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Abstract

Motivation

Disease progression originates from the concept that an individual disease may go through

different changes as it evolves, and such changes can cause new diseases. It is important

to find a progression between diseases since knowing the prior-posterior relationship

beforehand can prevent further complications or evolutions to other diseases. Furthermore,

the series of progressions can be represented in the form of a chain, which enables us to

readily infer successive influences from one disease to another after many passages

through other diseases.

Methods

In this paper, we propose a systematic approach for finding a disease progression chain

from a source disease to a target one via exploring a disease network. The network is con-

structed based on various sets of biomedical data. To find the most influential progression

chains, the k-shortest path search algorithm is employed. The most representative algo-

rithms such as A*, Dijkstra, and Yen’s are incorporated into the proposed method.

Results

A disease network consisting of 3,302 diseases was constructed based on four sources of

biomedical data: disease-protein relations, biological pathways, clinical history, and biomed-

ical literature information. The last three sets of data contain prior-posterior information, and

they endow directionality on the edges of the network. The results were interesting and infor-

mative: for example, when colitis and respiratory insufficiency were set as a source disease

and a target one, respectively, five progression chains were found within several seconds

(when k = 5). Each chain was provided with a progression score, which indicates the

strength of plausibility relative to others. Similarly, the proposed method can be expanded to

any pair of source-target diseases in the network. This can be utilized as a preliminary tool

for inferring complications or progressions between diseases.
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Introduction

An individual disease may go through different changes as it evolves, and such changes can

cause new diseases [1]. The concept of progression between diseases came across as a form of

complications or sequelae from a disease. For example, insulin resistance can cause diabetes

mellitus type 2 [2], and it can further lead to chronic kidney disease [3, 4]. It is important to

find disease progressions since knowing the prior-posterior relationship beforehand can pre-

vent further complications or progressions to other diseases. Progression between diseases has

long been studied through cohort verification between two diseases [2, 5–7]. Although the

results provided valuable information concerning disease progressions, the time and cost to

obtain the results were rather expensive. In recent years, researches have been conducted to

find causality between diseases by utilizing diversified biomedical data. In [8], the authors pro-

posed a model for causality using gene/protein, clinical, and metabolic pathway information to

construct a disease causality network. In [9], a text mining approach was employed on bio-

medical literature to construct a causal disease network. Note that causality of disease in these

researches stands for potential progression/evolution of various diseases, not the underlying

causes of diseases.

Extending from the concept of disease progression, there may be a continuous path or

series of diseases that reflect a prior-posterior relation between two diseases. For instance, it is

difficult to find a prior-posterior relation between colitis and respiratory insufficiency if we

simply look at them directly. However, colitis can progress acute kidney injury, which can lead

to polyuria, then to hyponatremia, and finally to respiratory insufficiency. In this paper, we

define such a chain of relations among diseases as a disease progression chain. As in the case of

colitis and respiratory insufficiency, a disease progression chain can extract prior-posterior

relations between two diseases that are seemingly unrelated on the surface.

There were some previous studies concerning diseases in perspectives of chain [1, 10–14].

They defined a causal chain that focused on pathological viewpoints in which diseases are

caused by the series of risk factors such as abnormal states, symptoms, or lifestyles. In this

research, instead of taking a pathological viewpoint, we attempt to find a disease progression

chain in the view of pan-disease, which relates to various diseases with prior-posterior rela-

tions. From the clinical viewpoint, disease progression chains can be beneficial for developing

continuity of treatment by retrospectively tracing back through the series of diseases. Further-

more, disease progression chains yield a wider angle of disease-related genes (proteins) to con-

sider with the inclusion of diseases composing the chain. The chains may uncover other

disease-related genes associated with a specific disease through series of relationships that can

be helpful for drug discovery or repositioning. In [15], the authors attempted to detect new tar-

get disease of drug considering similar side-effect between diseases, and Chiang and Butte [16]

suggested the use of same drug for diseases with similar therapies in terms of disease

relationships.

