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Autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated
immune responses resulting in excessive and uncontrolled tissue inflammation. Multiple
factors including genetic variation, environmental stimuli, and infection are all thought to
contribute to continued inflammation and pathology. Current evidence supports the
microbiota as one such factor with emerging data linking commensal organisms to the
onset and progression of disease. In this review, we will discuss links between the microbiota
and specific diseases as well as highlight common pathways that link intestinal microbes with
multiple autoimmune and inflammatory diseases.
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INTRODUCTION

Increases in autoimmune and inflammatory diseases are a major health problem currently affecting
over 200 million people worldwide and represent a leading cause of death for women under 65 (1,
2). Better understanding of factors that affect disease progression and initiation will lead to new ways
to address these important health issues.

In the human body, the microbiota dynamically interacts with the host at all barrier sites with the
largest load of microbes residing within the intestine (3). Commensals coevolved with humans and
provide multiple benefits including facilitating nutrition and xenobiotic metabolism, enhancing
barrier function, inhibiting pathogens, and modulating immunity (3). Alteration in the microbiota
composition is linked to dysregulated immunity and is associated with inflammatory and
autoimmune diseases (4–9).

While individual studies find a number of disease-associated changes, how these changes relate to
disease initiationor amplification are still being elucidated. Importantly, understandinghost regulation
by intestinal microbes or of microbial physiology have led to greater understanding of a number of
diseases. For example, microbial factors such as metabolites can play an important role in modulating
intestinal and systemic inflammation and a subset of metabolites are linked to multiple diseases (10).
Short-chain fatty acids (SCFAs), which are converted from dietary fiber and as themain energy source
for colonocytes, directly support intestinal epithelial health (11). SCFAs also promote differentiation of
regulatory T cells (Tregs) supporting an anti-inflammatory environment within the gut and at distal
sites (12–15). While many types of microbes can generate SCFA, the main producers are Firmicutes
and Bacteroidetes and increased proportion of these organisms is associated with human health (16).
Dietary factors such as fiber can also shape the microbial community by modifying the metabolic
landscape resulting inmicrobial compositional changes that canmodulate diseases (17, 18). Common
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associations with metabolites highlight how common metabolic
pathways utilized by distinct microbes could modulate disease.
They also give clues to common pathways that could be
manipulated to treat these diseases.

Additionally, in many of these diseases, increased microbes or
microbial products can be found in the blood indicating that
changes to the intestinal barrier may be a common feature (19–
21). However, whether these changes are causative or a
consequence of disease development remains to be seen (22).

On the host side, several pathways associated with microbiota-
regulated immune responses are linked to autoimmune and
inflammatory diseases (23–25). Mutations in HLA-DR, toll like
receptors (TLRs), inflammasome, and autophagy components are
associated with multiple diseases where they lead to dysregulated
immune responses and increased inflammation (26–29).

In this review, we will discuss association of the microbiota
with pathways involved in the pathogenesis of inflammatory
bowel disease (IBD), systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), multiple sclerosis (MS), and type I
diabetes (T1D) to highlight commonalities between diseases as
well as point out disease specific associations.
INFLAMMATORY BOWEL DISEASE

IBD is characterized by dysregulated immune responses against the
microbiota leading to chronic inflammation in the gastrointestinal
(GI) tract.Themajor formsof IBDareulcerativecolitis (UC),which is
limited to the colon, andCrohn’sdisease (CD),which canaffect tissue
throughout the GI tract (30). In IBD patients, there are reductions in
potentially anti-inflammatory microbes such as Bacteroidetes,
Lachnospiraceae (16), and Faecalibacterium prausnitzii (31, 32)
alongside increases in potentially inflammatory microbes such as
Proteobacteria and Ruminococcus gnavus (30, 33–39). Further,
increased mucosa-associated bacteria (16, 40) results in greater
contact between gut microbes and immune system and leads to
anti-bacterial immunity associated with IBD pathogenesis (41–45).

Inhumans, over 240genetic loci are associatedwith risk for IBD
(23, 46–49). Gene mutations in pathways related to interactions
with the microbiota highlight common mechanisms for disease
development (23). Mutations are found in genes associated with
microbial recognition includingnucleotide-binding oligomerization
domain-containing protein 2 (NOD2); anti-inflammatory
mechanisms including IL-10 and IL-10 receptor (50–53) and
barrier repair including IL-22 (54, 55). Many have found these
pathways are induced by the microbiota and the microbiota is
important for barrier repair in mouse models of disease (56–62).
However, microbes also drive pathology and rederivation to
germfree is protective in T cell dependent models (59, 63).

