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ABSTRACT The modulators of severe COVID-19 have emerged as the most intriguing
features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants
of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial
co-infections are being investigated as one of the crucial factors for exacerbation of dis-
ease severity and complications of COVID-19. A key question remains whether early tran-
scriptionally active microbial signature/s in COVID-19 patients can provide a window for
future disease severity susceptibility and outcome? Using complementary metagenomics
sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study high-
lights the possible functional role of nasopharyngeal early resident transcriptionally active
microbes in modulating disease severity, within recovered patients with sub-phenotypes
(mild, moderate, severe) and mortality. The integrative analysis combines patients’ clinical
parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their
functional role. The clinical sub-phenotypes analysis led to the identification of transcrip-
tionally active bacterial species associated with disease severity. We found significant
transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality,
Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces
meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic
pathways, distinguishing the microbial functional signatures between the clinical sub-
phenotypes, were also identified. We report a plausible mechanism wherein the increased
transcriptionally active bacterial isolates might contribute to enhanced inflamma-
tory response and co-infections that could modulate the disease severity in these
groups. Current study provides an opportunity for potentially using these bacterial
species for screening and identifying COVID-19 patient sub-groups with severe disease
outcome and priority medical care.

IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with
multiple facets involved in modulating the progression and outcome. In this regard, we
investigated the role of transcriptionally active microbial co-infections as possible modula-
tors of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically,
can there be early nasopharyngeal microbial signatures indicative of prospective disease
severity? Based on disease severity symptoms, the patients were segregated into clinical
sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant
presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus
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cereus in the mortality patients. Importantly, the bacterial species might contribute to-
ward enhancing the inflammatory responses as well as reported to be resistant to common
antibiotic therapy, which together hold potential to alter the disease severity and outcome.

KEYWORDS co-infection, pathogen genomics, host-pathogen interactions, COVID-19,
disease sub-phenotype, nasopharyngeal RNA, respiratory virus oligo panel (RVOP),
Holo-Seq, transcriptionally activemicrobial isolates, disease outcome, metabolic pathways

The Coronavirus 2019 disease (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented medical emergencies

throughout the world, culminating into a pandemic. Since its first detection in Wuhan, China
in 2019, the rate of infectivity and mortality due to SARS-CoV-2 has incessantly increased over
time, with the present count reaching approximately 513 million cases including 6.2 million
deaths globally (https://covid19.who.int/). An intriguing feature of COVID-19 is its remarkable
heterogeneity in terms of clinical presentation, which has been a cause of concern and
research throughout. For a significant fraction, COVID-19 presents as asymptomatic or mild
self-limiting respiratory disease. Yet, in about 15% of the cases, the disease might escalate to
progressive pneumonia with severe complications requiring intensive care or even lead to
multiple organ failure and death (1–3). The precise determinants of disease severity are still
confounding, limiting the scope for early medical intervention and disease management.
Genomic alterations or mutations acquired by the SARS-CoV-2 virus during transmission is
one of the factors. This aspect is vividly demonstrated during the emergence and perpetuation
of new variants of SARS-CoV-2 in different populations with differential rates of infection, hos-
pitalization and mortality (4, 5). Despite several reports showing association of mutations with
mild, severe, and mortality outcomes (6, 7), yet, others have highlighted genomic similarities
among the infecting SARS-CoV-2 strains, albeit with different clinical manifestations (8, 9).
Thus, there has been effort toward understanding the role of host-related factors in disease se-
verity. Advanced age, high basal metabolic index (BMI), male gender, immune related factors,
and comorbidities are risk factors for mortality in COVID-19 patients (10–12). There still seems
to be a missing link to explain, understand, and elucidate the diversity of disease severity
and outcome.

In this background, it is important to evaluate the third factor for its functional role
in disease severity and outcome. Although limited, important insights are emerging to-
ward the plausible role of microbial community in susceptibility to COVID-19 (13, 14).
The initial site of SARS-CoV-2 infection, the upper airways (UA) tract, houses bacterial,
viral, and fungal populations (15) wherein the cross talk between the primary infecting
pathogen and co-inhabiting microbes has been shown to modulate subsequent devel-
opment of the disease with differential disease trajectory (16). SARS-CoV-2 infection
may potentially alter the microbiota by pathogenic dominance or increasing levels of
upper respiratory commensal bacteria, leading to disease progression and poor prog-
nosis (17). Furthermore, the initial host-viral interactions in the nasal cavity and in the
UA are crucial to modulate the subsequent systemic immune response to SARS-CoV-2
(18). Altered immune functions in response to co-infecting microbes, can increase the
susceptibility of COVID-19 patients to severity (19) which is reflected in high rates of
co-infection reaching up to 50% in non-survivors of COVID-19 (20).

These cues raise curiosity regarding the co-infecting microbes contributing toward
differential disease severity in COVID-19, especially in severe and deceased patients.
More importantly, can we identify early microbial signatures/transcriptionally active isolates
for prioritizing patient sub-groups for priority health care? Presence of early resident microbe
signatures would give a window for patient specific response during the progression of the
disease. Thus, co-infections deserve closer attention to understand and evaluate their role in
disease management and patient outcome (21). Few studies have illustrated the function of
respiratory microbiome in SARS-CoV-2 infection, emphasizing the role of co-infecting patho-
gens as prospective modulators of COVID-19 (22–25).

The present study has explored and elucidated the early alterations in the respiratory
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microbiome, especially transcriptionally active isolates, in the patient cohort from India
which could drive the COVID-19 disease severity sub-phenotypes. Through an integrative
genomics approach, combining clinical data, SARS-CoV-2 genome information, and resident
microbes, we have highlighted the significance of clinical parameters, SARS-CoV-2 plus respi-
ratory viruses, transcriptionally active microbial diversity, their relative abundance, functional
inferences, and enrichment of metabolic pathways of the nasopharyngeal microbiome in
COVID-19 patients with different clinical sub-phenotypes and outcomes. Specifically, the
identification of significant differential presence of transcriptionally active bacterial species in
severe and mortality patients, with the metabolic pathway analysis, allowed us to propose a
plausible mechanism that might help to understand additional aspects leading to COVID-19
severity.