One effective and efficient approach to finding a disease progression chain is to utilize net-

work modeling. Using a network analysis of data has the advantage of scrutinizing relations

between data from a more comprehensive and systematic point of view. In constructing a dis-

ease network, nodes represent disease, and edges represent genetic, biological, pathological,

epidemiological, or other relations between diseases [17–21]. Many researches that utilizing

disease network analysis have been carried out in biomedical field to such as establishing geno-

types and phenotypes of diseases [22, 23], identifying disease-related genes [24] and drug tar-

get genes [25], and repurposing drugs [26].

In addition, if we extend associative relations to prior-posterior relations between diseases,

the network is a directed network that can be regarded as a disease progression network. From
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the constructed network, a simple approach to find a disease progression chain is to manually

track the diseases by considering all the possible cases. This approach, however, is very unreal-

istic owing to a very high number of cases to consider. One possible solution to this issue is to

use a shortest path search algorithm, a well-established approach in network (graph) theory.

The shortest path search algorithm is a method of searching the path with the lowest cost (or

the highest profit) from the source node to the target node. Given a directed network (graph)

with nodes and weighted edges, it finds the best single path from various possible paths

between two nodes, the shortest path if the edge-weights are defined as distances or the stron-

gest path if edge-weights represent similarities. Applied to disease progression networks, it

finds the most probable paths that the largest number of genes shared by diseases, the most fre-

quently co-occurring diseases from clinical information, and the most confirmative relation-

ship of diseases from related researches. Each of networks in the order will be presented in the

sub-sections of construction of disease progression networks. The most representative algo-

rithms [27] are the A� algorithm [28], Dijkstra algorithm [29], and Floyd-Warshall algorithm

[30, 31]. These algorithms, however, concentrate on finding the shortest path, whereas there

could be other “short” paths that contain meaningful information. For this research, we

employ the idea of the k-shortest path search algorithm, which was first suggested by Yen [32].

The original Yen’s algorithm first finds the shortest path and searches for k—1 consecutive

shortest paths by eliminating the edges of the shortest path. Many researches have been carried

out to improve the complexity of Yen’s algorithm [33–35]. The k-shortest path search algo-

rithm has been used in various researches regardless of the field. In [36], the authors applied

the k-shortest path search algorithm for public transport travel optimization. From the k-

shortest paths, they selected the optimal path based on the preferences of users. In [37], safe

paths in vehicle navigation were recommended based on a risk model that considered crime

incidents in an urban road network. To calculate numerous safe paths, the k-shortest path

search algorithm was applied. Other applications of the k-shortest path search algorithm

include adjusting traffic flows from overloaded links to underutilized links in a telecommuni-

cation network [38] and detecting objects in individual frames of a video [39, 40]. Likewise,

there have been numerous researches employing the shortest path search algorithm in the bio-

informatics area. In [41–43], the shortest paths in a protein-protein interaction (PPI) network

were calculated to find genes that were related to diseases. In [44], the authors defined the

mechanism of Parkinson’s disease by identifying genes, miRNA, and potential drug targets

using the shortest path search algorithm to determine a microarray gene expression dataset. In

[45], regulatory pathways were inferred from a gene network with the shortest path search

algorithm, and the same objects exhibiting slight variations in bioimages were analyzed with

shortest path search algorithm [46].

In this paper, we propose a systematic approach to find the disease progression chain

between two diseases by using a disease progression network constructed from various bio-

medical data. To find the chains between two diseases, we devise a k-shortest path search algo-

rithm that combines the A� algorithm, Dijkstra algorithm, and Yen’s algorithm. Instead of

identifying the single shortest path, it is desirable to find the k-shortest paths; there may be

many different paths in the disease progression network between two diseases. Such consecu-

tive paths may also contain meaningful information on disease progression chain. The rest of

the paper is organized as follows. In the proposed method section, we explain the step-by-step

process of constructing the disease progression network and finding disease progression

chains. In the experiments section, we present experiments and results of applying the pro-

posed method to various biomedical data. In the conclusions section, we conclude the paper

with insights and future works of study.
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Proposed method

The proposed method consists of two steps. First, disease progression networks are con-

structed based on various biomedical data that are related to diseases. The information

includes disease-protein relations, biological pathways, clinical history, and biomedical litera-

ture. Four networks, each constructed from different information, are integrated into a single

network. From the integrated network, we employ the k-shortest path search algorithm to find

disease progression chains that have the most influence on prior-posterior relations between

two diseases. Fig 1 shows a schematic description of the proposed method.

