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1  | INTRODUC TION

The birth and history of life in nature are not random. The con-
cept of species, the lowest unit in biological classification, contains 
various information. Among them, the range size of species varies 
among taxa, such as mammals, insects, birds, and plants (Brown 
et  al.,  1996; Gaston,  1998). They show distinct patterns based 

on the evolutionary history and ecological requirements of the 
taxa, their habitat, and geographic conditions (Hernández-Rojas 
et al., 2020; Kreft et al., 2010; Lomolino et al., 2006; Smith, 1993). 
These patterns are reported for a wide range of taxa in many re-
gions (Addo-Bediako et al., 2000; Kim, Seo, et al., 2019; Morin & 
Lechowicz,  2011; Pintor et  al.,  2015; Ribas & Schoereder,  2006; 
Tomašových et  al.,  2016); however, the interaction between the 
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Abstract
Research on species richness patterns and the advanced elevational Rapoport rule 
(ERR) has been widespread in recent years; however, there is a lack of such research 
for the temperate mountainous regions in northeast Asia. Here, we collected plant 
species from the Seorak Mountain in northeast Asia through field surveys. The spe-
cies were divided into 11 groups according to the life-form types and phytogeog-
raphy affinities of each species. The ERR was evaluated using Steven's method and 
by examining the species richness patterns of each group. The species richness pat-
terns revealed a positive multimodal pattern along the elevation gradient, but phy-
togeography affinities (increasing trend) and life-form analysis (unimodal) exhibited 
different patterns. The elevation gradients (1,350 m for the mean elevation–range 
relationships), which are affected by the boundary effect and different life forms, did 
not consistently support the ERR. However, herbs as well as rare, endemic, and red 
list species showed consistent support for the ERR, which could be attributed to the 
influence by phytogeography affinities. Therefore, the results from Seorak Mountain 
showed that the ERR was not consistent for different plant life forms in the same 
area; however, phytogeography affinities could support and explain ERR.
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taxon range size and species diversity patterns from various re-
gions lacks empirical evidence.

Biodiversity, which is continuously being explored worldwide, re-
mains obscure. In addition, the biodiversity of many regions remains 
unexplored. Evaluating the patterns of species richness according 
to the altitude gradients in the unexplored regions is very import-
ant for the conservation of biodiversity. Biodiversity patterns along 
elevation gradients have been studied for numerous taxa and ter-
rain extents (Feng et al., 2016; Rahbek, 1995, 1997; Stevens, 1992; 
Vetaas & Grytnes, 2002; Wang et al., 2007; Wu et al., 2014; Zhou 
et  al.,  2019). In general, positively unimodal and/or monotonically 
declining are the most common patterns of vertical richness along 
elevation gradients of mountains (Pan et  al.,  2016; Rahbek,  1995, 
2005; Wang et  al.,  2007). The former pattern indicates that the 
species richness increases first, decreases after the mid-peak, and 
maximum diversity occurs below the middle of the elevation gra-
dients (Kessler, 2000; Trigas et al., 2013; Vetaas & Grytnes, 2002). 
Additionally, few other patterns of increase in species richness along 
the elevation gradients, such as increasing, horizontal, and decreas-
ing patterns, have been reported.

Among the various theories on biodiversity patterns, Stevens 
(1992) elevational Rapoport rule (ERR) remains widely debated 
(Almeida-Neto et  al.,  2006; Colwell & Hurtt,  1994; Fleishman 
et al., 1998; Ogwu et al., 2019). This approach has attracted the 
attention of ecologists and biogeographers worldwide; however, 
there is a considerable controversy regarding the ERR, because of 
the high level of variability supporting the hypothesis. Some stud-
ies partially support the ERR (Chan et al., 2016; Feng et al., 2016; 
Rohner et  al.,  2015; Sanders,  2002; Zhou et  al.,  2019), while 
the others offer little or no support (Bhattarai & Vetaas,  2006; 
Fleishman et  al.,  1998; Guerrero et  al.,  2011; Külköylüoğlu 
et  al.,  2012; Kwon et  al.,  2014; McCain & Bracy Knight,  2013). 
Altitude range shifts due to climate change can increase the risk 
of extinction for range-restricted species (Elsen & Tingley, 2015; 
Freeman & Class Freeman,  2014; Harte & Shaw,  1995; McCain 
& Colwell,  2011). Therefore, the accumulation of research and 
information on ERR in various regions helps to increase our un-
derstanding of the rule; it also aids the conservation of species 
with particularly narrow distributions, in turn helping maintain 
and promote biodiversity.