In addition, diet and dietary metabolites are critical factors in
IBD pathogenesis (64). In IBD patients, specific bacteria, such as
butyrate producers Faecalibacterium prausnitzii and Roseburia
hominis are decreased (32, 65). The crucial roles of diet and dietary
metabolites are shown in multiple mouse models where high fiber
diets or direct administration of SCFA are beneficial while loss of
the SCFA receptor, Gpr43, is pathogenic (12–15). Tryptophan
metabolites can alsomitigate colitis severity. These are ligands for the
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aryl hydrocarbon receptor (AhR), which activates IL-22 and IL-10
production and is negatively associated with colitis (66–69). A
tryptophan-free diet exacerbates pathology in colitis models (70),
whereas Lactobacillus bulgaricus, an AhR-activating bacterium,
ameliorates pathology (66, 71). Secondary bile acids are additional
metaboliteswith both pro- and anti-inflammatory functions that can
promotedifferentiationofTregsorTh17cellswithin the intestineand
in peripheral sites (72, 73). Bile acids can also regulate intestinal
bacterial growth by enhancing biofilm formation thereby increasing
colonization by pathogens such as vancomycin-resistant
Enterococcus in mice (74). These studies together highlight the
complex interaction between the host, diet, and intestinal microbes
that can underlie alterations in disease pathology.

As evidence supports the potential for the microbiota in
maintaining intestinal homeostasis and preventing inflammation,
there is great interest in utilizing microbes as treatment for IBD
patients. The administration of probiotics shows success in animal
models (75, 76) and some patients (77, 78). However, broad scale
benefits are yet to emerge (78). This may be due to the genetic
complexity or other environmental factors associated with IBD.
Another alternative is fecal microbiota transplants (FMT), which
are utilized successfully to treatC. difficile infection (79). Several trials
demonstrate success in some UC patients (80, 81). FMT increases
microbiota diversity in responders and non-responders (80),
demonstrating that increased diversity alone is not sufficient for
benefit. Interestingly, recent work found expanded intestinal
bacteriophages in patients who did not respond after FMT with
bacteriophagesexacerbatingcolitis inanimalmodels (82).Morework
needs to be done to understand how FMT can shape the recipient’s
microbial community to define if this method can broadly
ameliorate diseases.

Together, work in IBD demonstrates myriad ways the microbiota
interacts with the host to regulate local inflammation and suggests a
number of microbiota-related pathways to target for treating this
disease. Understanding affected pathways in IBD have also improved
understanding of how microbes impact other inflammatory and
autoimmune diseases and will lead to a broader understanding of
how to utilize the microbiome to improve patient outcomes.
SYSTEMIC LUPUS ERYTHEMATOSUS

SLE patients suffer from production of autoantibodies and
proinflammatory cytokines that cause disease in multiple organs
including skin, blood, and kidneys with many environmental
influences, including the gut microbiota (83). SLE patients exhibit
intestinal and oral dysbiosis. As with other autoimmune diseases,
studies find decreased bacterial diversity correlated with disease
activity (6). Oral and gut microbiota from SLE patients are
enriched in the family Lactobacillaceae, with Bifidobacteria and
Clostridiales decreased in the intestine (84–86).

Further, antibodies and T cells from SLE patients recognize
bacterial antigens from the oral, intestinal, and skin microbiota
including Propionibacterium propionicum and Bacteroides
thetaiotaomicron (6, 84, 85, 87). Molecular mimicry is a possible
link between the microbiota and SLE. One of the most common
autoantibodies associated with SLE targets the broadly expressed
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RNA binding protein Ro60 (88). Antibodies against Ro60 are
commonly found before SLE symptoms develop (89). Some
human commensals produce proteins similar to human Ro60 and,
although these bacteria are found in both healthy donors and lupus
patients, only lupuspatients have antibodies andTcells reactivewith
humanRo60 andmicrobial Ro60 orthologs (87). In addition, in SLE
patients, disease severity correlated with R. gnavus enrichment.
Further, SLE patients with severe disease had IgG antibodies that
recognized cell wall lipoglycans from a subset of R. gnavus strains.
Importantly, auto-DNA antibodies from SLE patients with lupus
nephritis were cross-reactive with R. gnavus lipoglycans (6).