Construction of disease progression networks

Association disease network. An association disease network (ADN) is the most funda-

mental disease network that is constructed based on disease-protein relations. The relation is

represented by a bit vector where each bit indicates the existence of relations of a protein to the

disease. To quantify the degree of relation between diseases, the cosine similarity between two

vectors is used. For diseases di and dj in an ADN, the weight wAij is calculated by

wA
ij ¼

di�dj
kdik � kdjk

ð1Þ

where 0 � wAij � 1 and has a higher value for higher numbers of shared proteins between di
and dj. Fig 2 shows an example of the computing similarity for an ADN.

Pathway-based disease progression network

To construct a pathway-based disease progression network (pDPN) based on biological path-

way information, we employ the method in [8] where prior-posterior relation between two

diseases is derived by analyzing pathways associated with the diseases.

Fig 1. Schematic description of the proposed method: (a) Disease progression network. (b) Disease progression chain by shortest path algorithm.

https://doi.org/10.1371/journal.pone.0218871.g001
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First, common genes that are included in the pathways of two diseases are extracted and

defined as a sharing block. Additionally, a flow function that quantifies the degree of which

one disease affects the other disease is defined. The flow function considers the direction of

molecular genes that are not included in the sharing block. That is, Flow(di|dj) is equal to the

number of molecular reactions directed toward disease dj from disease di, and Flow(dj|di) is

equal to the opposite. To determine the prior-posterior relation, we compare the two flow val-

ues and set the weight matrix with

wPij ¼ φðFlowðdijdjÞ � FlowðdjjdiÞÞ �maxfFlowðdijdjÞ; FlowðdjjdiÞg ð2Þ

where φðuÞ ¼
1; if u > 0

0; otherwise

(

. The resulting weight matrix is an asymmetric matrix that

defines prior-posterior relation in the direction of high to low flow values. In the same manner,

we calculate the weights for all pairs of diseases with known pathway information and con-

struct a pDPN. Fig 3 shows an example of constructing a pDPN.

Clinical history-based disease progression network

A clinical history-based disease progression network (cDPN) is constructed based on the con-

cept of relative risk. Relative risk is an index that describes the association between risk factors

and incidents. The relative risk (RR) is given as

RR A;Bð Þ ¼
pðBjAÞ
pðBj�AÞ

: ð3Þ

where RR(A,B)>1 implies that A influences B with a prior-posterior relation. In the same way,

RR(B,A) can also be calculated. For a cDPN, to calculate the associated probabilities for two

diseases di and dj, we use the number of patients who carry only one or both of di and dj. Thus,

the progression network is constructed with RR obtained from clinical information.

To determine the prior-posterior relation between di and dj, the ratio of relative risk (RRR)

that compares the two RR values is calculated. With RR and RRR, the weight wCij between di
and dj in the cDPN is calculated with the following:

wCij ¼ φðRRðdi; djÞ � RRðdj; diÞÞ � RRRðdi; djÞ ð4Þ

Fig 2. Example of calculating similarity between diseases in ADN.

https://doi.org/10.1371/journal.pone.0218871.g002
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where RRR di; dj
� �

¼
RRðdi ;djÞ
RRðdj ;diÞ

. This approach of defining prior-posterior relation based on clini-

cal history was introduced in [8]. Fig 4 illustrates an example of constructing a cDPN.

Text-based disease progression network

For a text-based disease progression network (tDPN), we extract the prior-posterior relation

between two diseases from text data, and quantify the information [9]. To construct a disease

progression network, we consider the following two aspects. First, terms that represent a

prior-posterior relation between diseases are defined, and the degree of strength is assigned

based on interpretations. Second, clauses that appear in multiple documents should have more

influence on prior-posterior relation than clauses that appear multiple times in a single

document.