An important prediction of the ERR is the positive relationship 
between range size and elevation (Stevens, 1992). The pattern in 
the altitude range size may differ for each taxon (Feng et al., 2016; 
Gaston, 1996), suggesting that the range altitude relationship var-
ies depending on the ecological characteristics and physiological 
adaptations to the climate or microenvironment along the alti-
tude gradient. Temperate taxa show a wider altitude range size, 
compared to that of tropical taxa, because they may have expe-
rienced higher variability in environmental factors during their 
evolutionary and geographic history (Oommen & Shanker, 2005; 
Wang et  al.,  2007). Therefore, information from various re-
gions is required to determine the link between ecological and 
physiological properties and biogeographic affinity.

Another hypothesis made using the ERR is that species diver-
sity decreases as altitude increases. However, the results from 
previous studies have been inconsistent (Feng et al., 2016; Zhou 
et  al.,  2019). For ERR, a multimodal trend, rather than the un-
imodal decreases, has been observed worldwide; and therefore, 
further surveys are required. Species with tropical affinities can 
migrate to other habitats along the warm climate zones (Bergamin 
et al., 2021; Feeley et al., 2012). This suggests that biogeographic 
affinity of different taxa is capable of differentiated adaptation 
to environmental factors, including the altitude. Species with dif-
ferent biogeographic affinities may exhibit varying patterns of 
richness with altitude, which explains the differences in support 
for the richness-altitude hypothesis of the ERR (Feng et al., 2016; 
Zhou et al., 2019).

It is unclear whether ERR accounts for the relationship be-
tween the various life forms and phytogeographic affinities (Zhou 
et al., 2019). Phytogeographic affinities are linked to elevation range 
sizes and elevation trends (Wang et al., 2007). The hard boundary 
effect is bounded by the upper and lower limits (boundaries) of the 
altitude according to the species range size, and the unimodal pat-
tern of species diversity occurs as an overlapping increase of the 
species range size along the mid-peak of elevation gradients (Feng 
et al., 2016). Therefore, exploration of new regions is essential for 
comparing differences in ERR with respect to the influence of life 
forms and phytogeographic affinities.

In this study, (a) the ERR was applied to Seorak Mountain 
(1,708 m), which is relatively lower than the world's highest moun-
tains (Himalayas at 8,848 m or Andes at 6,961 m); (b) we determined 
the plant distribution pattern according to the boundary effect and 
plant geographical affinity; (c) information regarding the species 
range-size distribution patterns on the Seorak Mountain area was 
obtained; and (d) based on our findings, we hope to highlight the 
importance of exploring the biodiversity patterns in this area, which 
is unexplored.

2  | MATERIAL S AND METHODS

2.1 | Study area

The Seorak Mountain (128°18′N, 38°05′E) is in eastern Korea and 
covers an area of approximately 398  km2 (Figure  1a). The main 
peak of Seorak Mountain is Daecheongbong (1,708 m), and it is the 
second highest peak in Korea. The climate of the region is temper-
ate, with a mean annual temperature of 3.05°C and mean annual 
precipitation of 1,537.39 mm (Kim, Lim, et al., 2019). Its temper-
ate forests comprise of Pinus densiflora or Abies holophylla in the 
lowlands and Betula ermanii, Pinus koraiensis, Quercus mongolica, 
and Abies nephrolepis in the highlands. There are also dwarf tree 
species near the peak and in the highlands, including Pinus pumila, 
Taxus caespitosa, and Thuja koraiensis, as well as arctic-alpine 
plants, such as Arctous ruber, Crataegus komarovii, and Vaccinium 
uliginosum.
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2.2 | Data collection

