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Abstract: Medical devices directly exposed to blood are commonly used to treat cardiovascular
diseases. However, these devices are associated with inflammatory reactions leading to delayed
healing, rejection of foreign material or device-associated thrombus formation. We developed a
novel recombinant fusion protein as a new biocompatible coating strategy for medical devices
with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside
triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory
drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP,
major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the
generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and
anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated
materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after
sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a
high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or
polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining
HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory
complications often associated with medical devices directly exposed to blood.

Keywords: albumin; anti-thrombotic; CD39; coating of medical devices; stent coating; therapeutic
fusion protein

1. Introduction

Cardiovascular diseases such as ischemic heart disease and stroke are the world’s lead-
ing causes of death. The World Health Organization states that 16% of total deaths can be
traced back to these diseases [1]. Treatment of patients with cardiovascular problems often
includes the invasive application of medical devices. Often these medical devices will be
directly exposed to blood, e.g., vascular grafts, stents, permanently implantable biosensors
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such as pacemakers and defibrillators. The biomaterials used for blood-contacting devices
represent foreign surfaces to human blood and therefore have the potential to induce spe-
cific inflammatory and pro-thrombotic reactions that can lead to clinical complications. The
underlying pathological mechanisms of these complications are surface-induced reactions
of plasma proteins, platelets and leukocytes. Uncoated medical devices often adsorb blood
plasma proteins, such as fibrinogen, on their surfaces, thereby inducing an inflammatory
process, platelet adhesion and activation of the coagulation [2–6]. Adsorbed proteins fur-
ther mediate platelet aggregation and, in combination with fibrin, can form a platelet-fibrin
thrombus [7]. The activation of platelet aggregation and the coagulation cascade may lead
to severe and life-threatening thrombosis on the surfaces of biomaterials [3,7].

Both long-term medical devices (often used for a patient’s lifetime) and short-term
blood-contacting systems (mainly used for short-term treatment of critically ill patients)
need to be examined for their haemocompatibility and thrombogenicity. During extra-
corporeal membrane oxygenation, the patient’s blood comes into contact with foreign
material such as silicone, polyvinylchloride (PVC) or polypropylene. In a heart–lung ma-
chine, the contact of blood with the surfaces of PVC (used for tubing) and polypropylene
(used in oxygenators) are the main reasons for postoperative thrombotic and bleeding
complications [8,9].

Therefore, major efforts have been undertaken by material scientists and engineers
with the aim of designing medical device surfaces that can resist adsorption of blood
proteins and adhesion of cells, and thus be less thrombogenic and pro-inflammatory [3].
Different materials and surface coatings have been developed to enhance biocompatibility
and reduce device-associated complications [2,3]. Surface modification strategies are
classified in two groups: (1) surface passivation; and (2) bioactive surface coatings or
treatments [2,10]. With the passivation strategy, physical and chemical modifications are
made to the materials and surfaces to reduce their inherent thrombogenicity. Bioactive
surface coatings are achieved by permanent immobilization via an active agent or drug
to directly inhibit the coagulation cascade and prevent neointimal hyperplasia [11–13]. In
addition to these, administration of anti-platelet or anti-coagulation therapeutics is used as
a treatment to prevent device-induced thrombosis [13–16].

Other considerations in relation to long-term blood-exposed devices include mechani-
cal adaption to stress. Aortic valve prostheses need to resist constantly changing pressures
and high shear stress [17,18]. Permanent implantation of stents for treatment of cardio-
vascular diseases have shown that drug-eluting stents (DES), with a surface coating of
drugs, polymers, growth factors or proteins, promise a superior healing function com-
pared to bare-metal stents [14,17,19,20]. DES have been shown to improve the outcome
of revascularization therapy by preventing neointimal hyperplasia and in-stent resteno-
sis (ISR) [21–23]. Although the incidence of ISR can be lessened using DES, there is an
increased risk of in-stent thrombosis, which requires the application of dual anti-platelet
therapy. Overall, this current stent therapy has been associated with adverse bleeding
events, hypersensitivity reactions and delayed endothelialisation after implantation [24,25].
Therefore, there is a clinical need for the development of safe and biocompatible surface
coatings that eliminate device-induced thrombosis and inflammation.

