to identify disease subgroups is an important aspect to
unlock personalized healthcare. Ideally, when new patients enter
the medical system, their health status progression can be tied to
a specific subgroup, thereby informing the treating clinician of
personalized prognosis and possible effective treatment strate-
gies, or counseling in cases where a certain diagnosis is difficult
and a more thorough examination is required (e.g, specific
genetic or lab tests). Moreover, the clinical characteristics of the
different subtypes can potentially lead to intuitions for novel
discoveries, such as comorbidities, side effects, or repositioned
drugs, which can be further investigated analyzing the patient
clinical trajectories.
Previous studies mostly focused on a specific disease using ad

hoc cohorts of patients and features8–11,43,44. While these studies
obtained relevant clinically meaningful results, the computational
framework is hard to replicate for different diseases and it is tied
to the specific study and to the specific data. Deep learning has
extensively been used to model EHRs for medical analysis15,16,
including clinical prediction, such as disease onset, mortality, and
readmission45–47, and disease phenotyping20,48. Because deep
learning methods have not yet been leveraged for disease
subtyping at scale, ConvAE aims to fill this gap and to provide

an architecture that can improve unsupervised EHR preprocessing
to favor patient stratification and unveil clinically meaningful and
actionable insights. Additionally, unlike previous representation
learning methods, which did not consider the temporality of
EHRs20,48, ConvAE uses CNNs in combination with embeddings to
specifically capture some of the longitudinal aspects of patient
clinical status, leading to more robust representations. CNNs were
already used to model EHRs for specific predictive analysis, as part
of supervised architectures49,50. Differently, we trained CNNs in an
unsupervised framework based on AEs to learn general-purpose
patient representations. While these representations were used to
leverage disease subtype discovery, they can also be fine-tuned
and applied to specific supervised tasks, such as disease
phenotyping and prediction.
There are several limitations to our study. First, we acknowledge

that the lack of any discernible pattern in the multi-disease
clustering analysis can also be due to noise and biases in the data,
which might affect both learned representations and clustering. In
particular, processing EHRs with minimum data engineering, on
the one hand, preserves all the available information and, to some
extent, prevents systematic biases. On the other hand, it adds
hospital-specific biases intrinsic to the EHR structure and noise
due to data being redundant and too generic. Improving EHR
preprocessing by, for example, better modeling clinical notes and/
or improving feature filtering, should help reduce noise and
improve performances. Second, we identified patients related to
complex disorders using SNOMED—CT codes and this likely led to
the inclusion of many false positives that affected the learning
algorithms51. The use of phenotyping algorithms based on manual
rules (e.g., PheKB52), or semiautomated approaches (e.g., refs. 53,54),
should help identify better cohorts of patients and, consequently,
better disease subtypes. Another limitation comes from the
choice, among all possibilities, of the specific complex disorders.
This allowed us to test the approach on heterogeneous conditions
that affect different biological mechanisms, showing the efficacy
of the proposed framework in generalizing to various clinical
domains. Nevertheless, the approach should be further evaluated
with other typologies of conditions as well, such as multiple
sclerosis, autoimmune diseases, and psychiatric disorders. Lastly,
we identified relevant concepts in the patient subgroups by
simply evaluating their frequency. Adding a semantic modeling
component based on, for example, topic modeling55 or word
embeddings56, might lead to more clinically meaningful patterns.
Future works will attempt to address these limitations and to

further improve and replicate the architecture. First, we plan to
enable multilevel clustering in order to stratify patients within the
subtypes. This should lead to more granular patient stratification,
and thus to patterns on a more individual level. Second, we plan
to verify ConvAE generalizability by replicating the study on EHRs
from different healthcare institutions. Third, we will evaluate the
use of disease subtypes as labels for training supervised models
that can predict stratified patient risk scores. This, besides further
validating the relevance of the results, will also provide an initial
and intuitive framework to apply the results of patient stratifica-
tion to clinical practice. To this aim, we plan to first assess
treatment safety and efficacy between subtypes of a specific
disease. Finally, to develop more comprehensive disease char-
acterizations, we will include other modalities of data, for example,
genetics, into this framework, which will hopefully refine
clustering and reveal new etiologies. Multimodal stratified disease
cohorts promise to facilitate better predictive capabilities for
future outcomes by modeling how molecular mechanisms interact
with clinical states.

