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Overcoming the Straw Man Effect in
Oncology: Visualization and Ranking of
Chemotherapy Regimens Using an
Information Theoretic Approach

abstract

Purpose Despite the plethora of randomized controlled trial (RCT) data, most cancer treatment recom-
mendations are formulated by experts. Alternatively, network meta-analysis (NMA) is one method of
analyzingmultiple indirect treatment comparisons.However, NMAdoesnot account formixedendpoints or
temporality. Previously, we described a prototype information theoretical approach for the construction of
ranked chemotherapy treatment regimen networks. Here, we propose modifications to overcome an
apparent straw man effect, where the most studied regimens were the most negatively valued.

Methods RCTs from two scenarios—upfront treatment of chronic myelogenous leukemia and relapsed/
refractory multiple myeloma—were assembled into ranked networks using an automated algorithm based
oneffect sizes, statistical significance, surrogacyof endpoints, and timesinceRCTpublication. Vertex and
edge color, transparency, and size were used to visually analyze the network. This analysis led to the
additional incorporation of value propagation.

Results A total of 18 regimenswith 42 connections (chronicmyelogenous leukemia) and 28 regimenswith
25 connections (relapsed/refractory multiple myeloma) were analyzed. An initial negative correlation
between vertex value and size was ameliorated after value propagation, although not eliminated. Updated
rankings were in close agreement with published guidelines and NMAs.

Conclusion Strawman effects can distort the comparative efficacy of newer regimens at the expense of older
regimens, which are often cheaper or less toxic. Using an automatedmethod, we ameliorated this effect and
producedrankingsconsistentwithcommonpracticeandpublishedguidelines in twodistinctcancer settings.
These findings are likely to be generalizable and suggest a new means of ranking efficacy in cancer trials.

Clin Cancer Inform. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Health care data can be highly convoluted, given
the significant dimensionality, nonlinearity, and
temporality present in most clinical contexts. In
oncology, knowledge has been painstakingly built
over decades, primarily through carefully designed
randomized controlled trials (RCTs). RCT data,
which evolve longitudinally over years and usually
involvemany indirect comparisons, are known to be
subject to many potential biases, ones that can be
difficult to discern.1 As a likely result of this complex-
ity, the conventional approach to the ranking and
recommendation of cancer treatments studied in
RCTs has been expert consensus–driven guidelines
(eg, the National Comprehensive Cancer Network
[NCCN]guidelines).Alternatively,workbyothershas

shown that network meta-analysis applied to RCTs
canyieldpowerful insights2-7; however, thenetworks
in these studies have been relatively simple, do not
allow for mixed end points (eg, overall survival and
response rate), and do not account for temporal
factors. In complex networks, layout, animation,
and visual parameters such as size and color take
on increasing importance.8 For example, visual
analytics have been successfully applied to tem-
poral associations of laboratory results, phenotype
relationship networks, and patterns of publication
by biomedical specialty and primary degree.9-11

Visual analysis of networked RCT data may help
uncover previously underappreciated biases.

In previous work, we described a prototype ap-
proach for the automated construction of a ranked
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chemotherapy treatment regimen network using
information-theoretical techniques, which were
applied to the first-line treatment of chronic mye-
logenous leukemia (CML-1).12 Here, we demon-
strate how extension of the approach through
additional information theoretical measures help
overcome the apparent presence of a straw man
phenomenon. The straw man effect is a bias that
causes new studies to appear more promising
because they are compared with regimens that
are comparatively ineffective.1 Although this bias
has been described, the degree to which it per-
vades clinical trial design is unknown. The objec-
tive of this paper is to present anewalgorithm,built
on prior foundations,12 as well as to visually ana-
lyze this putative straw man phenomenon in the
CML-1 scenario and a second scenario, the treat-
ment of relapsed/refractory multiple myeloma
(RRMM).

METHODS

Context-Specific Regimen Identification

The RCTs that were previously identified in the
context of CML-1 were also used in this study,
along with several newly published RCTs. Briefly,
RCTswere identified throughaPubMedqueryand
by hand searches of the literature and published
guidelines. There were 27 RCTs identified between
1968 and 2016, with 18 distinct regimens, repre-
senting10,282patientsstudied(DataSupplement).
To identifyRCTs for thecontextofRRMM,weuseda
combination of an established knowledge base of
chemotherapy regimens, HemOnc.org,13 along
with RCTs identified by two recent network meta-
analyses in this setting.6,7 This yielded a total of
25 RCTs published between 2004 and 2016
containing outcome information for 28 distinct
regimens, representing 9,737 patients studied
(Data Supplement).