RESULTS
Patient clinical characteristics and disease severity in COVID-19 subgroups. A

total of 198 COVID-19 patients included in the study were initially segregated into two
broad categories based on clinical outcome: recovered (n = 177) and mortality (n = 21).
Recovered patients were further divided into three sub-phenotypes: mild (n = 85; 42.9%),
moderate (n = 73; 36.8%), and severe (n = 19; 9.6%). The clinical parameters were thoroughly
investigated for plausible significant factors that could account for the difference in the dis-
ease severity and outcome among the patients Table 1. The statistical correlations and nu-
merical patient distribution of continuous and categorical variables, respectively, across all
patient categories has been illustrated in Fig. 1.

Based on the clinical data, a preponderance of male patients (72.72%) was observed in
the cohort as a whole, which was true for the mild, moderate, and severe patients of the
recovered group (P-value = 0.006) as well as mortality patients, as observed globally (26).
The median age of patients within the recovered group (52 years) was significantly differ-
ent from that in the mortality group (64.5 years) (P-value = 0.021). Classification of recov-
ered patients also shows age as a significant modulator of severity wherein we observed

TABLE 1 Clinical characteristics of COVID-19 patientsa

Groups Mortality (n = 21) Recovered (n = 177) P- value Mild (n = 85) Moderate (n = 73) Severe (n = 19) P-value
Age 64.5 (54.75 to 69.25) 52 (32 to 65) 0.0021b 38 (27 to 56) 58 (44 to 67) 63 (58 to 74.5) ,0.001d

Gender (FjM) 4j16f 49j128 0.639c 32j53 11j62 6j13 0.006c

Ct value
E gene 25.25 (19.85 to 27.75) 25.11 (22.19 to 27.53) 0.378b 24.815 (22.5 to 27.23) 25.1 (21.64 to 27.7) 25.98 (22.82 to 28.73) 0.592d

RdRp 26.51 (21.39 to 28.46) 26.525 (23.11 to 29.40) 0.254b 26.145 (23.18 to 28.93) 27.12 (22.96 to 29.68) 29.04 (23.52 to 31.38) 0.487d

Signs and symptoms
SpO2 92 (85.5 to 95.5) 97 (95 to 98) ,0.001b 98 (97 to 98) 96 (95 to 98) 84 (77.5 to 88) ,0.001d

Body ache 5 (23.80) 29 (15.93) 0.584c 20 (23.52) 9 (12.32) 0 (0) 0.108c,e

Sore throat 0 (0) 42 (23.07) 27 (31.76) 11 (15.06) 4 (21.05) 0.046c

Breathlessness 14 (66.67) 63 (34.61) 0.011c 0 (0) 48 (65.75) 15 (78.94) 0.409c,e

Loss of taste and smell 0 (0) 4 (2.19) 3 (3.52) 1 (1.36) 0 (0) 0.723c,e

Cough 8 (38.09) 84 (46.15) 0.560c 32 (37.64) 42 (57.53) 10 (52.63) 0.039c

Fever 15 (71.4) 131 (71.97) 0.993c 61 (71.76) 54 (73.97) 16 (84.21) 0.535c

General weakness 1 (4.76) 27 (14.83) 0.330c 12 (14.11) 11 (15.06) 4 (21.05) 0.747c

Diarrhea 2 (9.52) 14 (7.69) 0.867c 9 (10.58) 4 (5.479) 1 (5.26) 0.446c

Asymptomatic 0 (0) 3 (1.64) 3 (3.52) 0 (0) 0 (0)
Comorbidities
Asthma 0 (0) 4 (2.19) 1 (1.17) 3 (4.10) 0 (0) 0.507c,e

Diabetes 8 (38.09) 46 (25.27) 0.358c 13 (15.29) 31 (42.46) 2 (10.52) ,0.001c

Heart disease 1 (4.76) 16 (8.79) 0.802c 2 (2.35) 10 (13.69) 4 (21.05) 0.007c

Hypertension 11 (52.38) 55 (30.21) 0.086c 13 (15.29) 33 (45.20) 9 (47.36) ,0.001c

Thyroid 3 (14.28) 12 (6.59) 0.427c 7 (8.23) 4 (5.47) 1 (5.26) 0.759c

Kidney disorders 5 (23.80) 10 (5.49) 0.011c 5 (5.88) 3 (4.10) 2 (10.52) 0.554c

No comorbidities 4 (19.04) 84 (47.45) 0.01c 53 (62.35) 25 (34.24) 6 (31.57) ,0.001c

Hospital stay (days) 12 (6.75 to 18.5) 12 (8 to 15.5) 0.95b 10 (7 to 13) 14 (10 to 18) 12.5 (10 to 15.5) ,0.001d

aThis table highlights the trend and statistical significance of clinical parameters across patient severity and outcome classes. The groups were mild, moderate, and severe in
severity classification and mortality, recovered patients for outcome classification. Sub-clinical groups and major clinical parameters are mentioned in bold letters. Values of
significance are highlighted in bold. Data are shown as median (IQR) or n(%).

bMann Whitney U test.
cChi2 test.
dKruskal Wallis test.
eTest between two non-zero values.
fMissing data.
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age to be increasing with disease severity (P-value = 0.001). Importantly, the median age
of severe patients is comparable to deceased patients (64.5, 63 years) indicating the role
of other factors in disease outcome (Fig. 1a). Possibly not unexpected, low peripheral ox-
ygen saturation (SpO2) levels and breathlessness, were significant features of the mortal-
ity group compared to the recovered (Fig. 1b). Above factors reflect the association
of these parameters with disease severity, and importance of these parameters for severity
classification.