To evaluate the relationship between elevation range size and spe-
cies richness of vascular plants along the elevation gradients, the 
elevation range (500–1,708  m) of investigation was chosen. This 
study area was divided into 13 elevation bands for establishing the 
field survey route (100  m bands, Figure  1b). The survey area was 
chosen considering the various terrains and environmental features 
(e.g., topography, valleys, ridges, and slope direction), within each 
elevation band. We conducted surveys in multiple elevation bands to 
minimize the possibility of bias due to uneven sampling. In addition, 
field surveys were conducted using the same sampling intensity via 
a phytosociology-based plot sampling method. Each plot (400 m2) 
was installed on the mountain at elevation intervals of 100 m using 
the Misiryeong, Hangyeryeong, Danmokryeong, and Osaek trails 
on Daecheongbong. The total number of survey plots was 228. 
The lengths of the Misiryeong, Hangyeryeong, Danmokryeong, 
and Osaek trails are approximately 15.4, 9.5, 15.5, and 10.3  km, 

respectively. The study was carried out from March to October in 
2016 to 2020. Within each plot, the cover-abundance scale and 
plant species were recorded using the vegetation survey method 
(Braun-Blanquet, 2013). The location of each plot was recorded 
using Garmin Montana 64s GPS equipment (Garmin).

2.3 | Plant life forms and taxonomy

Following the Raunkiær system (Raunkiær, 1934), each species was 
classified as tree, shrub, liana, herb, pteridophyte, or woody species 
(including trees, shrubs, and lianas) based on the species descrip-
tions in the illustrated plant books by Lee (2003) and KNA (2008, 
2010). Species were classified as common, rare, or endemic to Korea 
(KFS, 2010a, 2010b; KNA, 2008, 2010; Lee, 2003). In addition, rare 
plants were classified into different groups based on the IUCN red 
list 2020. The rare and red list species found in Mountain Seorak have 
phytogeographic affinities (e.g., P.  pumila, Leontopodium leiolepis, 

F I G U R E  1   (a) Location of the Seorak Mountain (peak 1,708 m) in Korea; (b) 100 m vertical elevation bands of the Seorak Mountain. The 
survey route and plots were as follows (1) Misiryeong, (2) Hangyeryeong, (3) Danmokryeong, and (4) Osaek
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A. ruber, and Thalictrum coreanum). In Korea's Seorak Mountain, na-
tive species or rare species appear in isolation after the Pleistocene 
Epoch (Chung et al., 2017; Kim, Lim, et al., 2019; Kong, 2002, 2004). 
Rare or endemic plant species appearing in Seorak Mountain are 
considered tentatively as having a phytogeographical affinity, and 
most of the polar-alpine plants appearing in Korea are isolated and 
distributed at elevations of 1,500–1,800 m or higher. In particular, 
Seorak Mountain is a mountainous area that exhibits these phyto-
geographical affinities; it has formed a treeline from 1,500 m and 
has an extreme climate and environment. With this phytogeographic 
perspective, a species list was prepared for the endemic or rare 
plants, and red list species recorded in the field survey.

2.4 | Species richness

Species richness was defined as the total number of species in 
all the selected plots within the 100-m elevation band, referred 
to as gamma diversity; a species was defined as being present in 
every 100  m band between its upper and lower elevational limits 
(Bhattarai & Vetaas, 2006; Feng et al., 2016; Stevens, 1992; Vetaas 
& Grytnes, 2002; Zhou et al., 2019). We calculated the species rich-
ness for the distribution patterns of the total plant species, each life 
form, and each rare, endemic, and red list species (IUCN, 2020). To 
explain the potential basic mechanism that induced the diversity 
pattern of the species in Seorak Mountain, we analyzed the eleva-
tion pattern at the family level along the elevation gradients.