METHODS
The framework to derive patient representations that enable stratification
analysis at scale is based on three steps: (1) data preprocessing; (2)
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unsupervised representation learning (i.e., ConvAE); and (3) clustering
analysis of disease-specific cohorts (see Fig. 1a). In this section, we report
details of this framework as well as the description of the evaluation
design.

Dataset
We used de-identified EHRs from the Mount Sinai Health System data
warehouse; the study was approved by IRB-19-02369 in accordance with
HIPAA guidelines. Mount Sinai Health System is a large and diverse urban
hospital located in New York, NY, which generates a high volume of
structured, semi-structured, and unstructured data from inpatient, out-
patient, and emergency room visits. Patients in the system can have up to
12 years of follow-up data unless they are transferred or move their
residence away from the hospital system. We accessed a de-identified
dataset containing ~4.2 million patients, spanning the years from 1980
to 2016.
For each patient, we aggregated general demographic details (i.e., age,

sex, and race) and clinical descriptors. We included ICD-9 diagnosis codes,
medications normalized to RxNorm, CPT-4 procedure codes, vital signs,
and lab tests normalized to LOINC. ICD-10 codes were mapped back to the
corresponding ICD-9 versions. We preprocessed clinical notes using a tool
based on the Open Biomedical Annotator that extracts clinical concepts
from the free text57,58. The vocabulary V was composed of 57,464 clinical
concepts.
We retained all patients with at least two concepts, resulting in a

collection of 1,608,741 different patients, with an average of 88.9 records
per patient. In particular, the cohort included 900,932 females, 691,321
males, and 16,488 not declared; the mean age of the population as of 2016
was 48.29 years (s.d. = 23.79). Patients were randomly partitioned into half
for 2-fold cross-validation to assess model generalizability and replicability
of the results. In each train set, we retained 30,000 random patients for
tuning the model hyperparameters. Train and test preprocessed sets’
details are reported in Supplementary Table 1.

Data preprocessing
Every patient in the dataset is represented as a longitudinal sequence sp of
length M of aggregated temporally ordered medical concepts, that is, sp =
(w1, w2, …, wM), where each wi is a medical concept from the vocabulary
V. Preprocessing includes: (1) filtering the least and most frequent
concepts; (2) dropping redundant concepts within fixed time frames; (3)
splitting long sequences of records to include the complete patient history
while leveraging the CNN framework, which requires fixed-size inputs.
We consider all the EHRs as a document D and each patient sequence sp

as a sentence. For each concept w in V, we first compute the probability of
having w in D. We then multiply this by the sum of the probabilities to find
w in a sentence sp for all sentences. In particular, let P be the set of all
patients, ∀ w ∈ V, the filtering score is defined as:

Pðw 2 DÞ
X

p2P
Pðw 2 spÞ ¼ #fs 2 D; w 2 sg

jDj
X

p2P

#fwi 2 sp; wi ¼ wg
jspj ;

(1)

where ∣D∣ is the total number of sentences and ∣sp∣ is the length of a
patient sequence. The filtering score combines document frequency, that
is, the number of patients with at least one occurrence of w, and term
frequency, that is, total number of occurrences of w in a patient sequence.
We then drop all concepts with filtering scores outside certain cut-off
values to reduce the amount of noise (i.e., not informative concepts that
occur multiple times in few patients, or too general concepts that occur in
many patients).
A patient may have multiple encounters in their health records that span

consecutive days and might include repeated concepts that are often
artifacts of the EHR system, rather than new clinical entries. To reduce this
bias, we drop all duplicate medical concepts from the patient records
within overlapping time intervals of T days. Within the same time window,
we also randomly shuffle the medical concepts, given that events within
the same encounter are generally randomly recorded54,59. Lastly, we
eliminate all patients with <3 concepts in their records.
Patient sequences are then chopped into subsequences of fixed length L

that are used to train the ConvAE model. Each patient sequence is thus
defined as:

sp ¼ ½ðw1; ¼ ;wLÞ; ðwLþ1; ¼ ;w2LÞ; ¼ �;
and subsequences shorter than L are padded with 0 up to length L. For the

sake of clarity, in the following section we present the architecture as
applied to a general subsequence s = (w1, …, wL).