The degree of strength in which terms that represent a prior-posterior relation is defined by

αt. The value αt has higher weight if the term t has a stronger implication on prior-posterior

relation, and the value has a lower weight if the term simply implies association. For a fre-

quency-based approach, the strength is calculated by considering the number of documents

that expresses prior-posterior relation using the term t ðdf ijt Þ and the number of clauses appear-

ing across the documents (cf ijt ). The relation strength between diseases di and dj in the text

data with a document-clause frequency (DCF) is given by

DCFijt ¼ df
ij
t � logðcf

ij
t þ 1Þ: ð5Þ

To define the prior-posterior relation between di and dj, the strength of term αt and DCFijt
are combined, and the cases di!dj and dj!di are compared as in (6) to determine the weight

value and its direction.

wTij ¼ cðsij � sjiÞ ð6Þ

Fig 3. Example of calculating weight between diseases in pDPN.

https://doi.org/10.1371/journal.pone.0218871.g003

Inference on chains of disease progression based on disease networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0218871 June 28, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0218871.g003
https://doi.org/10.1371/journal.pone.0218871


where cðuÞ ¼
u; if u > 0

0; otherwise

(

and sij ¼
P

t2Tða
ij
t � DCF

ij
t Þ, and sij denotes the strength of

prior-posterior relation when disease di affects disease dj. Fig 5 shows an example of construct-

ing a tDPN from text data.

Chain of disease progression

Search algorithm for progression path. To find a disease progression chain, the k-short-

est path search algorithm is utilized. Simple shortest path search algorithms only search for a

single path. In the problem of finding a disease progression chain, one disease may lead to the

other through many different paths in the disease progression network. Thus, it is desirable to

find the k-shortest paths instead of the single shortest path. In this paper, the k-shortest paths

for two diseases in a DPN is found by using a modified version of Yen’s algorithm [32]. Given

a graph, Yen’s algorithm first finds the shortest path between two nodes and searches for con-

secutive shortest paths by enlarging the values of edges that are part of the shortest path. The

method of searching the paths is based on the Dijkstra algorithm [29], a greedy search algo-

rithm for finding the shortest path. In this study, we modify Yen’s algorithm by using a combi-

nation of the Dijkstra algorithm and A� algorithm [28] in search of the shortest paths. This

combination can reduce the computational time compared to the Dijkstra algorithm, and

guarantees optimality [42].

To briefly review, suppose there is a graph G(D,E) where D = {d1,d2,. . .,dn} is the set of

nodes and E denotes the set of weighted edges, possibly with directions. The Dijkstra algorithm

Fig 4. Example of calculating weight between diseases in cDPN.

https://doi.org/10.1371/journal.pone.0218871.g004
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starts by setting the initial starting node, say dS, and stores the vertex with the distance at each

iteration. If a stored vertex is reached from another path, the distance is updated with the

smaller value. Through the iterations, the shortest path from dS to every element in {dj:dj2D,

dj6¼dS} is obtained. The principle of the A� algorithm is similar to that of the Dijkstra algorithm

except that it uses an evaluation function:

f ðdvÞ ¼ gðdvÞ þ hðdvÞ ð7Þ

where g(dv) is the minimum distance possible from dS to dv, and h(dv) is the estimate of the

cost of an optimal path from dv to the target node dT. From the starting node dS, the A� algo-

rithm searches for the smallest f at each iteration until dT is reached. When h = 0 for all dv2V,

then the A� algorithm is equivalent to the Dijkstra algorithm.

The combination of the Dijkstra algorithm and A� algorithm is given as follows. First, the

Dijkstra algorithm is applied to the DPN in the reverse manner. That is, the search starts from

the target dT, traces the edges back to their original vertices, and stores each optimal distance δ
(dv,dT). Then, we set h(dv) to be the optimal distance from dv to dT obtained from the previous

step. Finally, the A� algorithm is applied to search paths from dS to dT to find the optimal path.

To find the k-shortest paths P1,P1,. . .,Pk, the following procedure is applied:

1. Apply the A� search algorithm to obtain P1, the shortest path from dS to dT. Set i = 2.

Fig 5. Example of calculating weight between diseases in tDPN.

https://doi.org/10.1371/journal.pone.0218871.g005
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2. For each edge in Pi−1, we cut it and apply the A� search algorithm to obtain the set of poten-

tial paths Zi ¼ fzi
1
; zi

2
; . . . ; ziqg, where j = 1,. . .q, and q is the number of edges in Pi−1. We

discard zij if zij 2 fP
xg

i� 1

x¼1
.