2.5 | Elevation range size

The number of species present in each plot was estimated using 
the interpolation method. To estimate the range-size distribution 

of each species, we identified the minimum and maximum elevation 
for the distribution of each plant species in each 100 m elevation 
band. Species that occurred only in a single plot were given a range 
of 100 m and included in the analysis, referred to as gamma diversity. 
We calculated the elevation patterns of the species richness, each 
life form, and each group of phytogeographic affinities (i.e., endemic 
or rare plants, and IUCN red list). The mean elevational range of the 
species in a given plot was calculated by averaging the elevational 
ranges of each species present (Stevens, 1992).

We used our own field observations based on Steven's method 
and generalized additive models to explore the elevational pattern 
of range size, calculated using the gam function of the R package 
ggGam (Feng et al., 2016; Zhou et al., 2019). The elevation range size 
for each species was estimated using the distribution patterns be-
tween the minimum and maximum elevations. A cubic smooth spline 
was used to evaluate the significance of specific trends in the eleva-
tion range size; and species richness was calculated using the plot_
smooths function of the R package mgcv (Feng et al., 2016; Hastie & 
Tibshirani, 1990; Zhou et al., 2019). These analyses were carried out 
using R 3.6.3 (R Core Team, 2020).

3  | RESULTS

3.1 | Patterns of species richness along the 
elevation gradient

A list of 238 plant species including varieties and subspecies belong-
ing to 163 genera and 70 families was compiled for Seorak Mountain, 
based on field data collected during vegetation surveys in this re-
gion from 2016 to 2020 during the most favorable season for plant 
flowering (i.e., when most plants could be identified). The total spe-
cies richness exhibited a positively multimodal pattern along the 

F I G U R E  2   Elevation patterns of species richness of vascular plants on the Seorak Mountain. Total species richness (a); species richness 
excluding rare, endemic, and red list species (b); and species richness of trees (c); shrubs (d); herbs (e); lianas (f); pteridophytes (g); and woody 
species (h)

(a) (b) (c) (d)

(e) (f) (g) (h)
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elevation gradient, with a pronounced mid-peak at 1,008.4 m above 
sea level (a.s.l.). At this peak, 41 taxa were identified in each elevation 
(Figure 2a). After rare and endemic species were excluded, the results 
were similar to those of the pronounced mid-peak at 1,004.1 m a.s.l; 
39 taxa were observed at the peak (Figure 2b). For the different life-
form groups, there were decreases in tree species at 927.3 m, shrub 
species at 932.7 m, and climber species at 937.4 m (Figure 2c,d,f). In 
contrast, the multimodal pattern exhibited decreased herb species at 
1,435.5 m, pteridophytes at 1,104.1 m, and woody species (including 
trees, shrubs, and lianas) at 1,004.8 m (Figure 2e,g,h).

The analysis at the family level along the elevation pattern indi-
cated that the number of families increased with the elevation. In ad-
dition, the average distribution of families containing species with a 
wide altitude range such as Viloaceae, Aceraceae, Liliaceae, Rosaceae, 
and Betulaceae was found to be between 900 and 1,100 m (Figure 3).

3.2 | Mean elevation range size for the 
distribution of life-form groups

The mean elevation range size for total species richness exhibited a pro-
nounced downward trend after the mid-peak at 1,291.7 m (Figure 4a). 

The mean elevation range size of excluding rare, endemic, and red list 
species showed a downward trend at 1,292.7 m in the elevation re-
gions (Figure 4b), as observed for total species richness. Similarly, trees, 
shrubs, lianas, and woody groups exhibited a sharp downward trend 
after the mid-peak. Pteridophytes exhibited a gentle downward trend 
at 1,061.7 m, but no trend was detected for herbs (Figure 4).

3.3 | Elevation patterns of the rare, endemic, and 
red list species (IUCN)

Rare, endemic, and red list species with phytogeographic affinities 
intermittently appeared on the Seorak Mountain from 500 m; in con-
trast to the elevation patterns of the life forms or total species, the 
rare species increased continuously from 1,613.3 m (Figure 5a), and 
endemic species exhibited a positive unimodal pattern at 1,430 m 
(Figure 5b). Red list species showed elevation patterns similar to that 
of rare species (Figure 5c). Furthermore, rare and endemic species 
were almost absent below 800 m on the Seorak Mountain (Figure 5). 
The mean elevation range was slightly adjusted to the range size 
compared to species richness and it exhibited a pattern similar to 
that of the species richness elevation.