Human serum albumin (HSA) is widely used in the medical industry for coating of
stents and tubings [26,27]. Being a highly abundant protein in the blood, HSA has been
shown to have anti-thrombotic properties and corrosion resistance based on its electro-
static and hydrophilic properties [18,26,28]. Additionally, HSA adsorbs easily on surfaces,
prevents endothelial apoptosis, provides antioxidant protection and also inhibits platelet
activation and aggregation [27,29,30]. Therefore, albumin has played a central role in
many drug delivery systems [31]. HSA coating has also been applied to various biomate-
rials, including titanium (Ti), stainless steel and nanoparticles [26,28,32,33]. For example,
dopamine-modified albumin coating showed an attenuated immune and inflammatory re-
sponse on xenogeneic grafts [34]. Additionally, Oriňaková et al. demonstrated that bovine
serum albumin coating changed the corrosion resistance of sintered iron biomaterials [35].
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The ectonucleoside triphosphate diphosphohydrolase-1, an NTPDase (CD39), is a
promising anti-thrombotic and anti-inflammatory agent [36–40]. Normally expressed on
the surface of endothelial cells (ECs), CD39 prevents platelet activation and attachment
through hydrolysis of the phosphate residue of ATP and ADP [38,41–43]. ATP triggers
pro-inflammatory pathways, so the degradation of ATP to ADP by CD39 reduces the pro-
inflammatory effect of ATP. ADP is a major player in the platelet-activation cascade [39,44].
Through further hydrolysis of ADP to AMP by CD73, CD39 is responsible for a shift from
a pro-inflammatory to an anti-inflammatory environment [39,40,45]. Several studies have
confirmed that CD39 activity is substantively reduced in injured or rejected grafts, and that
administration of soluble CD39 may be a useful substitute post implantation [41,46].

Here, we have designed, generated and analysed a novel anti-thrombotic and anti-
inflammatory recombinant fusion protein consisting of HSA and CD39 as a highly promis-
ing bioactive coating for medical devices and PVC tubes to guarantee an active, safe and
natural interface between blood and medical devices.

2. Materials and Methods

A more detailed description of the methods is provided in the Supplementary Material.

2.1. Generation of Recombinant Fusion Construct, Production, Expression of Protein and Purification

Details of HSA-CD39 origin, polymerase chain reaction (PCR)-based fusion, mam-
malian production (HEK293 cells) and purification are provided as Supplementary Meth-
ods. The quantity of the purified protein was measured using a Pierce Protein Assay Kit
(ThermoFisher Scientific, Waltham, MA, USA). The samples from purification steps were
loaded onto a 12% sodium dodecyl sulfate–polyacrylamide gel for electrophoresis under
denaturing conditions and visualized via Coomassie staining. The same samples were also
stained on a Western blot (BioRad, Hercules, CA, USA) using an anti-Penta-His antibody
(Roche, Basel, Switzerland) coupled with horseradish peroxidase.

2.2. Blood Sampling from Healthy Human Volunteers

All blood sampling procedures were approved by the Research and Ethics Unit
of the University of Tübingen, Germany (project number 270/2010BO1) and the Ethics
Committee of the Alfred Hospital, Melbourne, Australia. Unless otherwise specified, blood
was collected by venepuncture from healthy volunteers who provided informed consent
and was anticoagulated with citrate. All subjects were free of platelet-affecting drugs for
≥14 days.

2.3. Preparation of Platelet-Rich Plasma

Citrated blood from volunteers was centrifuged at 180× g for 10 min. Platelet-rich
plasma (PRP) was collected and stored at 37 ◦C. Before usage it was diluted 1:10 with
phosphate-buffered saline plus (PBS+; 100 mg/L calcium chloride, 100 mg/L magnesium
chloride; ThermoFisher Scientific, Waltham, MA, USA). Blood and PRP were used within
the first 6 h after venepuncture.