The presence of comorbid conditions predisposes patients to an unfavorable clinical
course. The comorbid conditions of hypertension (52.38%), diabetes (38.09%), and kidney
disorder (23.8%) prevailed more in the mortality group than the recovered in our study, yet the
association was statistically significant only for kidney disorder (P-value = 0.011). Stratification
within the recovered group revealed significant associations with comorbid conditions of dia-
betes (P-value , 0.001), hypertension (P-value , 0.001), and heart disease (P-value = 0.007).
Overall, only 19.04% of patients from the mortality group did not carry any comorbid condition
while 41.24% patients in the recovered group had no comorbidities (P-value = 0.01). Apart
from significantly lower hospital stays in the mild group (average 10 days) when compared
with moderate group (average 14 days) (P-value ,0.001), both hospital stay and the SARS-
CoV-2 RT-PCR based cycle threshold (Ct) values for RdRp and E gene were found to be similar
across patient categories (Fig. 1c, d and e).

It was important to ascertain whether clinical factors above had plausible effect on the
abundance of transcriptionally active microbial isolates between the disease severity sub-
phenotypes. Thus, we checked for the confounding effects of statistically significant clinical
parameters in our study cohort. We performed a correlation analysis (using Pearson’s cor-
relation and point-biserial correlation) between bacterial transcript read counts and the
statistically significant parameters of age and comorbidities, respectively. We find that the

FIG 1 Representation of the clinical demographics of the COVID-19 patients. Continuous variables like (a) age, (b) SpO2, (c) hospital stay, (d) SARS-CoV-2
RT-PCR Ct value for RdRp gene in four disease severity sub-phenotypes: mild (green), moderate (yellow), severe (blue), and mortality (red), with statistical significance
measured using Mann-Whitney U test. * represents P-value ,0.05, ** represents P-value ,0.001. (e) Categorical clinical features like symptoms and comorbidity
information for the patients in the four severity sub-phenotypes: mild (green), moderate (yellow), severe (blue), and mortality (red).
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r-score between age and cumulative bacterial transcript read count was20.0077 with P-value
0.94 (using Pearson’s correlation), which is not statistically significant. A point-biserial correla-
tion analysis between bacterial transcript read counts and presence and absence of comorbid-
ities, gave r-score of 0.104 and P-value of 0.33 which again is statistically non-significant.
Taking together the above observations, it reiterates that in the present study cohort, age and
comorbidities are not significant confounders.

Genomic characteristics of SARS-CoV-2 across the clinical sub-phenotypes. To
observe the genomic characteristics of SARS-CoV-2, phylogenetic distribution and clades,
as well as the mutational spectrum, were analyzed. Phylogenetic and clade distribution
revealed that the majority of the samples belonged to the clades 19A (50.62%), and 20A
(43.75%) with a relatively minor presence of clade 20B (5.62%) (Fig. 2a). Upon observing
the presence of patient severity classes across SARS-CoV-2 clades, we note that 70% of
the mortality cases were distributed in clade 20A but, every clade showed a substantial
presence of other severity classes (Fig. 2b), thus, diluting the effect of clade specificity for
any particular clinical sub-phenotype.

An in-depth analysis of the SARS-CoV-2 genomes at the mutation level allowed us to
capture a total of 3,614 mutations across our sample cohort. Following the Fisher exact
test, six mutations were found to be significantly linked with the clinical outcomes (P-value
,0.05). A correlation analysis of these six mutations revealed association of two mutations,
N:P13L (non-synonymous) and S:789Y (synonymous), with the recovered patients and four
mutations, S:Q677H (non-synonymous) and ORF1b:1804L, 5’UTR:C241T, and M:71Y (synon-
ymous), mutations with mortality patients (Fig. 2c; Table S1).

With few mutations identified to be significantly associated with the recovered and

FIG 2 Mutation and phylogenetic study of the SARS-CoV-2 strains from COVID-19 patients. (a) Phylogenetic classification of SARS-CoV-2 genomes
highlighted three clades: 19A, 20A, and 20B. The tip of the nodes (red) represents mortality patients whereas others represent recovered patients (black).
(b) Distribution of samples from the four sub-phenotypes: mild, moderate, severe, mortality into different clades. (c) Lollipop plot displaying mutations
having significant association with mortality (red) and recovered (blue) groups.
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the mortality patients, further study is required to understand its functional importance
in delineating disease severity and outcome, which merits an independent study. Thus,
we hypothesized whether the nasopharyngeal transcriptionally active microbial iso-
lates can provide predictive modulators of disease severity in the background of pri-
mary SARS-CoV-2 infection.

Nasopharyngeal bacterial profiling and characterization across patient sub-
phenotypes.We used the holo-transcriptome analysis to understand the transcription-
ally active microbial populations in a subset of patients with mild (n = 24), moderate
(n = 36), severe (n = 14), and mortality (n = 12). Alpha diversity (Shannon index) values
across all four sub-phenotypes was observed to be low with no significant difference
between the effective number of species (ENS) across sub-phenotypes (Fig. 3a;
Table S2), whereas Beta diversity (Bray-Curtis distance matrix) analysis (Fig. 3b) showed
non-distinct clustering by PERMANOVA test. Interestingly, microbial abundance analy-
sis via examining the transcriptionally active isolates revealed significant differences in
the transcriptional intensity of bacterial species between the four sub-phenotypes
wherein we specifically observed an enhanced presence of bacterial transcripts in
severe and mortality patient’s nasopharynx compared with mild/moderate groups
(Fig. 3c; Table S3). This finding led us to elucidate further as to which species were
causing this differential abundance. Towards this, top 30 bacterial species were identi-
fied by mapping the relative bacterial transcriptional active isolates across all the 86
patients (Fig. 3d). Veillonella Parvula, Ralstonia solanacearum, Staphylococcus haemolyti-
cus, and Prevatolla Jejuni were found to be highly abundant across all the four sub-phe-
notypes. An extensive literature review of top 30 bacterial species along with its
reported association with SARS-CoV-2 has been provided as Table S4.