3. The shortest path from the set of potential paths becomes Pi. Set i = i+1.

4. Repeat (2) and (3) until i = k+1 or no potential path can be found.

The pseudocode for finding the k-shortest paths is given in Fig 6.

Disease chains and progression scores. The edges in a DPN have weight values between

0 and 1. If the weight between two diseases is high, then it implies a strong casual relation

between the two. The shortest path search algorithm has priority in searching edges with low

weight values. To reflect this property, the weight values are tranformed into distance values

before applying the shortest path search algorithm. The distance between diseases di and dj is

defined as

distðdi; djÞ ¼ 1 � wINTij ð8Þ

where wINTij is the edge weight between diseases di and dj in the integrated network. In addition,

in contrast to the other three DPNs, edges in an ADN represent association instead of prior-

Fig 6. Pseudocode for finding k-shortest paths.

https://doi.org/10.1371/journal.pone.0218871.g006
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posterior relations between diseases. In the process of finding chains, the bidirected edges in

the integrated network are penalized.

By applying the disease progression chain finding algorithm to the integrated network, it is

possible to find chains between two diseases of interest. Then, the influence of the chains is

measured by the progression score (PS), which quantifies the relative importance of each

chain. For the list of diseases in the progression chain between disease A and B, DPCd = {dA,

d1,. . .,dn,dB}, the importance of each connection in the chain can be obtained by the weighted

values in the original integrated network. For the set of weight values in a disease progression

chain, DPCw = {wA1,. . .,wnB}, the PS between disease A and B is calculated by

PSðdA; dBÞ ¼ d � expð� l þ
P

w2DPCw
wÞ ð9Þ

where l is the length of the disease progression chain, and δ is a scale parameter. Since the

weight values lie between 0 and 1, the PS decreases with a greater number of connections

between two diseases of interest. In other words, PS depends on the length of the progression

chain, where a shorter length implies a larger influence with a more direct relation.

Experiments

Data

To implement the proposed method, data on diseases, disease-protein relations, biological

pathways, clinical history, and biomedical literature were used. The list of diseases was col-

lected from Medical Subject Headings (MeSH) [47], where MeSH 2018 contains the names of

4,798 diseases in the diseases category. For disease-protein relations, data was collected from

PharmDB [48], which provides information on diseases, drugs, and proteins. The data in

PharmDB are extracted from various databases including the Comparative Toxicogenomics

Database (CTD) [49], Genetic Association Database (GAD) [50], Online Mendelian Inheri-

tance in Man (OMIM) [51], and Pharmacogenomics Knowledge Base (PharmGKB) [52]. To

construct pDPN, biological pathway information was used from KEGG [53]. By matching dis-

eases in KEGG and MeSH, 153 diseases were extracted with 129 having pathway information.

For cDPN, we used the HuDiNe database [54], which contains 13 million clinical history rec-

ords of prevalence and comorbidity information for diseases. Last, abstracts of biomedical lit-

erature listed in PubMed [55] were utilized for tDPN construction. Table 1 summarizes the

data used for the experiments.

Table 1. Data description for experiments.

Data Sources Number of Data

Diseases MeSH: Medical Subject Headings

(http://www.nlm.nih.gov/mesh)

4,798 diseases

Disease-protein

relation

PharmDB: Integrated database for diseases, proteins,

and drugs including CTD, GAD, OMIM, PharmGKB

(http://www.pharmdb.org)

153,118 relations between 2,727

diseases and 23,022 proteins

Biological

pathway

KEGG: Kyoto encyclopedia of genes and genomes

(http://www.genome.jp/kegg/pathway.html)

129 pathways related to 153 diseases

Clinical history HuDiNe

(http://hudine.neu.edu)

1,692 prevalence and 648,886

comorbidities of 13,039,018 patients

Biomedical

literature

PubMed: US National Library of Medicine, National

Institutes of Health

(http://www.ncbi.nlm.nih.gov/pubmed)

6,617,833 abstracts

https://doi.org/10.1371/journal.pone.0218871.t001
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Results for construction of disease progression networks

Four different disease progression networks (ADN, pDPN, cDPN, and tDPN) were con-

structed by employing the proposed method on the collected data. In the network construction

process, disease terms used in KEGG and HuDiNe are different from those in MeSH, where

KEGG has its own terms and HuDiNe has ICD9. Therefore, each disease term was mapped to

MeSH based on disease ontology in order to standardize and merge into a single term.