Algorithm Modifications

The previous valuation algorithm,12 which was
used for ranking as well as for coloration of verti-
ces, was revised to include strength of evidence,
effect sizes, aging effects, propagation, and re-
fresh as explained in the following paragraphs.

Efficacy measure. For all trials, we selected the
trial-definedprimary endpoint, as described in the
published manuscript, as the main efficacy mea-
sure for the valuation algorithm. For trials with
more than one predefined primary end point,
weused the least-surrogate endpoint. If the primary
end point wasmet, we used less-surrogate second-
ary end points in the algorithm if they had marginal
or better statistical significance (ie, P < .10).14

Conversely, if the primary end point was not met
but secondary endpointsweremet,we still used the
primary end point for the valuation algorithm. We
assigned a relative value (RV) as follows: 1.0 for
strong, 0.8 for intermediate, and 0.7 for weak end
points (Table 1; Equation 1). To determine the
stability of the rankings, we varied RV by 65%,
610%, and 620% in a sensitivity analysis.

Strength of evidence. In our pilot work,12weused a
simple win-lose-draw frameworkwith win and lose
defined as a superior or inferior finding with a P
value < .05, and draw defined as statistical non-
significance or formal noninferiority.15 Here, we
introduce a weighted entropy measure: the neg-
ative logarithm of the P value. Because very small
P values are difficult to interpret, this coefficient
is allowed to take a maximum value of 3 (ie,
P values ,.001 were truncated to .001).

Effect size.We replaced the win-lose-draw frame-
work with a coefficient representing the effect size
reported in the trial. For time-based outcomes (eg,
overall survival), we ideally used the hazard ratio
(HR) as the effect size.16 When HR was not
reported, we defined the effect size either as the
ratio of the median survival times or as the point
estimate reported as significant in the publication
(eg, the 3-year event-free survival). For nontem-
poral measures (eg, response rate), we used the
calculatedodds ratio as theeffect size. In all cases,
the effect size . 1 was transformed into a co-
efficient E, which is positive for the winning side
andnegative for the losing side (eg, if a publication
reports HR = 0.5, E = 2 for the winning side and
E = 22 for the losing side).

Agingeffects.To incorporateoutdatingof scientific
evidence, we introduced an exponential decay
coefficient as a function of the time since publi-
cation of trial results; additional details are in the
Data Supplement.

Vertex valuation algorithm. After incorporation of
strength of evidence, effect size, andaging effects,
the empirical vertex valuation formula is as follows:

Table 1. EndPointsUsed in theExaminedCML-1orRRMM
Trials, With Relative Value

End Point Relative Value

Overall survival 1.0

Progression-free survival 0.8

Time to progression 0.8

Overall response rate 0.7

Response rate 0.7
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Equation 1

v̂ n ¼�m

y¼1 2 log10ðPy Þ3RVy

3 Ey 3 log10ðNy Þ3 f ðay Þ
where for the n th vertex v, there are m incident
edges, E is the effect size coefficient of the y th
edge, N is the total number of patients in each
pairwise comparison, P is the P value of the y th
outcome, and f ðay Þ is the aging coefficient de-
scribed in the previous paragraph. A positively
valued vertex is considered recommendable, and
a negatively valued vertex is considered contra-
indicated. A vertex with value near zero is con-
sideredtohave lackingevidence,conflicting results,
or poor study quality such that there is insufficient
evidence on whether to recommend. Although the
valuation coefficient is unitless, the magnitude in-
forms the power of the valuation and, thus, it is not
normalized.

Propagation and refresh. To overcome the appar-
ent straw man effect (discussed in Results), we
investigated the introduction of indirect evidence
propagation. In our pilot work, we did not assign
any node valuation on the basis of indirect evi-
dence, such that the calculated network is akin
to a single-layer perceptron (aka, pairwise network
analysis). We augmented this model with informa-
tion propagation, which has been studied in the
context of social networks.17-19 Specifically, we
allow nodes that were calculated to lose value as a
result of newly introduced evidence to pass some
of their value loss to regimens to which they had
previously been superior (ie, single-generation
value propagation). Conversely, nodes that were
calculated to gain value as a result of newly in-
troduced evidencepass someof their value gain to
regimens to which they had previously been in-
ferior. For example, in CML-1, dasatinib was dem-
onstrated to be superior to imatinib20; however,
imatinib had been shown 7 years earlier to be
superior to interferon a and low-dose cytarabine
(IFNA/LoDAC).21 Therefore, a portion of the value
loss assigned to the imatinib node is propagated
to the IFNA/LoDAC node. This has the effect of
restoring some value to imatinib. When value is
propagated under these constraints, we also re-
fresh the age-related devaluing coefficient by one
half-life. This has the simultaneous effect of allow-
ing more value to be propagated while also re-
storing some relevance to the older regimen; this is
analogous to decreasing impedance in an elec-
trical circuit, and is one possible solution to the
problem of hindsight bias.22 See the Data Supple-
ment for a more detailed, graphical description.