Each of the top 30 bacterial species were analyzed for its significant presence in any
of the four clinical sub-phenotypes. Importantly, we identified six bacterial species,
Achromobacter xylosoxidans, Bacillus cereus, Leptotrichia buccalis, Veillonella parvula,
Actinomyces meyeri, and Halomonas sp. showing significant differential transcriptional
intensity across sub-phenotypes (Fig. 3e to j). Among these species, Achromobacter
xylosoxidans and Bacillus cereus were significantly associated with mortality (Fig. 3e
and f) whereas Leptotrichia buccalis with severe group (Fig. 3g). Although Veillonella
parvula was found to be highly abundant across the entire cohort, a statistically signifi-
cant differential enrichment of this species was observed in the moderate patients
(Fig. 3h). Actinomyces meyeri and Halomonas sp. showed association with the mild
compared to moderate (Fig. 3i and j). Identification of severity associated transcription-
ally active microbes in COVID-19 have multiple potential applications, with future stud-
ies potentially unravelling the mechanistic association of these microbes with COVID-
19 severity. To seed these future investigations, we categorized the bacterial metabolic
pathways across COVID-19 sub-phenotypes.

Metabolic pathways as a function of microbial diversity between clinical sub-
phenotypes. The extensive non-redundant catalogue of microbial genes (KEGG path-
way analysis) identified differentially enriched pathways involved in bacterial functions
(Table S5). The top selected pathways showing differential enrichment across the clini-
cal sub-groups is depicted in Fig. 4a. The metabolic potential as revealed by carbohy-
drate and amino acid metabolism pathways showed depletion in severe and mortality
patients as compared with mild and moderate. The metabolism and biosynthesis path-
ways of nearly all amino acids (particularly phenylalanine, tryptophan, tyrosine, and lysine)
were decreased in abundance. Other carbohydrate metabolic pathways (galactose, glyoxy-
late and decarboxylate, and sucrose metabolic pathways) were consistently under-expressed
in both severe and mortality. Thus, the bacterial competence to produce and metabolize
nutrients seems to diminish with increase in clinical severity index in COVID-19 cases.
Alternatively, glycolysis/gluconeogenesis and oxidative phosphorylation pathways in the
mortality group showed expression similar to the mild group. Genetic information process-
ing pathways: replication and repair (homologous recombination and mismatch repair) and
folding, sorting and degradation (sulfur relay system) along with ABC transporters (mem-
brane transport for sugars, metals, peptides, amino acids, and other metabolites) were
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FIG 3 Bacterial species diversity and abundance profile between four sub-phenotypes from Holo-transcriptome study. (a) Shannon alpha
diversity index of bacterial species. (b) Principal coordinate analysis (PCoA) plot representing the beta diversity of bacterial species using Bray-Curtis

(Continued on next page)
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relatively depleted in severe and mortality groups, suggesting altered adaptation to adverse
microenvironment. On the other hand, the glycerophospholipid metabolism pathway was
observed to be enriched in mild and moderate cases, possibly indicative of concerted efforts
for bacterial adaptation to the microenvironment in these groups (27). Of note, the mortality
and severe patients showed significant overexpression of ribosomal proteins (Fig. 4b)
whereas, bacterial motility proteins and chemotaxis were significantly diminished (Fig. 4c, d).
Ribosomal proteins might be an indicator of changes in growth rate as evident by more
transcriptional intensity of rRNA in the microbiome of severe and mortality patients. Several
studies highlight the correlation between rRNA abundance with the active proliferation of
microbes inclusive of use of cellular rRNA as an indicator of in situ growth rate in various nat-
urally occurring bacterial populations. Studies in Escherichia coli and Salmonella typhimurium
have revealed that cellular RNA concentration is closely linked with growth rate (28–30).
However, such correlation is not linear and there are evidences toward the inverse relation-
ship between rRNA and active growth of microbes limiting the association between rRNA
and growth rates (31–36).

The comparative analysis of enriched KEGG orthology identifiers (KO) terms against
their corresponding metabolic pathways (Fig. 4a) revealed differential abundance
across the sub-clinical phenotypes as shown in Table S6.

Co-presence of respiratory viruses across COVID-19 patients. Using RVOP and
holo-transcriptome analysis, both methods identified significant differences in the abundance
of viruses in the four sub-phenotypes with relatively higher viral abundance observed in mild
and moderate patients (Fig. 5a, b; Table S4). A total of 12 different viruses were captured
as illustrated in Fig. 5c. Significant differences in viral abundance was observed only for
Choristoneura occidentalis granulovirus and Tobacco mosaic virus, however, we were unable
to find association with the disease sub-phenotypes. We also note diminution of Streptococcus
Phages and complete absence of Simbu orthobunyavirus from the mortality group (Fig. 5d).
This suggests the depletion of viral diversity in the mortality group when considering the
entire population of viral species.

DISCUSSION

Disease severity in COVID-19 is orchestrated through a series of variables: viral, host,
and resident microbes, leading to diversity of symptoms and an increase in the odds of mor-
tality. Stratification of patients in different classes of severity can be a definitive approach to
detangle the concomitant risk factors. This study utilizes an integrative approach involving
different perspectives of host clinical characteristics, viral genome variations, and a compre-
hensive exploration of the nasopharyngeal microbiome threaded together, to elucidate the
disease severity observed in the COVID-19 patient sub-phenotypes.