Multiple spontaneous and inducible mouse lupus models
have given great insight into how microbiota changes regulate
pathology. Intercross of mouse strains NZW with BXSB results
in spontaneous lupus-related antiphospholipid syndrome and
liver damage, predominately in male mice, due to an extra copy
of the TLR7 gene. In these mice, Enterococcus gallinarum
translocates to the liver and triggers autoimmune responses.
Depletion of this pathobiont with vancomycin suppressed
bacterial translocation, autoreactive T cells, and autoantibodies.
Monocolonization of germfree mice with E. gallinarum increased
gut permeability, plasmacytoid dendritic cells (pDCs) and Th17
cells in the intestine lamina propria and mesenteric lymph nodes,
exacerbating disease and mortality (90).

Bacterial metabolites also modulate SLE as seen with
Lactobacillus which, as discussed above can modulate intestinal
inflammation by producing AhR-activating ligands (66, 71). In
mouse models, and in contrast with IBD, a high protein diet with
a high tryptophan content is associated with increased pathology
by promoting anti-double stranded DNA autoantibody
production and increased T follicular helper (Tfh) cells (91). A
metabolic screening from feces of lupus prone mice homozygous
for the NZM2410 lupus susceptibility quantitative trait loci (Sle1,
Sle2, and Sle3) showed increased intestinal tryptophan-derived
bacterial metabolites with enriched fecal Lactobacillus (91).

In contrast, and similar to IBD, a high fiber diet is associated with
improved outcomes in mouse lupus models (86). In a TLR7-
dependent model, there was outgrowth of Lactobacillus reuteri,
which then translocated to the mesenteric lymph node, spleen,
and liver. Translocation led to increased pDC production of type I
interferon (IFN-I), exacerbating disease pathogenesis and mortality.
Treatment with SCFAs or a high fiber diet suppressed L. reuteri
outgrowth and translocation, reducing excess IFN-I and
ameliorating disease (86). This example shows both direct and
indirect effects of gut commensals on disease progression.

Together, these results demonstrate that the gut microbiota can
modulate lupus pathogenesis by molecular mimicry, changes in
bacterial translocation, metabolites, or microbe-microbe
competition. Each can result in a dysregulated immune response
in distal tissues including Th17 cell and pDC recruitment and
activation of IFN-I pathways that together amplify disease.
RHEUMATOID ARTHRITIS

RA is a chronic synovial inflammation characterized by immune
infiltration in the joints due to lost tolerance including B and T cell
Frontiers in Immunology | www.frontiersin.org 3
responses against self-proteins with a citrulline residue leading to
cartilage degradation and bone erosion (92). In a subset of RA
patients, bacterial DNA and peptidoglycan–polysaccharide
complexes are found in the synovium (93). RA patients exhibit
oral dysbiosis, characterized by enrichment of Porphyromonas
gingivalis and Lactobacillus salivarius and intestinal dysbiosis with
increasedGram-positive bacteria (94, 95). These changes in the oral
and gut microbiota are linked to clinical variations in RA (93).
Increased abundance of Lactobacillus correlated with increased
total IgG titers, while other oral microbes such as Prevotella spp.
correlated with rheumatoid factor (95). Prevotella copri is enriched
in fecal samples of patients and individuals at risk for RA. A subset
of RA patients has P. copri-specific Th1 and Th17 cells along with
IgG and IgA antibodies which correlates with increased
proinflammatory cytokine levels and more severe disease (95–97).
Interestingly,RA therapies partially restores themicrobiota tomore
closely resemble one found in healthy controls (95).

In mice, TLR2 and TLR4 engagement modulates autoimmune
arthritis (98). IL-1 receptor antagonist–knockout (Il1rn-/-) mice
spontaneously develop autoimmune arthritis due to uncontrolled
IL-1 signaling (99). Disease progression is delayed in germfree
Il1rn-/- mice (98). A single injection of a TLR2 agonist or
monocolonization with Lactobacillus bifidus was sufficient to
restore pathogenesis (98). However, as with other diseases, there
are complex interactions between these pathways. Il1rn-/- mice
lacking TLR2 exhibited exacerbated disease with increased bone
destruction mediated by Th1 cells, suggesting a dual role for TLR2
in disease (98). BALB/c ZAP-70(W163C)-mutant (SKG) mice
spontaneously develop chronic arthritis due to a naturally
occurring mutation of the ZAP-70 gene, a signal transduction
molecule downstream of the T cell receptor (100, 101). Germfree
SKGmice do not develop disease (100). Conventionalization with
altered Schaedler flora (ASF), a defined community of eight
bacteria including Lactobacillus species, was sufficient to induce
arthritis, supporting the role of gutmicrobes in pathogenesis (100).
Further supporting microbiota shifts found in RA as amplifying
disease, conventionalization of SKG germfree mice with fecal
samples from RA patients elicited more severe arthritis with higher
levels of IL-17A as compared to fecal samples from healthy controls
(97). Similarly, P. copri-monocolonized SKGmice have exacerbated
disease with increased Th17 cells (97). Colonization with Segmented
filamentous bacteria (SFB), a Th17 cell inducing mouse commensal,
exacerbates a K/BxN autoimmune arthritis model (in which KRN T
cells recognize glucose-6-phosphate isomerase) by expanding Tfh
cells,whichpromote theproductionofautoantibodies involved inRA
(102). These data show that gut microbes can modulate immune
responses involved inRAsuchasTh1andTh17cells recruitment and
expansion exacerbating the inflamed tissue environment.
MULTIPLE SCLEROSIS