2.4. Flow Cytometry

The efficiency and functionality of the HSA-CD39 protein were determined using flow
cytometry. The protein was incubated with 20 µM ADP (MoeLab, Langenfeld, Germany)
or 5 µL PBS for 20 min. The active protein will hydrolyse ADP to AMP. Diluted PRP was
added and incubated for 5 min. Platelet activation status was measured by a fluorescein
isothiocyanate (FITC)-labelled monoclonal antibody PAC-1 (BD Bioscience, Franklin Lakes,
NJ, USA), a R-phycoerythrin (PE)-labelled monoclonal antibody directed against CD62P
(P-Selectin) (BD Bioscience, Franklin Lakes, NJ, USA) or their respective isotype antibody
controls (ThermoFisher Scientific, Waltham, MA, USA). Samples were fixed using Cellfix
(BD Bioscience, Franklin Lakes, NJ, USA) and analysed via fluorescence-activated cell
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sorting (FACS) Calibur (BD Bioscience, Franklin Lakes, NJ, USA). A total of 10,000 events
were acquired in each sample.

2.5. ADP Bioluminescence Assay

HSA-CD39′s function to directly hydrolyse ADP was measured using an ATP biolu-
minescence assay according to the manufacturer’s description (Kit CLS II, Roche, Basel,
Switzerland) [39,41]. HSA-CD39 was incubated with 20 µM ADP for 20 min. The remain-
ing ADP was converted to ATP by the pyruvate kinase reaction, and measured using
the ATP bioluminescence assay via a microplate luminometer (Mithras LB 940, Berthold
Technologies, Bad Wildbad, Germany). Different concentrations of ADP, PBS and HSA
(Alburex Human albumin 5%, CSL Behring, Hattersheim am Main, Germany) were also
used as controls.

2.6. Lyophilisation of Protein

To analyse the possibility of lyophilising the HSA-CD39 protein, different concen-
trations were lyophilised using the CoolSafe ScanVac (LaboGene ApS, Lynge, Denmark)
according to the manufacturer’s description. The lyophilised samples were stored for
14 days at room temperature (RT) before rehydration and analysis of platelet activation
using flow cytometry.

2.7. Coating of Stent Material for In Vitro Analysis

HSA-CD39 and HSA (CSL Behring, Hattersheim am Main, Germany) proteins were
passively adsorbed by the different materials. The samples were diluted in PBS, added,
incubated and dried on the materials with HSA-CD39 and HSA (CSL Behring, Hattersheim
am Main, Germany). Materials were then stored for 24 h before flow cytometric analysis of
CD39 activity. Polystyrene (BD Bioscience, Franklin Lakes, NJ, USA), 316L stainless-steel
plates, Ti plates (Acandis, Pforzheim, Germany), polyurethane-coated stents (Acandis,
Pforzheim, Germany) and nitinol BlueOxide stents (Acandis, Pforzheim, Germany) were
coated with different protein concentrations (0.05 µg, 0.1 µg, 0.25 µg and 0.5 µg) and PBS
as the control. Coated 316L stainless-steel plates were washed 3× with PBS and dried
again prior to functional testing. Coated Ti plates were sterilized with ethylene oxide
(EO) according to the sterilization protocol for medical devices of the University Hospital
of Tübingen, Germany. Long-term-coated material was stored at RT. DERIVO nitinol
BlueOxide stents (3.3 × 15 mm, Acandis, Pforzheim, Germany) were coated by dip-coating
of stents with 100 µg/mL HSA-CD39 in PBS 10× and dried with argon gas between dipping
steps. Coated stents were also sterilized by EO according to the sterilization protocol.