Four different DPNs are integrated into a single network in which the algorithm for finding

the disease progression chain is applied. The integrated network has 3,302 diseases with

613,270 prior-posterior relations. Table 2 lists the results of network construction with the

properties for four different DPNs and the integrated network.

Fig 7 is a Venn diagram for ADN, pDPN, cDPN, and tDPN that illustrates the overlap of

diseases and prior-posterior relations among different sources. In the figure, |D| is the number

of diseases, and |R| is the number of prior-posterior relations.

To outline some characteristics, ADN represents the association between diseases and

has the form of an undirected network. In this study, this form is considered a bidirected

network that has directions in both ways between two diseases. In addition, from the per-

spective of a disease progression network, ADN has less significance of disease progression

compared to other networks that represent prior-posterior relations instead of association.

The abundance of disease-protein relations, however, leads to a relatively dense network.

Thus, to construct an ADN with relevant information, the k-Nearest Neighbors (k-NN)

method is applied. In the experiment, when k = 40, the density of ADN was reduced from

17.95% (1,334,312 relations) to 1.98% (147,290 relations). In addition, as we can see the

Table 2, ADN and cDPN have more diseases and relations compared with pDPN and

tDPN. This is due to the difference of inherent characteristics in data sources for con-

structing each of the networks. For ADN, disease-protein relations have already been

established by numerous researches, therefore resulting in high number of diseases and

relations. Likewise, the size of data for cDPN is huge with large number of clinical history

records. On the other hand, the small size of pDPN is originated from low number of dis-

eases associated with pathways in KEGG. Furthermore, in Fig 7, the overlap of diseases

and relations among four networks is scarce. This observation comes from complicated

process of linking the biological mechanism, the phenotypes, and the literature knowledge

base of diseases.

For the dataset of ADN, pDPN, cDPN, tDPN, and integrated network, refer to S1 Dataset.

Table 2. Result of construction of progression networks.

Properties ADN pDPN cDPN tDPN INTa

Number of diseases 2,727 146 1,692 149 3,302

Number of relations 147,290 5,247 468,285 1,011 613,270

Network density 1.98% 24.79% 16.37% 4.58% 5.63%

Clustering coefficient 0.304 0.397 0.327 0.235 0.331

Connected components 2 1 1 2 1

Network diameter 6 5 12 7 8

Network radius 1 3 1 1 1

Avg. number of neighbors 54.592 71.877 553.528 13.570 328.923

aINT represents the integrated network of ADN, pDPN, cDPN, and tDPN.

https://doi.org/10.1371/journal.pone.0218871.t002
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Results for disease progression chain

Fig 8 shows a subset of DPN and some examples of disease progression chains extracted with

the search algorithm for progression path. The red and blue nodes represent sources and tar-

gets in the disease progression chain, respectively. The backgrounds colored with red, blue,

green, yellow, and orange represent cardiovascular, digestive system, metabolic, urogenital,

and musculoskeletal diseases, respectively.

Fig 9 shows the disease progression chain spectrum, in which it is possible to determine the

process of a particular disease affected by various other diseases. The diseases with blue nodes

indicate the destinations of the chains. The number inside the node is the step of the chain,

and the value under each disease is the PS.

For the case of colitis, we see various progression chains ranging from the direct connection

of malnutrition to paralysis with four bypassing diseases.

Fig 7. Four-set Venn diagram of overlap of diseases and prior-posterior relations.

https://doi.org/10.1371/journal.pone.0218871.g007
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Exploration of disease progression chains in DPN

To examine the overall result of disease progression chains in a disease network, the search

algorithm for disease progression chain was applied with k = 1 for simplicity. Of 10,899,902

possible pairs, 10,123,970 (92.88%) disease progression chains were extracted. Fig 10 shows the

distribution of the number of diseases within the disease progression chain. We see that the

chain length varies from one (direct connection) to a maximum of 12 diseases. Furthermore,

the disease progression chain has a shorter length for a higher network density, and longer

length for a lower network density. This implies that more information in constructing the

integrated network leads to closer (direct) relations between diseases in the progression chain.