The ConvAE architecture
ConvAE is a representation learning model that transforms patient EHR
subsequences into low-dimensional, dense vectors. The architecture
consists of three stacked modules (see Fig. 1b). This study proposes to
use in combination embedding, CNNs, and AEs to process EHRs and to
derive unsupervised vector-based patient representations that can be used
for clinical inference and medical analysis.
Given s, the architecture first assigns each medical concept w to an N-

dimensional embedding vector vw to capture the semantic relationships
between medical concepts. Specifically, a patient subsequence is
represented as an (L × N) matrix E ¼ ðvw1 ; vw2 ; ¼; vwLÞT , where L is the
subsequence length, and N is the embedding dimension. This structure
also retains temporal information because the rows of matrix E are
temporally ordered according to patient visits.
The architecture is then composed by CNNs, which extract local

temporal patterns, and AEs, which learn the embedded representations for
each patient subsequence. The CNN applies temporal filters to each
embedding matrix. CNN filters applied to EHRs usually perform a one-side
convolution operation across time via filter sliding. A filter can be defined
as k 2 Rh´N , where h is the variable window size and N is the embedding
dimension60,61. Our approach differs in that it processes embedding
matrices as they were RGB images carrying a third “depth” dimension. With
this approach, we enable the model filters to learn independent weights
for each encoding dimension, thus activating for the most salient features
in each dimension of the embedding space. Therefore, we reshape the (L ×
N) embedding matrix into ~E 2 R1 ´ L ´N and we consider the embedding
dimensions as channels. We then apply f filters k 2 R1 ´ h ´N to the padded
input to keep the same output dimension and learn features that may
grasp sequence characteristics. In particular, for each filter j, we obtain:

ðRÞj ¼ ReLUð
XN�1

i¼0

ki ? ~ei þ bjÞ; j ¼ 1; ¼; f ; (2)

where R 2 R1´ L ´ f is the output matrix; ki is the h-dimensional weight
matrix at depth i; ~ei 2 R1 ´ L is the ith embedding dimension of the input
matrix; b is the bias vector; and (⋆) is the convolution function. We used
rectified linear unit (ReLU) as the activation function and max pooling. The
output is then reshaped into a concatenated vector of dimension L ⋅ f. This
configuration learns different weights for each embedding dimension to
highlight relevant interdependencies of medical concepts, and tune
representations of patient histories to identify the most relevant
characteristics of their semantic space.
We then use fully dense layers of AEs to derive embedded patient

representations that estimate the given input subsequences. Specifically,
we extract the hidden representation y, a H-dimensional vector, as the
encoded representation of each patient subsequence. Each patient
sequence sp is then transformed into a sequence of encodings sh that
can be post-modeled to obtain a unique vector-based patient representa-
tion. Here we simply component-wise average all the subsequence
representations.
To train ConvAE, we set up a multi-class classification task that

reconstructs each initial input one-hot subsequence of medical terms,
from their encoded representations. Given a subsequence of medical
concepts s, the ConvAE is trained by minimizing the cross entropy (CE) loss:

CEðSoftmaxðOÞ; sÞ ¼ � 1
L

XL

j¼1

log ðSoftmaxðOjÞwj
Þ;

where O is the output of ConvAE reshaped into a matrix of dimension ∣V∣ ×
L, wj is the jth element of sequence s that corresponds to a term indexed in
V and

SoftmaxðOjÞi ¼
expOj

iPjV j
i¼1 expO

j
i

; i ¼ 1; :::; jVj: (3)

Since the objective function consists of only self-reconstruction errors,
the model can be trained without any supervised training samples.

Clustering analysis for patient stratification
ConvAE-based representations can be used to stratify patients from any
preselected cohort without needing additional feature engineering or
manual adjustments. To this aim, patients with a specific disease are
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selected using, for example, ICD codes, SNOMED—CT diagnosis, or
phenotyping algorithms (e.g., refs. 51,53,54), and clustering is applied to
the corresponding representations to identify disease subgroups. Here,
specifically, we use SNOMED—CT diagnosis to preselect the disease
cohorts and hierarchical clustering with Ward’s method and Euclidean
distance to derive disease subgroups. We identify the number of
subclusters that best disentangles heterogeneity on the disease dataset
using the Elbow Method, which empirically selects the smallest number of
clusters that minimizes the increase in explained variance.
A systematic analysis of the patients in each subgroup can then