Treatment Network Visualization

We used multiple visual variables to display the
treatment regimen networks: size, color, trans-
parency, andposition.23See theDataSupplement
for details.

Statistical and General Methods

R version 3.4.0 and RStudio version 1.0.143
(https://www.r-project.org/) were used for the cal-
culations. Graphs were created and displayed
using the igraph package version 1.0.124 (http://
igraph.org/r/); colorationwas by theRColorBrewer
package.25 Correlations between vertex value and
size before and after value propagation were cal-
culated using the Pearson product-moment cor-
relation;unadjustedPvalues, .05wereconsidered
statistically significant. Animations of all networks
and the R code used to develop them are available
upon request.

RESULTS

Visualization of the Treatment Regimen Networks

The resultant networks for CML-1 and RRMM in
the most recent year of analysis (2016), after in-
corporation of evidence strength, effect size, and
aging into the valuation algorithm, are shown in
Figures1Aand2A; a complete list of regimensand
the number of patients studied for each are shown
in the Data Supplement. On initial visualization
of the CML-1 regimen network, a few things are
immediately evident: (1) there are severe aging
effects on regimens1 through8,withmost of these
being valued somewhere near zero; (2) the quality
of the outcome measure degrades over time, with
the newer regimens almost exclusively evaluated
with weak surrogate end points (blue edges); and
(3) the largest vertex, regimen 9 (imatinib), is also
the lowest ranked. Visualization of the RRMM
network reveals that (1) aging effects only seem
prominent for regimens 1 through 5; (2) outcome
measures are mostly intermediate surrogates (eg,
progression-free survival); and (3) the largest and
most connected regimens are the lowest ranked.
The visually apparent link among connectedness,
size, and low valuation on the initial visual in-
spection led us to suspect that straw man effects
were present in both networks, but potentially
overstated.

Uncovering and Countering the Straw Man Effect

When the vertices are plotted by vertex value
versus size (ie, the total number of patients studied
under the regimen), the apparent tendency for
large vertices to be negatively valued becomes
more evident, as shown in Figure 3. In both
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contexts, this negative correlation was initially
statistically significant: For CML-1, the value of r
for the correlation of value and size was 20.52
(95% CI,20.80 to20.07; P = .026). For RRMM,
the value of r for the correlation of value and size
was20.65 (95% CI,20.82 to20.37; P = .0002).

Upon inclusion of propagation and refresh, the
valuation of some vertices changes dramatically,
as shown in Figures 1B and 2B. In the CML-1
network, imatinib moves from the lowest-ranked
regimen to the regimen ranked third highest;
IFNA/LoDAC inherits most of the negative value
from imatinib and becomes the lowest-ranked
regimen. In the RRMM network, almost all aging
effects disappear due to refresh, bortezomib and
lenalidomide -dexamethasone becomemore pos-
itively valued, dexamethasone (Dex) becomes even
more negatively valued, and pomalidomide-
dexamethasone (Pom-Dex) moves from the fourth-
highest ranked regimen to the second-highest
ranked. With this adjustment, the correlation be-
tween value and size changes and is no longer
significant; forCML-1, thevalueof r for thecorrelation
between value and size becomes 20.07 (95%
CI, 20.52 to 0.41; P = .78). For RRMM, the value
of r for the correlation of value and size becomes
20.33 (95% CI, 20.62 to 0.05; P = .09).

Sensitivity Analysis

With systematic variation in RV, themagnitudes of
the vertex values changed slightly, but the rank
order did not change for CML-1 or RRMM. Pos-
itively valued regimens remained positively valued
and vice versa. See the Data Supplement.