The clinical characteristics of the COVID-19 patients could only partly account for
the severe and mortality group cases. The non-modifiable risk factors like age, gender, and
comorbidity were in sync with previous studies which have shown detrimental effect during
COVID-19 (37), yet, a complete association is difficult to comprehend. It is estimated that
roughly 50% of the hospitalized patients had no reported comorbidity (38). Similarly, the
clade diversity of the viral isolates revealed a proportional presence of mild, moderate, and
severe patients in all the three clades—19A, 20A, and 20B. The dominant presence of mor-
tality cases in clade 20A could be attributable to the fact that clade 20A became the source
clade for VOCs (variants of concern) like Delta, Kappa, and Beta strains of SARS-CoV-2 (39).
However, presence of mild and moderate patients in clade 20A points toward other plausi-

FIG 3 Legend (Continued)
dissimilarity matrix. (c) Total bacterial reads abundance based on transcriptional active isolates between four sub-groups, significance calculated using
Kruskal Wallis test. The pairwise significance was calculated using Mann-Whitney U test. *** represents a P-value , 0.001. (d) The heatmap represents
the distribution of top 30 bacterial species in sub-groups. The boxplot on the left represents the overall transcriptional active isolates of the bacterial
species in the cohort. (e to j) Significant differentially abundant bacterial species between mortality and recovered sub-groups (mild, moderate and
severe), significance calculated using Mann-Whitney U test. * represents P-value ,0.05. (e) Achromobacter xylosoxidans in mortality versus mild, (f)
Bacillus cereus in mortality versus moderate, (g) Leptotrichia buccalis in severe versus moderate/mortality, (h) Veillonella parvula in moderate versus
mortality, (i) Actinomyces meyeri, and (j) Halomonas sp. in mild versus moderate.
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ble factors modulating the clinical outcome. Moreover, N:P13L mutation associated with the
recovered group was identified in VUI-NP13L (variant of interest) in Southeast Brazil around
June 2020 and was reported with low mortality rates and cases per million (40).

Q677H mutation associated with the mortality group emerged independently across six
lineages in the United States and showed evidence of adaptation, due to its effect on the

FIG 4 Relative enrichment of bacterial metabolic pathways across four clinical sub-phenotypes of COVID-19 patients. (a) Top 25 KEGG defined bacterial
pathways highlighting cumulative distribution of significantly enriched bacterial metabolic pathways. Specific significant pathway differences between
disease sub-phenotypes, (b) ribosome proteins, (c) bacterial motility proteins, and (d) bacterial chemotaxis. Statistical significance measured using Mann-
Whitney U test. * represents P-value ,0.05; ** represents P-value ,0.01; *** represents P-value ,0.001.
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proximal polybasic furin cleavage site in the Spike protein (41). Importantly, the clinical
impact of this mutation needs to be fully determined (42). Recently, it was reported to help
increase the infectivity and confer neutralizing antibody resistance, particularly in back-
ground of other VoCs (43). The presence of these mutations in our cohort highlights the im-
portance of genomics surveillance of the viral population but at the same time in vitro stud-
ies toward elucidating the mechanism/s is awaited.

The variable host clinical characteristics and the limited viral genetic diversity led us to
explore whether alterations in the microbiome composition due to SARS-CoV-2 infection
align with the scale of disease severity observed in our patient cohort. If yes, can such signa-
tures be identified during the early phase of the infection with value for disease stratifica-
tion? The composition of the nasal microbiome has been observed to be altered in several
respiratory infections including COVID-19 affecting the course of the disease and clinical out-
come (44). Different metagenomic studies portrayed decrease in the nasopharyngeal micro-
biome diversity in SARS-CoV-2 infected patients, leading to predominance of a specific
microbe that correlated with symptom severity (22, 23, 45).

Although the present study did not reveal significant shifts in diversity and compo-
sition of the nasopharyngeal transcriptionally active isolates among the four clinical
sub-phenotypes of COVID-19, this could be attributable to the Anna Karenina principle
(AKP) of microbiome dysbiosis (46–48), which implies that a greater observed variabili-
ty exists among individuals with dysbiotic microbiome. Additionally, multiple studies
investigating the bacterial communities and the respiratory microbiome in COVID-19
revealed drastic reduction in diversity and composition with increasing disease severity
(23, 49). Another plausible explanation for the observed differences relies on the transcrip-
tomic profiling method utilized for the current study, which may capture bioactivity from a
diverse community more effectively than the absolute DNA quantification methods com-
monly used for microbiome analyses (50, 51). Moreover, meta-transcriptome sequencing
can capture the microbiome profiles at high resolution along with the active functional ele-
ments, which has been demonstrated to change (microbial gene expression) without large
alterations in overall community structure (52).

FIG 5 Viral species abundance from Holo-seq and RVOP across four clinical sub-phenotypes of COVID-19 patients. Total viral abundance captured using, (a)
RVOP method, (b) Holo-seq method, (c) captured viral species with a relative abundance .1%, and (d) the Venn diagram represents the overall abundance
of each viral species across four groups in both RVOP and Holo-seq.
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Notably, a significant increase in the relative bacterial abundance (based on tran-
scriptional activity) in the severe and mortality groups was observed when compared
with the mild and moderate. This feature indicates the probable role of dysbiotic microbiome
in disease severity. Majorly, dysbiosis is associated with alteration in the abundance of bacterial
population causing opportunistic microbes to flourish or making way for pathogens for inva-
sion (53, 54). Separate studies have identified enrichment of different species like L. buccalis, V.
parvula, C. gingivalis, P. melaninogenica, H. parainfluenzae, R. mucilaginosa, and N. subflava in
the oral microbial communities of COVID-19 patients (23, 55, 56). Moreover, different mecha-
nisms have been suggested by which a dysbiotic nasopharyngeal microbiome, leading to an
overgrowth of certain microbial species, can alter or cause progression in disease severity of
COVID-19. A proposed mechanism is enrichment and subsequent migration of nasopharyn-
geal microbial species into the lungs, resulting in pneumonia and emphysema conditions (57).
This proposition was also seen in different studies, where oral pathogens propagated a new
disease when it migrated to other organs (23, 58, 59). Alternatively, a shift in the healthy micro-
bial community due to disease conditions might alter the cytokine production and lead to an
increase of both inflammatory response and clinical severity in respiratory diseases (60–62).