automatically identify the medical concepts that significantly and uniquely
define each disease subtype. In this work, we rank all the codes by their
frequency in the patient sequences. In particular, we compute the
percentages of patients whose sequence includes a specific concept both
with respect to a subcluster (i.e., in-group frequency) and to the complete
disease cohort (i.e., total frequency). Ranking maximizes, first, the in-group
percentage, and second, the total percentage. We then analyze the most
frequent concepts and we use a pairwise chi-squared test to determine
whether the distributions of present/absent concepts with respect to the
detected subgroups are significantly different11.

Implementation details
All model hyperparameters were empirically tuned to minimize the
network reconstruction error, while balancing training efficiency and
computation time. We tested a large amount of configurations (e.g., time
interval T equal to {15, 30}; patient subsequence length L equal to {32, 64};
embedding dimension N spanning {100, 128, 200}). For brevity, we report
only the final setting used in the patient stratification experiments. All
modules were implemented in Python 3.5.2, using scikit-learn and
pytorch as machine learning libraries62,63. Computations were run on a
server with an Nvidia Titan V GPU.
We used Eq. (1) to discard terms with a filtering score <10−6, that is,

document frequency ranging from 1 to 10. Examples of discarded
concepts are clotrimazole, an antifungal medication, and torsemide, a
medication to reduce extra fluid in the body. We decided to retain all the
very frequent concepts as most of them seemed clinically informative (e.g.,
vital signs). Patients with <3 medical concepts were then discarded. In
total, 24,665 medical terms were filtered out, decreasing the vocabulary
size to 32,799.
We divided each patient history in consecutive, half-overlapped

temporal windows of T = 15 days, shuffled unique medical concepts,
and dropped redundant terms. Patient sequences were then split in
subsequences of length L = 32 concepts, obtaining ~3M subsequences of
medical concepts for training. This value was chosen to enable efficient
training of the autoencoder with GPUs.
We initialized medical concept embeddings using word2vec with the

skip-gram model56. We considered all the subsequences in the training set
as sentences and medical concepts as words54,59. We obtained 100-
dimensional embeddings for 31,659 medical concepts of the vocabulary.
The remaining concepts were initialized randomly; the subsequence
padding was initialized as the null vector (i.e., at 0). These embedding
vectors were then used as input for the ConvAE module and were further
refined during the model training.
The CNN module used 50 filters with kernel size= 5 and ReLU activation

function. The autoencoder was composed by four hidden layers with 200,
100, 200, and ∣V∣ × 32 hidden nodes, respectively, where ∣V∣ is the
vocabulary size. We used ReLU activation in the first three layers and
Softplus activation in the final layer to obtain continuous output. We
applied dropout with p = 0.5 in the first two layers for regularization. The
model was trained using CE loss with the Adam optimizer (learning rate=
10−5 and weight decay= 10−5)64 for 5 epochs on all training data and
batch size of 128. The size of the patient representations was equal to 100.
We evaluated different CNN configurations composed by 1-layer (i.e.,

“ConvAE 1-layer CNN”), 2-layers (i.e., “ConvAE 2-layer CNN”), and one
multikernel layer (i.e., “ConvAE multikernel CNN”). All hyperparameters
were the same, except the number of filters in the second CNN of the 2-
layer configuration that was set to 25. Multikernel CNN performs parallel
training of distinct CNNs with different kernel sizes, and concatenates the
final outputs. We used kernel dimensions equal to 3, 5, and 7.

Baselines
We compared ConvAE with the following representation learning
algorithms: “RawCount”, “singular value decomposition (SVD)-RawCount”,