F I G U R E  3   The richness of families within each plot in the vegetation established at the study sites, Seorak Mountain
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4  | DISCUSSION

The results of the empirical data were similar to that in previous 
studies for various taxa (e.g., birds, land snails, and fish); they were 
unimodal or multimodal in richness along the elevation gradients 
(Carvajal-Quintero et al., 2015; Liew et al., 2010; Pan et al., 2016). 
The mid-peak in richness was followed by a hump at elevations be-
tween 900 and 1,100 m (Figure 2). The relationship between eleva-
tion and species richness in Seorak Mountain could be understood 

based on the unimodal pattern attributed to the accumulation of 
species with a wide range of sizes and the emergence of various spe-
cies (Figure 3).

In tropical and subtropical mountains, unimodal patterns of or-
ganisms are common and are more likely to appear, because of peak 
diversity below the mid-point of elevation (Cirimwami et al., 2019; 
Feng et al., 2016; Guo et al., 2013; Rahbek, 2005; Zhou et al., 2019). 
Mountains always exhibit a larger altitude range and longer climatic 
gradients; and therefore, they generally have unimodal patterns.

F I G U R E  4   Mean elevation range size of different of life-form groups along the elevation gradient of the Seorak Mountain: (a) total plants; 
(b) total plants excluding rare, endemic, and red list species; (c) trees; (d) shrubs; (e) herbs; (f) lianas; (g) pteridophytes; and (h) woody species

(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E  5   Elevation patterns in species richness of (a) rare species, (b) endemic species, and (c) red list (IUCN), and mean elevation range 
of (d) rare species, (e) endemic species, and (f) red list (IUCN) species on the Seorak Mountain

(a) (b) (c)

(d) (e) (f)
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The significant unimodal pattern in the proportion of woody 
plants in relatively low mountain areas, including Seorak Mountain, 
reflects their physiological adaptations. The pattern of these 
woody plants suggests that a strong boundary effect can result in 
a unimodal pattern (Colwell et al., 2005; Feng et al., 2016; Vetaas 
& Grytnes, 2002). Seorak Mountain is a low mountain with an al-
titude of 1,708  m; however, its treeline begins at 1,500  m, above 
which characteristic dwarf and arctic-alpine plants appear (Kim, Lim, 
et al., 2019; Kong, 2002). This boundary effect can also be seen in 
the mean elevation range size. The mean elevation range size mostly 
peaked below 1,500 m and showed a single-mode pattern (Figure 4). 
Therefore, the boundary effect could induce a mean range size un-
imodal trend in mid-elevation areas, and a similar unimodal trend in 
life forms with a wide elevation range.

Furthermore, the presence or absence of rare and endemic spe-
cies (maximum peaks at 1,613.3 and 1,430 m, respectively; Figure 5) 
greatly influences the altitude patterns of the total species richness 
(elevation 900 to 1,100 m; Figure 2a,b). When rare and endemic spe-
cies were excluded, the species richness followed the unimodal rule 
from approximately 1,000 m and with higher altitudes. This is pos-
sibly because of the shorter growing seasons, lower temperatures, 
lower mass circulation, and treeline-like environments (i.e., physical 
environments such as hard rock formations and physiological con-
straints due to extreme climatic conditions). The region around the 
Daecheongbong Peak of Seorak Mountain has strong winds and 
a rocky terrain; this will benefit species with a small distribution 
range such as rare or endemic species (Kim et al., 2017; Kim, Lim, 
et al., 2019).