2.8. Endothelialisation Analysis of Protein-Coated Nitinol BlueOxide Plates

The endothelialisation efficiency of HSA-CD39-coated plates was analysed using
nitinol BlueOxide plates coated with 4.0 µg/cm2 HSA-CD39. Coated plates were dried at
RT followed by sterilisation under UV light for 30 min. Human ECs (hECs) were isolated
from saphenous vein biopsies of patients who had undergone coronary artery bypass
graft surgery as previously described by Avci-Adali et al. [47]. hECs were cultivated in
cell-culture flasks pre-coated with 0.1% gelatine in Vasculife® EnGS EC culture medium
(CellSystems, Troisdorf, Germany) containing VascuLife EnGS LifeFactors Kit, 50 mg/mL
gentamicin and 0.05 mg/mL amphotericin B (GE Healthcare, Boston, MA, USA). Cells
were kept at 37 ◦C/5% CO2 and passaged using trypsin/ethylenediaminetetraacetic acid
(EDTA) (0.04%/0.03%, PromoCell, Heidelberg, Germany). For endothelialisation analysis,
150,000 cells/well were seeded on coated nitinol BlueOxide plates and incubated for 48 h.
Cells were fixed and stained with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich,
Sankt Gallen, Switzerland) and analysed via epifluorescence microscopy (Blue UV2A
Nikon Optiphot 2, Tokyo, Japan).
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2.9. In Vitro Haemocompatibility Testing Using Roller Pump and Modified Chandler Loop Model

To investigate the influence of HSA-CD39-coated nitinol BlueOxide stents (nitinol
BlueOxide DERIVO embolisation device, Acandis, Pforzheim, Germany) in vitro, coated
plates were loaded into heparin-coated Tygon tubes (Saint Gobain Performance Plastics,
Wertheim, Germany). PVC tubes (inner diameter 3.2 mm, length 75 cm) were coated with
heparin by Ension (Pittsburgh, PA, USA). Through this model, the haemocompatibility of
the coated stents, i.e., activation of the coagulation cascade, the complement system and
inflammation, were analysed after perfusion of blood, as described in detail by Krajewski
et al. [48]. Human whole blood was anticoagulated with heparin (1.5 IE/mL, Ratiopharm
GmbH, Ulm, Germany). Then, each tube was filled with 6 mL freshly heparinised human
blood, connected by a silicon connection tubing and circulated by a roller pump (BVP
Ismatec, Wertheim, Germany) in a water bath at 37 ◦C for 60 min at 150 mL/min. For
each of the 5 donors, 6 mL heparinised blood was used for baseline measurements before
circulation. Before and after circulation, blood was taken, measured with a haematolyser
(ABX Micros 60, Axon Lab AG, Baden, Switzerland) for blood cell count and further used
for enzyme-linked immunosorbent assays (ELISA) (Echelon Biosciences, Salt Lake City, UT,
USA) [45,46]. For measuring thrombin–antithrombin III complex (TAT complex; Enzygnost
TAT Micro, Siemens Healthcare, Erlangen, Germany) via ELISA, blood was directly filled
in citrate S-Monovettes® (Sarstedt AG & Co, Nümbrecht, Germany) and centrifuged at
1800× g at 22 ◦C for 18 min. Resulting plasma was deep-frozen in liquid nitrogen and
stored at −20 ◦C until performance of ELISA, according to the manufacturer’s description.
Stents were prepared for scanning electron microscopy (SEM).

In a second experimental setup, the previously established modified chandler loop
was used to test the haemocompatibility of coated ECC tubes [10,48]. PCV tubes (lengths
of 50 cm; Raumedic® ECC BloodLine 1/4 × 1/16, Raumedic AG, Helmbrechts, Germany)
were coated via rotating incubation with 12 mL of 20 µg/mL (240 µg) HSA or 20 µg/mL
(240 µg) HSA-CD39 at RT for 3 h followed by storage at 4 ◦C overnight. The pH of the
protein solutions were adjusted to 4.6 prior to incubation. After incubation, tubes were
rinsed with PBS prior to being filled with blood. An untreated tube without blood contact,
an untreated tube and a commercially available heparin-coated tube (Carmeda BioActive
Surface®, Medtronic, Dublin, Ireland) were used as controls. Coated tubes were filled with
fresh, pooled and heparinised blood (1 IE/mL) and closed into a ring. Blood was circulated
in a water bath at 37 ◦C for 90 min (30 rotations/min). Afterwards, tubes were washed
with PBS and fixed with 2% glutaraldehyde (GA), then PVC pieces were prepared for SEM.