“SVD-TFIDF (term frequency-inverse document frequency)”, and “Deep
Patient”. All baseline derived vector-based patient encodings of size 100.
RawCount is a sparse representation where each patient is encoded into

a count vector that has the length of the vocabulary. More specifically,
each individual health history sp is represented as an integer vector
x 2 ZjV j , where each element is the frequency of the corresponding
clinical concept in the patient longitudinal history, that is, xi = #{wi; wi ∈ sp}.
SVD-RawCount applies truncated SVD to the RawCount matrix to

compute the largest singular values of the raw count encodings, which
define the dense, lower-dimensional representations.
SVD-TFIDF transforms the raw count encodings using the TFIDF

weighting schema and applies truncated SVD to the resulting matrix. We
considered the patient EHR sequences as documents, the entire dataset as
corpus and we derived TFIDF scores for all medical concepts. Each patient
is then represented as a vector of length ∣V∣, with the corresponding TFIDF
weight for each concept, and the matrix obtained is reduced via
truncated SVD.
Deep Patient transforms the raw count matrix using a stack of denoizing

AEs as proposed by Miotto et al.20. We used the implementation details
presented in the paper, with batch size= 32, corruption noise= 5%, and 5
training epochs.

Multi-disease clustering analysis
We evaluated all the representation learning approaches in a clustering
task to determine how they were able to disentangle patients with
different conditions. We chose eight complex disorders: T2D, MM, PD, AD,
CD, PC, BC, and ADHD. We retrieved all the corresponding patients in the
test sets using SNOMED—CT codes after verifying that at least one
correspondent ICD-9 code was present in a patient EHRs. In particular, we
looked for: “type 2 diabetes mellitus” (250.00) for T2D; “multiple myeloma
without mention of having achieved remission” (203.00) for MM; “paralysis
agitans” (332.0) for PD; “Alzheimer’s disease” (331.0) for AD; “regional
enteritis of unspecified site” (555.9) for CD; “malignant neoplasm of
prostate” (185) for PC; “malignant neoplasm of female breast” (174.9) for
BC; and “attention deficit disorder with hyperactivity” (314.01) for ADHD.
We discarded all patients with comorbidities within the selected diseases
to facilitate the clustering interpretation. We then performed hierarchical
clustering with k = 8 clusters (i.e., same as the different diseases) for all the
representations to evaluate if patients with the same condition were
grouping together. The final test sets were composed by ~94,000 patients
per fold but were unbalanced, with disease cohorts ranging from ~1900 to
50,000 patients (see Supplementary Table 2). To use balanced datasets and
improve the efficacy of the experiment, we sub-sampled 5000 random
patients for the highly populated diseases, and we iterated this
subsampling process 100 times, obtaining 100 different clustering per
test set.
We used entropy and purity scores averaged across the 100 experiments

of each fold to measure to what extent the clusters matched the different
diseases. In particular, for each cluster j, we define the probability that a
patient in j has disease i as:

pij ¼
mij

mj
; (4)

where mj is the number of patients in cluster j and mij is the number of
patients in cluster j with a diagnosis of disease i. Entropy for each cluster is
defined as:

Ej ¼ �
X

i

pij log2 pij; (5)

and conditional entropy H(disease∣cluster) is then computed as:

H ðdiseasejclusterÞ ¼
X

j

mj

m
Ej ;

where m is the total number of elements in the complex disease dataset.
Purity identifies the most represented disease in each cluster. For a

cluster j, purity Pj is defined as Pj ¼ maxi pij , where pij is computed as
before. The overall purity score is then the weighted average of Pj for each
cluster j. The perfect clustering obtains averaged entropy and purity scores
= 0 and 1, respectively.

Disease subtyping analysis
We evaluated the usability of ConvAE representations to discover disease
subtypes for different and diverse conditions (i.e., patient stratification at
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scale). In particular, we selected a cohort of patients with T2D, PD, AD, MM,
PC, and BC and ran hierarchical clustering on the ConvAE-based patient
representations. These are all age-related complex disorders with late
onset (i.e., increased prevalence after 60 years of age26–31). We focused
only on these conditions to attempt reducing confounding age effects that
could affect the analysis of the subtypes (as it could happen on CD and
ADHD cohorts, where a common onset age is less defined). To reduce
noise in the sequence encodings, we averaged all patient subsequence
representations fr"om the first diagnosis forward, and we dropped
sequences shorter than three concepts. We ranged the number of clusters
from 2 to 15 and we used the Elbow Method to empirically select the
smallest number of clusters that minimize the increase in explained
variance. We then performed a qualitative analysis of each subtype,
similarly to Zhang et al.11, to identify which medical concepts characterized
the specific group of patients. We further verified the various subgroups in
the medical literature and with the support of a practicing clinician.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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