MS patients suffer from autoimmune responses against the brain
and spinal cord due to T cell targeting of oligodendrocytes
resulting in demyelination and axonal loss (103). MS patients
exhibit intestinal dysbiosis with increases in the Euryarchaeota and
Verrucomicrobia phyla. Specifically, Methanobrevibacter smithii
December 2020 | Volume 11 | Article 597966
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TABLE 1 | Summary table for the relationship between bacteria and autoinflammatory and autoimmune diseases.

Effect Mechanism/Pathway (Metabolite)

E acerbates Molecular mimicry/Autoantibodies

E acerbates Immune dysregulation/Tfh
+Autoantibodies

E acerbates Immune dysregulation/IL-17

E acerbates Immune dysregulation/IL-17

I proves Immune dysregulation/IL-10

E acerbates Immune dysregulation/AhR (AhR
ligands)

E acerbates Immune dysregulation/AhR
(Tryptophan-derivatives)

E acerbates Immune dysregulation/Type I IFN

I proves Immune dysregulation/AhR (Indole-
related)

I proves Immune dysregulation/AhR (AhR
ligands)

I proves Immune dysregulation/AhR (Indole-
related)

E acerbates Immune dysregulation/Th17
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Bacteria - Family Bacteria - Species Disease Abundance Human Subjects Ref. Mouse Model Ref.

Akkermansiaceae A. muciniphila MS Enriched 60P and 43HC (8)

Bacteroidaceae B. ovatus T1D Enriched 8P and 24HC (114)

B. thetaiotaomicron SLE Enriched TLR7 overexpression (87)

Bifidobacteriaceae Bifidobacteria SLE Decreased 40P and 22HC (85)

T1D Decreased 11P and 22HC (113)

Clostridiaceae SFB RA Enriched K/BxN (102)

Enterobacteriaceae E. coli IBD Enriched 447P and 221HC (35) DSS (33)

IBD Enriched 21P and 7HC (34) DSS (33)

IBD Enriched 59P (33) Salmonella infection (56)

Enterococcaceae E. gallinarum SLE Enriched 3P and 5HC (90) (NZW × BXSB)F1 (90)

Lachnospiraceae Not identified IBD Decreased 129P and 61HC (16)

T1D Decreased 11P and 22HC (113)

R. gnavus IBD Enriched 20P and12 HC (37)

SLE Enriched 61P and 17HC (6)

T1D Enriched 415P and 267HC (9)

Lactobacillaceae Lactobacillus SLE Enriched 20P and 19HC (84) Sle1, 2 and 3 (91)

L. reuteri SLE Enriched 12P and 22HC (86) TLR7.1 Tg (86)

MS Enriched EAE (109)

L. salivarius RA Enriched 77P and 80HC (95)

L. bulgaricus IBD Enriched DSS (71)

L. murinus MS Enriched EAE (110)

Methanobacteriaceae M. smithii MS Enriched 60 P and 43 HC (8)

Porphyromonadaceae P. gingivalis RA Enriched 65 P and 18 HC (94)

Prevotellaceae P. copri RA Enriched 83 P and 50 HC (96) SKG (97)

Ruminococcaceae F. prausnitzii IBD Decreased 127 P and 87 HC (65)

IBD Decreased 26 P (32)

P, patient; HC, healthy control.
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and Akkermansia muciniphila are enriched in the stool of patients
and their abundance decreased after treatment (8). In addition,
reduced levels are found of bacteria belonging to the Clostridia
clusters XIVa and IV and Bacteroidetes, microbes well known to
produce SCFA and induce Treg cells (104, 105).