Taken together, viral-host resident transcriptionally active microbes’ cross talk might initi-
ate a sequence of dynamic events where the SARS-CoV-2 viral infection may modulate dif-
ferential abundance of particular bacterial species, leading to microbiome dysbiosis. A similar
interaction was shown by Susi et al., that competition for limited host resources may result
in a “tragedy of the commons” situation, where non-optimal levels of host exploitation may
emerge (63). These bacterial species might in turn aggravate the viral/primary infection
through different mechanisms based on their inherent functional properties (Fig. 6).

Higher transcriptional intensity of Achromobacter xylosoxidans and Bacillus cereus in
the mortality group may have implications in disease severity. A. xylosoxidans is an aer-
obic, motile, Gram negative bacteria that carries intrinsic as well as acquired mecha-
nisms of resistance, conferring multidrug-resistance (MDR) phenotype (64). A. xylosoxi-
dans, has emerged as an opportunistic pathogen, causing pulmonary infection in the
cases of dysfunctional immune response or predisposing conditions like end stage re-
nal disease or cardiac disease (65, 66). Interestingly, a study by Jabbar et al. reported A.
xylosoxidans as the second most prevalent bacterial species found in severe COVID-19
patients with resistance to several classes of antibiotics (67). This bacteria is reported
to enhance inflammation by increasing the production of cytokines such as IL-6, TNF-
a, and G-CSF as seen in the case of cystic fibrosis (CF) (68).

FIG 6 Key features and functional classification of the top 30 bacterial species across COVID-19 sub-phenotypes. A layered projection highlighting SARS-
CoV-2 infection associated transcriptionally active microbiome dysbiosis leading to differential distribution of bacterial species in the sub-phenotypes;
immunopathology of nasopharyngeal microbial species during dysbiosis; significantly abundant bacteria with their pathological correlation with disease
severity.
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Meanwhile, B. cereus, the facultative anaerobe enriched in mortality cases is known to
cause infection via consumption of contaminated food and nosocomial transmission (69).
Mainly, intestinal diseases such as diarrhea are reported to be caused by B. cereus yet, rarely
though, B. cereus cause lower respiratory tract infections. Shimoyama et al. highlighted a
case where the patient succumbed to lung infiltrates associated with B. cereus (70). A recent
study shows that during COVID-19, B. cereus co-infection can be observed in a patient with
probable immunocompromised state due to inhalation-based steroid use (71). Leptotrichia
buccalis is an opportunistic pathogen commonly found in the oral microbiota and reported
to cause severe pneumoniae in SARS-CoV-2-infected elderly individuals (72, 73). Similarly, L.
buccalis was significantly enriched in the severe group of our cohort with a median age
above 60 years. The transcriptional abundance of different microbial species between severe
and mortality groups with similar age presentation of;64 years suggests that the observed
microbial differences in the study is a function of the disease severity. Interestingly, the other
anaerobic opportunistic microbe, Veillonella parvula, has been reported as a marker for
COVID-19 when compared with flu and healthy controls. In our patient cohort, V. parvula
was found significantly enriched in the moderate group, although its substantial presence
was detected across the cohort. Additionally, studies deciphered that both V. parvula and
SARS-CoV-2 stimulate production of proinflammatory cytokines, mainly TNF-a, that might
aggravate the inflammatory and pro-oxidative responses leading to diverse respiratory infec-
tion outcomes (74–77).

On the other hand, Actinomyces meyeri and Halomonas spp. were reportedly enhanced
in mild COVID-19 symptom patients. Disease association with Halomonas species is rarely
reported (78) whereas A. meyeri is known to cause pneumonia and has a predilection for
dissemination, yet reported cases have mild presentations (79). The significant abundance
of specific microbial species across COVID-19 disease sub-phenotypes suggests their mod-
ulatory role in disease outcome. We summarized the current findings in Fig. 7.

The causal effect of the presence of different transcriptionally active microbial species in
different classes of severity was carefully looked through the treatment regime for each of
the subgroups. Based on the symptoms/symptom severity, Table 2 highlights treatment re-
gime given to each of the subgroups. The administration of antibiotics to each sub-pheno-
type could have been beneficial in alleviating the symptoms and relief to patients, especially
for the recovered group of patients. The presence of transcriptionally active isolates of differ-
ent microbial species might be playing a modulatory role in disease severity, as exemplified
by the presence of Achromobacter xylosoxidans and Bacillus cereus in the mortality group,
where A. xylosoxidans is reportedly resistant to several classes of antibiotics (67). High tran-
scriptionally active isolate abundance of A. xylosoxidans in the nasal microbiome in our mor-
tality patients might predispose the host to severe respiratory viral infection and non-
responsiveness to antibiotics. Although, it is pertinent to mention that we detected 2,417
genes for A. xylosoxidans with more than 80% similarity in our study, we did not find high
confidence MDR A. xylosoxidans genes in the mortality patients. One of the probable reasons
might be the time point of the transcriptional profiling, during which the MDR genes may
not be actively expressed. Similarly, the resistance of B. cereus to penicillins and cephalospo-
rins as a result of beta lactamase production is also reported to be leading cause of mortality
in infected patients (80).

Moreover, not only did the microbiomes demonstrate shifts in bacterial abundance
and populations across the sub-phenotypes of COVID-19, but the dysbiosis was also
functionally evident. The overall downregulation of metabolic pathways in severe and
mortality groups reflected a reduction in microbial functions, pointing toward an
unlikely impact on the host. The depletion of bacterial pathways associated with mem-
brane transport (two component system and ABC transporters), bacterial chemotaxis,
and cell motility in severe and mortality groups indicated toward lower bacterial
potential for sensing and adapting to the environment which is consistent with a previ-
ous study of COVID-19 (23, 81, 82).

Additionally, altered amino acids pathways across severe and mortality groups’micro-
biome could reportedly affect immune responses aggravating COVID-19 severity (83).