In the Himalayas (Bhattarai & Vetaas, 2006; Feng et  al.,  2016; 
Vetaas & Grytnes,  2002), Andes (Cuesta et  al.,  2017; Hutter 
et  al.,  2013), and various African mountain ranges (Cirimwami 
et al., 2019; Zhou et al., 2019), the species richness of rare and en-
demic species continuously increased at higher altitudes, a pattern 
similar to that in most mountains. In the Himalayan Mountains of 
Nepal, the number of endemic species increases with elevation gra-
dients up to an altitude of 4,200 m (Vetaas & Grytnes, 2002), and 
rare and endemic species in Korea's Seorak (maximum peak 1,708 m) 
increased at 1,613.3 and 1,430 m, respectively (Figure 5). The phys-
iological adaptations of the plants could have reduced the range size 
of endemic species or rare species at a range different from that for 
the general species, particularly in the lowlands. Therefore, endemic 
and rare species could peak at altitudes that are higher than that for 
the total species.

Tropical or endemic species exhibited a small elevation range size 
(Zhou et al., 2019). Similarly, on Seorak Mountain (Figure 5), most rare 
or endemic species remaining after the Pleistocene Epoch showed a 
small elevation range size (Chung et al., 2017; Kong, 2002, 2004). At 
higher altitudes, the range size of species in the assembly is explained 
as the result of individuals having to withstand extreme climatic con-
ditions at higher altitudes (Feng et al., 2016; Gaston, 1996; Gaston & 
Chown, 1999; Morin & Lechowicz, 2011). Therefore, even if the over-
all elevation range is small, the species pool has a similar shape (eco-
system), and the adjusted range size can be predicted for each species.

Both the native plant species in tropical regions (Zhou et al., 2019) 
and the species with geographical isolation and distribution to a spe-
cific region have phytogeographical affinities. The phytogeographic 
results are included for mountain regions of specific heights and 
distributions; realistic predictions of ERR must be assessed in the 
various mountain regions to improve its relevance.

A strong support for the range–elevation relationship predicted 
by the ERR was observed in herbs, rare, endemic, and red list species 
(Figures 4e and 5d–f). The boundary effects due to environmental 
or climatic conditions could cause a trend of decreasing mean el-
evation range at high elevation regions (Bhattarai & Vetaas, 2006; 
Feng et al., 2016; Vetaas & Grytnes, 2002). This study shows sup-
port for the ERR with regard to the increasing trend in the elevation 
relationship of the range size of herbs, rare, endemic, and red list 
species; however, the boundary effect was not strongly observed. 
The proportion of endemic and rare species increasing along the ele-
vation gradient can affect the relationship between the mean eleva-
tion range and elevation of species assemblages (Pottier et al., 2013; 
Vetaas & Grytnes,  2002). On Seorak Mountain, rare and endemic 
species were distributed continuously and they appeared at high el-
evation gradients (species included Adenophora grandiflora, Weigela 
subsessilis, Lonicera subsessilis, Viola diamantiaca, Syringa wolfii, 
Rodgersia podophylla, Smilacina bicolor, Patrinia saniculifolia, and 
P. pumila, which were from different life-form groups).

Compared to the narrowly distributed species, widely distrib-
uted species always have a wider range and adaptability. For exam-
ple, a widely distributed species always has a wide range and strong 
tolerance compared to a narrowly distributed species (Donohue 
et  al.,  2010; Gaston & Spicer,  2001; Santamaría, 2002). However, 
it does not necessarily mean that species with a wide distribution 
can adapt even at the peak of elevation. Relatively, species with a 
narrow distribution range physiologically and ecologically adapt to 
an extreme climate or environments over a long period and then 
emerge or be observed at specific elevation ranges. This is because, 
considering the boundary effect, support for ERR could depend on 
phytogeographic affinities.

5  | CONCLUSIONS

The altitude range of the herbs, rare, endemic, and red list species 
was significantly higher than that of woody plants. Particularly, 
the rare, endemic, and red list species can withstand extreme cli-
matic conditions through physiological adaptations, as their ranges 
reached the highest elevation, and therefore, ERR can be applied 
to them. However, the hard boundary effect in this region consist-
ently supported different life forms (i.e., trees, shrubs, lianas, pteri-
dophytes, and woody species). Overall, the ERR was inconsistent 
between plants of different life forms in the same region. In conclu-
sion, even though the elevation range of Seorak mountain is small 
compared to the world's highest mountain, the species pool has a 
similar shape. That is, possible to predict the adjusted range-size for 
each species.
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