As with other diseases, in the mouse model of MS,
experimental autoimmune encephalitis (EAE), pathology is
ameliorated in germfree mice with lower levels of IFN-g and
IL-17A and increased Treg cells (106). Interestingly, in the
relapsing remitting MS mouse model, in which CD4+ T cells
are specific for myelin oligodendrocyte glycoprotein (MOG),
transfer of intestinal microbes from MS patients but not from
healthy monozygotic twins increased incidence of disease due to
decreased T cell IL-10 production (107). A. muciniphila also
affects T cell differentiation by inducing Th1 differentiation in
PBMCs from both healthy donors and MS patients, potentially
contributing to the proinflammatory environment in MS (108).

Similar to IBD and in contrast with SLE, in mouse models
tryptophan can protect frompathogenesis. Colonization ofmice in
the EAEmodel with Lactobacillus reuteri through its conversion of
tryptophan into AhR agonists, activates IFN-I responses in
astrocytes and limits disease severity (109). Another Lactobacillius
species, L. murinus reduces EAE severity by inhibiting Th17 cell
differentiation (110). Intestinal colonization by L. murinus is
suppressed by a high salt diet, which also amplifies disease (110).
Together these studies demonstrate a gut/brain axis in which gut
microbes and metabolites modulate immune responses including
innate and adaptive immunity at distal sites to influence disease
onset and severity.
TYPE 1 DIABETES

Immune destruction of pancreatic b-cells by islet-specific
autoreactive CD8+ T cells results in lost insulin production and
T1D (111). A longitudinal human study analyzing stool samples
from the Environmental Determinants of Diabetes in the Young
(TEDDY) cohort identified reduced microbial pathways related
to fermentation and synthesis of SCFAs as well as decreased
microbial diversity as well as reduced Bifidobacteria and
Lachnospiraceae and overabundance of Blautia, Rikenellaceae,
and Ruminococcus in patients who progressed to T1D (9, 112). In
a similar cohort, children who progress to T1D show changes in
the Bacteroidetes/Firmicutes ratio and increased Bacteroides
ovatus (9, 112–115).

In contrast with other disease models, germfree non-obese
diabetic (NOD) mice have increased islet destruction
demonstrating that in diabetes, microbes may limit disease
severity (116). However, some microbes are likely pathogenic as
depletion of Gram-negative gut microbes in neonatal mice results
in decreased diabetes incidencewith fewer IFN-g producing T cells
(117). Supporting the complicated pro- and anti-inflammatory
signals downstream of microbes, in contrast with IBD, loss of
MyD88 protects specific pathogen free (SPF) or ASF colonized
NOD mice from diabetes however rederivation to germfree,
restores disease incidence (116). As in SLE, bacterial
Frontiers in Immunology | www.frontiersin.org 5
translocation can be a factor in T1D pathogenesis. In a model of
streptozotocin (STZ)-induced T1D, gut microbial translocation to
the pancreatic lymph node led to recognition of bacterial MDP by
the intracellular NOD2 receptor resulting in increased number of
Th1 andTh17 cells and increased islet destruction (118). Similar to
the enrichment seen in children that develop T1D, STZ-treated
mice also had increased intestinal Bacteroides (114, 118). Gut
microbiota also plays a role in sex differences in autoimmune
diseases. In SPFNODmice, femalemice have a higher incidence of
disease than male mice with no differences between the sexes in
germfree mice (119). Cecal microbiome transplants from male to
female mice reduced islet inflammation and autoantibody levels
due to microbiome changes along with hormonal and metabolic
changes downstream of elevated testosterone (119).

In NOD mice, as with IBD and MS, SCFAs, notably butyrate,
decreased the incidence and severity of diabetes with reduced
frequency of autoimmune CD8+ T cells and B cells and increased
Tregs and IL-10 production (120). Treatment with SCFAs
increased the abundance of Bacteroides, which protected
against disease when transplanted to germfree NOD mice (120).

Together, in mouse models, gut microbes and gut microbial
metabolites can modulate immune responses involved in T1D
including pancreas T cell infiltration as well as shaping the
balance between pro- and anti-inflammatory T cell responses,
thereby influencing disease onset and severity.
CONCLUSION

In this review, we provided examples of mechanistic ways
microbes can alter disease pathology in IBD, SLE, RA, MS, and
T1D models with microbes playing a role in pathology of
additional autoimmune diseases (121–124). While we focused
on bacteria, emerging data suggests potential roles for yeast and
enteric viruses in modulating immune responses and
autoimmune and inflammatory disease (125–128).

We have highlighted disease specific interactions as well as
numerous common links between the microbiota and human
disease (Table 1). Common associations relate to microbial
behaviors such as translocation or microbial metabolites that
are shared between multiple microbes. Understanding these
common functions and as the host pathways regulated by the
microbiota will enable for identification of targetable pathways to
treat multiple autoimmune and inflammatory disease.
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