Microbial Signatures for COVID-19 Sub Phenotypes Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.02311-21 12

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02311-21


Furthermore, the nasopharyngeal transcriptionally active microbiome of the mortality
group patients did not show depletion of glycolytic pathway, wherein the micro-environment
favors aerobic glycolysis (evident through growth of aerobic bacteria), a condition that also
sustains high SARS-CoV-2 replication (84). Reasonably, we infer that nasopharyngeal

FIG 7 Possible functional role of specific transcriptionally active bacterial species in COVID-19 disease severity and outcome. Highlights the
possible mechanism where enhanced presence of certain transcriptionally active microbes can aggravate the inflammatory cytokine response
leading to disease severity.

TABLE 2 Outline of the treatment regime given to the different sub-phenotypes of COVID-19 patients during hospital staya

Groups Mortality (n = 21) Recovered (n = 177) P- value Mild (n = 85) Moderate (n = 73) Severe (n = 19) P-value
Treatment
Antimalarial 4 (19.04) 66 (36.26) 0.015b 34 (40) 25 (34.24) 7 (36.84) 0.756b

Antibacterial 3 (14.28) 21 (11.53) 0.974b 8 (9.41) 7 (9.58) 6 (31.57) 0.019b

Antiviral 4 (19.04) 65 (35.71) 0.172b 25 (29.41) 29 (39.72) 11 (57.89) 0.052b

Antibiotic 9 (42.85) 97 (53.29) 0.420b 46 (54.11) 42 (57.53) 9 (47.36) 0.718b

Antifungal 2 (9.52) 4 (2.19) 0.244b 2 (2.35) 1 (1.36) 1 (5.26) 0.785b

Anti-inflammatory 3 (14.28) 5 (2.74) 0.052b 3 (3.52) 2 (2.73) 0 (0) 0.862b,c

Anticoagulant 6 (28.57) 20 (10.98) 0.060b 7 (8.23) 7 (9.58) 6 (31.57) 0.012b

aData are shown as median as n(%) with the Chi2 test applied for significance. Values of significance are highlighted in bold.
bChi2 test.
cTest between two non-zero values.
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microbiome dysbiosis during SARS-CoV-2 infection might enhance pathogen invasion and al-
ter immune responses, contributing toward the observed clinical severity in different groups
of COVID-19 patients. In parallel with the transcriptionally active bacterial microbiome profile,
our work also characterized the local virome to understand the effect of SARS-CoV-2 infection
at the primary site of entry. Studies have reported an increase in pathogenic viral species co-
infecting the oral microbiome, accelerating disease severity (13). Yet, a significant difference in
abundance and diversity of viral species among the four clinical sub-phenotypes was not
observed, pointing toward possible viral interference mechanism due to SARS-CoV-2 infection
(85, 86). Moreover, a reduction in phage population of the microbiome can be an effect that
provides an additional milieu to opportunistic pathogens of the microbiome to grow and
cause secondary infections accelerating the clinical course.

Conclusion. The findings in the study offer an opportunity to bring forth the less
explored modulatory role of the microbiome alterations and disease severity in a hospital-
ized cohort of COVID-19 patients from the Indian sub-continent Fig. 8. The differentially
active isolates of certain bacterial species associated with clinical groups provide leads for
evaluating their probable roles in modulating the disease course in COVID-19. This especially
comes into play when it has been recognized that, for co-infecting bacterial species, differ-
ences exist between populations at risk, pathogen distribution, and antibiotic susceptibility.
Future strategies can include exploring the microbial spectrum in COVID-19 patients from
different geographical regions which might be beneficial in health care management.

The study can be strengthened in the future with the inclusion of the longitudinal
sampling of the patients included in the study. That may enhance the scope to under-
stand the dynamics of transcriptionally active microbial population change during the
course of the disease as well as the functional dynamics. A more balanced gender rep-
resentation could have been useful. However, because these are hospital-admitted

FIG 8 It highlights the study design and significant findings wherein microbial signatures for COVID-19 disease severity has been discovered in our hospital
admitted cohort of patients.
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patients during the COVID-19 disease, we appreciate the practical limitation. If possi-
ble, more than one hospital cohort could help expand the understanding and rele-
vance of the findings made in the study.

MATERIALS ANDMETHODS
Design of the study. The study was conducted with 198 COVID-19 patients enrolled between April

2020 to July 2020, to characterize the abundance of transcriptionally active isolates of different co-infecting
bacteria and viruses inhabiting the nasopharyngeal cavity of COVID-19 patients. Detailed clinical presentation
and demographic data along with RT-PCR test results and disease outcomes from each patient’s electronic
medical record were collected and carefully documented for its usage during analysis.

Sample collection and preprocessing. The patients were admitted to the MAX Hospital, Delhi,
India with confirmed COVID-19 positive status based on RT-PCR results. The nasopharyngeal and/or
throat swabs were collected in viral transport media (VTM) solution by the paramedical staff at the hos-
pital on the day of reporting, by trained medical staff with required safety precautions inclusive of PPE,
face mask, and gloves.

Clinical subgrouping of study participants. The patients were categorized into four sub-pheno-
types based on disease severity and outcome: mild, moderate, severe, and mortality, as per Indian Council of
Medical Research (ICMR) guidelines (Comprehensive Guidelines for Management of COVID-19 patients,
Directorate General of Health Services, MoHFW, GOI). Briefly, SpO2 levels, requirement of respiratory support,
and/or breathlessness parameters were taken into consideration. In mild cases, the SpO2 level was$ 94% with
no breathing problem. Moderate patients were defined as showing breathing difficulty with SpO2 levels rang-
ing between 91% and 93%. Severe patients showed respiratory distress with respiratory support requirement
and SpO2 levels, 90%. Mortality group was defined as patients who succumbed to COVID-19 during hospital
stay. Mild, moderate, and severe were clubbed together into one group as “recovered” compared with the
mortality cases, for some of the analysis included in the manuscript.