DISCUSSION

The interpretation of complex networked data
benefits from computational approaches and vi-
sualization of the results. In the examples dis-
cussed here, multiple visual channels (ie, color,
transparency, size, position) provided an inte-
grated picture of context-specific treatment sce-
narios that evolved over many years (CML-1, 49
years; RRMM, 13 years). We were able to lever-
age human color perception through the use
of a divergent color scale,26 as compared with
the rainbow color map often used in scientific
visualizations.27 The human visual system is par-
ticularly well adapted for anomaly detection, ow-
ing to enhanced perception of color, edges, and
outliers.28,29As such,wewere able to immediately
recognize a potential anomaly in that the largest
nodes in the CML-1 andRRMMnetworks seemed
to be both highly connected (ie, compared with
many other regimens) and negatively valued. This
evidence from visual inspection led to further in-
vestigation into a possible strawman effect, which
was initially supported by the existence of a sta-
tistically significant negative correlation between
vertex value and size for both contexts. Through
the introduction of propagation and refresh into
our algorithm,wewere able to ameliorate the straw
man effect, although it was not eliminated entirely.

Generally, the straw man effect is most evident
when new interventions are comparedwith clearly
inferior regimens.1,30 A subtler version is the ten-
dency to compare a new regimen with a compar-
atively effective regimen using a weaker surrogate
endpoint, suchasprogression-free survival.31-33 It
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Fig 1. Chemotherapy
regimen network for first-
line treatment of chronic
myelogenous leukemia-1
(CML-1), through 2016. (A)
Initial valuations, before
application of propagation
and refresh. The current
standard of care for CML is
the use of tyrosine kinase
inhibitors (TKIs) in the
upfront setting. Consistent
with this, TKIs are highly
ranked, with the exception
of imatinib, which is the
lowest-ranked regimen. (B)
Applying propagation and
refresh to the network
changes several valuations,
most notably imatinib.
DBM, dibromomannitol;
HD, high dose; HiDAC,
high-dose cytarabine;
IFNA, interferon a; LoDAC,
low-dose cytarabine; MRD
allo-SCT, matched related-
donor allogeneic stem-cell
transplant.
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has been suggested that pharmaceutical industry
support, alongwith reluctance to sponsor head-to-
head comparisons of drugs manufactured by per-
ceivedcompetitors,mayexacerbatesucheffects.34,35

Two examples where the straw man effect may be
operational in cancer domains other than those
examined here are dacarbazine in melanoma,
where at least nine RCTs demonstrating inferiority
have been published between 2000 and 201736;
anddocetaxel innon–small-cell lungcancer,where
at least eight RCTs demonstrating inferiority have
been published between 2014 and 2017.37 The
straw man effect is particularly hard to identify
directly from the medical literature because the
design and execution of RCTs may precede their
publication by years. Also, many contexts have the
fortunate situation in which prognosis is improving
as a result of treatment, including both CML-138,39

and RRMM40; this will naturally lead to the need to
substitute surrogate end points so that new RCTs
can be completed within a reasonable time. An
intriguingpossibleway tomitigate thebiases ofRCT
design is the use of a treatment of physician’s
choice control arm, which was used in the recent
(negative) CheckMate 026 trial.41,42

Any algorithmic ranking algorithmmust be judged
on facevalidity. In the finalCML-1network (Fig 1B),
the algorithm ranks nilotinib, imatinib (standard
and high dose), and dasatinib the highest, in close
concordance with NCCN guidelines.43 Imatinib, in
particular, is the subject of ongoing contention for

many reasons, including (1) all regimens prospec-
tively evaluated against imatinib subsequent to the
IRIS (International Randomized Study of Interferon
and STI571) trial21 have either been neutral or
superior to imatinib; (2) surrogate end points have
been substituted extensively; and (3) imatinib is
nowgeneric andcostmaybe lower than treatments
still under patent protection.44 Given these chal-
lenges, it is notable that our updated algorithm still
ranks imatinib highly. In the final RRMM network
(Fig 2B), the algorithm ranks DRd as the highest
and Dex as the lowest ranked regimen, in agree-
ment with the analyses by Botta et al6 and van
Beurden-Tan et al.7 Interestingly, our algorithm
ranks a doublet, Pom-Dex, as second-highest, just
behind Dara-Len-Dex. This is primarily due to the
refresh ofDex,which allows for substantial negative
value to be propagated from Pom-Dex to Dex. The
validity of this finding is supported by the fact that
Pom-Dex has a category 1 recommendation by
the NCCN, although it is noted by the NCCN
that triplet regimens are preferred to doublet
regimens except in frail or elderly patients.45