One example of a disease progression chain with a long length is hypopharyngeal neo-

plasms and thyroid hormone resistance syndrome. The disease progression chain is given as

follows:

Fig 8. Disease progression chains in integrated disease network.

https://doi.org/10.1371/journal.pone.0218871.g008
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[Hypopharyngeal Neoplasms]! [Trigeminal Nerve Injuries]! [Facial Injuries]!

[Enophthalmos]! [Trichiasis]! [Trachoma]! [Cataract]! [Macular Degeneration]!

[Thyroiditis]! [Thyroid Hormone Resistance Syndrome]

In the disease progression chain, connections from hypopharyngeal neoplasms to trachoma

and macular degeneration to thyroiditis are based on clinical history, from trachoma to cata-

ract is based on the biomedical literature, from cataract to macular degeneration is based on

biological pathways, and from thyroiditis to thyroid hormone resistance syndrome is based on

disease-protein relations.

Implication of k-chains

The results of k>1 are explained with an example of the relations between colitis and respira-

tory insufficiency. In general, it is difficult to find a direct association between colitis and respi-

ratory insufficiency. By applying the proposed method to corresponding diseases with k = 5,

we found the following results for the disease progression chain:

1. [Colitis]! [Acute Kidney Injury]! [Polyuria]! [Hyponatremia]! [Respiratory Insuf-

ficiency] (PS = 26.31)

2. [Colitis]! [Diabetes Insipidus]! [Polyuria]! [Hyponatremia]! [Respiratory Insuffi-

ciency] (PS = 25.92)

3. [Colitis]! [Polydipsia]! [Polyuria]! [Hyponatremia]! [Respiratory Insufficiency]

(PS = 24.68)

4. [Colitis]! [Acute Kidney Injury]! [Oliguria]! [Diabetes Insipidus]! [Polyuria]!

[Hyponatremia]! [Respiratory Insufficiency] (PS = 4.78)

5. [Colitis]! [Renal Colic]! [Oliguria]! [Diabetes Insipidus]! [Polyuria]! [Hypona-

tremia]! [Respiratory Insufficiency] (PS = 4.39)

From the resulting chains, there is a common path from polyuria to respiratory insuffi-

ciency, which passes through hyponatremia. The difference between the chains comes from

various paths from colitis to polyuria. For the common path, a close relationship between poly-

uria and hyponatremia was shown in numerous clinical reports (PMID: 23837469, 10468901),

where both diseases were affected by vasopressin. From hyponatremia to respiratory insuffi-

ciency, the former reduces cerebral blood flow and arterial oxygen content, which leads to hyp-

oxia and respiratory insufficiency (PMID: 14605269). In addition, it was also reported that

hyponatremia can cause a sudden respiratory insufficiency (PMID: 3713746).

In the case of the first chain, it was reported several times (PMID: 23445618, 25056300) that

acute kidney injury can be caused by colitis. From acute kidney injury to polyuria, there have

been research studies (PMID: 877851, 20525977) that examined the mechanism of a former

disease leading to the latter. In a similar approach, it is possible to verify the prior-posterior

relations for all five chains. The overall result is shown in Table 3.

Validation of disease progression chains

To evaluate the confidence of the proposed method, resulting disease progression chains were

validated by comparing them with clinical histories. The prior-posterior relations of diseases

with the ratio of relative risk (RRR) from clinical history data contain directions for a signifi-

cant number of diseases and are based on the information of patients. Although it is the best

compare with trajectories referred to patients, it takes tremendous time and effort. In terms of

practicality, information on clinical history can serve as the standard for validation. The
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validation process was carried out as follows: (a) In the integration step, use ADN, pDPN, and

tDPN, excluding clinical history information. (b) Apply a search algorithm for progression

path to each pair of diseases. (c) Calculate RRR for the selected prior-posterior relations of dis-

eases. As explained in clinical history-based disease progression network section, if RRR>1,

then it is plausible to evaluate the corresponding prior-posterior relation as a correct relation.