Viral RNA isolation and qRT-PCR. Viral RNA from VTM solutions was isolated using QIAmp viral
minikit, Qiagen, Cat. No. 52906 and SARS-CoV-2 detection and quantification was performed using
TRUPCR SARS-CoV-2 kit (3B BlackBio Biotech India Ltd., Cat. No. 3B304) with a cycle threshold of 35.

Library preparation and sequencing. Whole genome sequencing of the 198 RT-PCR positive sam-
ples, using the capture based Illumina Respiratory Virus Oligo Panel (RVOP), was done to capture SARS-CoV-2
genome as well as additional co-presence of other respiratory viruses. Using a combination of clinical data, dis-
ease sub-phenotype, and availability of RNA, a subset of 86 samples of the 198 total samples were studied to
explore the presence of transcriptionally active microbes using Holo-Seq (Holo-transcriptome). The library prep-
aration protocols for RVOP and Holo-transcriptome have been previously published from our lab (87). Briefly,
double stranded cDNA was prepared from 100 ng RNA using Superscript IV first-strand synthesis system
(Thermo Fisher Scientific, Cat. No. 18091050) and DNA polymerase I Large (Klenow) Fragment (New England
Biolabs, Cat. No. M0210S). The RVOP library was prepared using Illumina DNA Prep with Enrichment kit
(Illumina, Cat. No. 20018705) and the Holo-transcriptome library was prepared using Illumina TruSeq Stranded
Total RNA Library Prep Gold (Illumina, Cat. No. 20020598) as per the manufacturer’s protocol. Agilent 2100 bio-
analyzer was used to check the quality of both libraries. The RVOP library was denatured and diluted to optimal
loading concentration for sequencing on MiSeq platform, using v3 reagent kit at 2 � 75 bp read length. The
Holo-transcriptome library was sequenced on the NovaSeq 6000 system, using the NovaSeq SP reagents v1 at
2� 101 read length at 400pM loading concentration.

Sequencing data analysis and metatranscriptomic analysis. The sequencing data analysis was
performed as previously published from our lab (87). FastQC v0.11.9 was used to check the Phred quality
score for all sequences (Babraham Bioinformatics, 2020a – FastQC A Quality Control tool for High Throughput
Sequence Data). The quality score threshold was 20 and above. Adapter trimming was performed using the
TrimGalore v0.6.6 and alignment of sequences was performed using the HISAT2 v2.2.1 algorithm on human data
build hg38 (88, 89). SAM tools v1.12 were used to remove aligned human sequences (90). Henceforth, only
unaligned sequences were taken into consideration. BCFTools v1.12. generated consensus FASTA and variant call-
ing, which was followed by the alignment of sequences to the 40 respiratory virus panel of Illumina RVOP, to
explore the presence of respiratory viruses in addition to SARS-CoV-2 (91). The detected species were counted
using the number of reads mapped per species. Kraken2 was used to assign taxonomic labels to microbial spe-
cies detected from the RVOP and the Holo-Seq analysis (92). The output from the metagenomic classification of
the detected species obtained from Kraken was analyzed further using the Pavian software (93).

De novo assembly and pathway enrichment analysis. We used MEGAHIT v1.2.9 (94) to perform
the de novo assembly of the samples using the raw sequencing reads, and contigs larger than 150 bp were
retained to predict the genes by MetaGeneMark v3.25 (95) using default parameters. Then, CD-HIT v4.8.1 was
applied for gene clustering and merging each sample. Finally, redundant sequences with sequence similarity
and alignment lengths above 95% of the sequence length were removed. The functional profiles were anno-
tated according to Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (http://www.genome.jp/
kegg/) with the maximum e-value cut-off 1*10 2 5, minimum identity of 95%, and minimum alignment
length of 15 amino acids for proteins.

Mutational and phylogenetic study. Of 198 samples, 160 SARS-CoV-2 genomes (with .50% ge-
nome coverage) were used for phylogenetic analysis, as previously described by Mehta et al. (7). Clade
assignment to all the genomes was done using Nextclade (https://clades.nextstrain.org/). The vcf files
were used for mutational analysis. We applied a nonparametric Fisher exact test of significance (for inde-
pendence between two categorical variables) on our mutation data set which consisted of the total set
of mutations identified for the study cohort (independent of its presence in recovered or mortality). P-values
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were calculated from two-sided tests using 0.05 as the significance level. The direction of the association
between the mutation and group (recovered/mortality) was calculated using phi-coefficient correlation (rw)
by measuring the strength of association, henceforth identifying the significant mutations for the mortality
as well as recovered patients. Gviz and trackViewer packages from R were used to plot the lollipop plot to
visualize the mutations (96, 97).

Statistical analysis. The data was described using descriptive statistics, which display continuous
variables as medians or interquartile ranges and categorical variables as percentages or proportions.
Wherever appropriate, we compared the differences using the ANOVA, Mann–Whitney U test and Chi square
testing. To compare the distribution of bacterial presence across our patient categories, we employed the
Kruskal Wallis test. The Shannon Diversity index (H) was calculated to characterize the bacterial species diversity
in patient samples used for the Holo-transcriptomics study to account for the abundance and evenness of bac-
terial species in each patient sample. For analysis of beta diversity, we performed principal coordinate analysis
(PCoA) in PAST software using Bray-Curtis dissimilarity matrix and PERMANOVA was calculated to determine
the statistical significance of beta diversity (https://palaeo-electronica.org/2001_1/past/issue1_01.htm).

Data availability. The data sets presented in this study can be found online at the NCBI-SRA under
the accession numbers PRJNA676016 and PRJNA678831 the consensus fasta are available at the GISAID-
EpiCoV (https://www.gisaid.org/) under the submission IDs: EPI_ISL_5316892- EPI_ISL_5317001 and
EPI_ISL_5317004 - EPI_ISL_5317014.
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