Notably, the only triplet compared with Pom-Dex,
pomalidomide-cyclophosphamide-dexamethasone,
was in a randomized phase II trial with a weak
surrogate primary end point (overall response rate)
andborderline significance (P= .035).46Given that
Pom-Dex is relatively well tolerated,47,48 and that
toxicities are a serious concern for modern mye-
loma drugs,49 our findings may have real-world
significance.
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Fig 2. Chemotherapy
regimen network for
treatment of relapsed/
refractory multiple
myeloma, through 2016.
(A) Initial valuations, before
application of propagation
and refresh. The current
standard of care is doublet
or triplet therapy using an
immunomodulatory drug or
proteasome inhibitor
backbone. This is reflected
in the ranking, although
Bort-Dex and Len-Dex are
the lowest-ranked
regimens. (B) Applying
propagation and refresh to
the network changes
several valuations; most
notably, Dex is much more
negatively valued. Bort,
bortezomib; Car,
carfilzomib; Cy,
cyclophosphamide; Dara,
daratumumab; Dex,
dexamethasone; Elo,
elotuzumab; HD, high
dose; Ixaz, ixazomib;
LD, low dose; Len,
lenalidomide; Panob,
panobinostat; Pom,
pomalidomide; SC,
subcutaneous; Siltux,
siltuximab; Thal,
thalidomide; Vorin,
vorinostat.
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There are several limitations to our current ap-
proach. First and foremost, significant methodo-
logical challenges remain in the field of dynamic
network analysis, especially with respect to in-
study and between-study effect modifiers.50-52

The vertex valuation algorithm contains several
empirically derived coefficients and, therefore,
could be subject to unmeasured bias. However,
it is notable that the ASCO Value Framework has
adopted similar weighting metrics to those we use
for the surrogacy of end points.53,54 The ASCO
Value Framework and other approaches to com-
parative valuation, such at the NCCN Evidence
Blocks,55 are also empirically derived. We have
used several definitions for effect sizes, including
using point estimates when HRs are not reported.
Older publications are more likely to report point
estimates rather than HRs, so this could
introduce a time-based systematic bias.56 In rec-
ognition of this limitation, we support efforts such

as SAMPL to encourage uniform reporting of
HRs.57 Current work is focused (as future work
will be) on the use of ensemble methods to eval-
uate how rankings changewith perturbation of the
weighting coefficients, with a goal of choosing a
consensus model that represents best fit.58 Be-
yond this methodological limitation, themeasured
valuations may also be subject to positive publi-
cation bias (ie, RCTs that demonstrate a statis-
tically significant result are more likely to be
published).59 We have tried to ameliorate the
known tendency for positive publication bias by
including so-called gray literature when possible.
Future workwill investigate incorporating informa-
tion from clinical trial registries (eg, ClinicalTrials.
gov) so that unpublished trials might be incorpo-
rated into the model. It is also possible that sup-
plementation with comparative effectiveness data
may change the valuations and subsequent rank-
ings.Wewillalso investigatemoregranulardefinitions
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Fig 3. Scatterplots of
vertex value versus size for
CML-1 and RRMM. Linear
regression lines using the
least squares approach are
overlaid. For all panels, the
results show that value is
inversely correlated with
size, although the
correlation becomes
nonsignificant once
propagation and refreshare
instituted. Proportionate
size and transparency are
preserved from the
treatment network
visualization; numbering of
regimens is omitted to
improve clarity. CML-1,
chronic myelogenous
leukemia; RRMM,
relapsed/refractory
multiple myeloma.
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of time of publication and incorporate evidence
updates into the valuation algorithm, as opposed
to the current method of using interim updates
only to modify the aging coefficient.

In conclusion,wehavedescribedhow thecreation
and visual inspection of chemotherapy treatment
regimennetworks can rapidly lead to new insights.
In both of the described use cases, the visual vari-
ables of color, transparency, size, and position led to
an almost immediate recognition of an anomaly that

appeared to be the manifestation of the straw man
effect.Additionalmodifications to thealgorithmled to
hierarchical rankings with face validity for both sce-
narios.These findingsare likely tobegeneralizable to
any cancer setting with multiple indirect compari-
sons, and they suggest a new means of ranking
efficacy in cancer trials.
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59. Chan AW,Hróbjartsson A, HaahrMT, et al: Empirical evidence for selective reporting of outcomes in randomized trials:
Comparison of protocols to published articles. JAMA 291:2457-2465, 2004

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 9

https://www.nccn.org/professionals/physician_gls/pdf/cml.pdf
https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf
https://www.nccn.org/evidenceblocks/
http://www.equator-network.org/2013/02/11/sampl-guidelines-for-statistical-reporting/
http://www.equator-network.org/2013/02/11/sampl-guidelines-for-statistical-reporting/
http://ascopubs.org/journal/cci