Of 3,302 diseases, 100 were randomly selected, and three chains were found for each disease

pair possible. As a result, 24,030 chains were found with 84,122 prior-posterior relations within

the chains. The confidence of the proposed method was evaluated based on the ratio of prior-

posterior relations with RRR>1. Fig 11(A) shows the distribution of RRR of the prior-posterior

relations found. The number of prior-posterior relations with RRR>1 is 70,575, which

Fig 9. Spectrum of disease progression chains.

https://doi.org/10.1371/journal.pone.0218871.g009
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corresponds to 83.90% of the total. In addition, the confidence of a disease progression chain

can be evaluated based on the average RRR for all prior-posterior relations within the chain.

Fig 11(B) shows the distribution of the average RRR for the disease progression chains. The

number of chains with average RRR>1 is 20,662, which corresponds to 86.80% of the total.

The validation results show that the proposed method guarantees high confidence in the

results.

Fig 10. Distribution of disease progression chain lengths among 3,302 diseases.

https://doi.org/10.1371/journal.pone.0218871.g010

Table 3. Verification of disease progression chains.

Prior-posterior relations Verification

Polyuria!Hyponatremia PMID: 23837469, 10468901

Hyponatremia! Respiratory Insufficiency PMID: 14605269, 3713746

Colitis! Acute Kidney Injury PMID: 23445618, 25056300

Acute Kidney Injury! Polyuria PMID: 877851, 20525977

Colitis! Diabetes Insipidus PMID: 1582604

Diabetes Insipidus! Polyuria PMID: 23240316, 28645353

Colitis! Polydipsia PMID: 17404867

Polydipsia! Polyuria PMID: 24490488

Acute Kidney Injury! Oliguria PMID: 21716258

Oliguria! Diabetes Insipidus PMID: 2929392

With the disease progression chains, we can track numerous cases that describe the process of a disease developing to

another from colitis to respiratory insufficiency. For more diverse results and details of the k-chains, refer to Table A

in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0218871.t003
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Conclusions

In this paper, we proposed a method of finding a series of disease progressions, the disease pro-

gression chain, from an integrated disease progression network constructed with various bio-

medical data. The disease progression network was constructed by integrating four different

sources of disease-protein relation, biological pathway, clinical history, and biomedical litera-

ture. To find disease progression chains, a k-shortest path search algorithm that combines the

A� algorithm, Dijkstra algorithm, and Yen’s algorithm was proposed. Through the proposed

method, various disease progression chains between two diseases were found and were verified

qualitatively from biomedical literature and quantitatively with comparisons between clinical

histories and other sources of information.

The novelty of this research is that the concept of the disease progression chain, proposed

in this paper, can be beneficial for tracking the prognosis of various diseases that can follow

from an occurrence of a disease. In addition, the prior-posterior relations between two diseases

from different categories can also be found despite their seemingly low association. On the

other hand, there are some limitations in the present study. For the disease progression net-

works, each of sources has its domain trait which may be deserved to be preserved. However,

the problem is the respective networks are sparse and disconnected. This means we can hardly

find a relevant path from a single network, thus the network integration was employed. In

addition, it would be better to give the networks different weights according to the relative

importance. However, we currently have only a little knowledge on which network is better

than the other. Therefore, we treated the networks (except the association network) with same

weights in the network integration process. But the performance of the proposed method will

be improved if we reweight the networks according to significance of each of source domains.

In principle, it will be worth finding the path on disease progression from an individual net-

work not from integrated one when abundant knowledge become more available than now.

Moreover, the validation of disease progression chains in the current study was compared

with clinical history data, but it would be more thorough if the results are compared to trajec-

tories of diseases referred to patients.

In these respects, this research can further be developed by enriching the disease progres-

sion network with more abundant information, integrating networks with different weights

according to significance, improving the proposed k-shortest path search algorithm, and refin-

ing verification methods through comparisons with cohort studies. These will be important

Fig 11. Validation with distribution of ratio of relative risk for prior-posterior relations in disease progression chains: (a) the distribution of RRR of the prior-posterior

relations. (b) the distribution of the average RRR for the disease progression chains.

https://doi.org/10.1371/journal.pone.0218871.g011
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aspects of our future work. With improved verification methods, it can benefit the role of ther-

apy and its temporal assessment in the progression of diseases. We hope that the proposed

method is perceived as a preliminary information that may help practitioners have some hints

that may be far better than beginning from nothing at all.
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