2.10. Statistical Analysis

Unless otherwise specified, data are represented as mean ± standard deviation (SD).
All analyses containing more than two groups were analysed with one-way analysis of
variance (ANOVA), comparing all groups with one another, corrected by post hoc Bon-
ferroni analysis or Dunnett’s/Sidak’s test, and the corrected p-values are given. Multiple
comparisons were analysed with two-way ANOVA and Dunnett’s multiple comparison.
All analyses for two groups were performed using Student’s t-tests. The statistical anal-
yses were performed with the statistical software package GraphPad Prism (version 6.0,
GraphPad Software, San Diego, CA, USA). Statistical significance was defined as p < 0.05.

3. Results
3.1. Generation, Production and Enzymatic Activity of Recombinant Fusion Protein HSA-CD39

For the generation of our recombinant fusion protein consisting of HSA and CD39,
the DNA sequence of HSA was inserted into a previously described pSectag2A vector
containing the CD39 sequence [39]. The resulting HSA-CD39 was further digested, purified
and inserted into a gWiz vector to yield a higher production rate (Figure 1A). Following
double digestion of both constructs, the HSA-CD39 insert was visualised via agarose
gel at 3235 bp (Figure 1A). Confirmation of successful molecular biology was made by
colony screening of clones via PCR sequencing, where positive clones resulted in a 2149 bp
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DNA strain (Figure 1C). After DNA sequencing confirmation, the DNA was produced
by HEK293F cells and purified afterwards. The protein purity of the HSA-CD39 fusion
protein was analysed on SDS–PAGE and a band was observed between the 100 kDa and
150 kDa marks (Figure 1D). Specificity of the HSA-CD39 construct was shown by Western
blotting via the use of an anti-Penta-His antibody, which was coupled with horseradish
peroxidase (141 kDa, Figure 1E).
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The enzymatic activity of the HSA-CD39 fusion protein in hydrolysing ADP to AMP
was determined using flow cytometry. While ADP is a platelet agonist, the resulting AMP
is unable to activate platelets in vitro. Flow cytometry demonstrated that PAC-1 FITC
and anti-CD62P PE bound to 20 µM ADP-activated platelets, but not to non-activated
platelets incubated with PBS as control (Figures 2A and S1). By pre-incubating 0.05 µg
of the HSA-CD39 protein with 20 µM ADP, we observed a strong reduction in PAC-1
binding as compared to using no protein control (0 µg), indicating successful hydrolysis
of ADP to AMP (39.70 ± 7.25 vs. 66.56 ± 5.27, respectively; % activated platelets ± SD,
p < 0.0001). Higher concentrations of HSA-CD39 (0.1 µg, 0.25 µg and 0.5 µg) resulted in
complete dephosphorylation of ADP and therefore showed no PAC-1 binding (0.44 ± 0.28;
0.30 ± 0.16; 0.30 ± 0.20, respectively; % activated platelets ± SD, p < 0.0001) (Figure 2A,B).

3.2. In Vitro Analysis of Environmental Stability of HSA-CD39 Fusion Protein and Coating

HSA-CD39 was dried or lyophilised and stored to determine the ease of storage and
handling. Flow cytometry analysis confirmed that our HSA-CD39 protein had active
enzymatic properties after being dried in polystyrene tubes (Figure 3A,B). Twenty-four
hours after air-drying and storage at RT, rehydration of the HSA-CD39 protein hydrolysed
ADP at 0.05 µg, 0.1 µg, 0.25 µg and 0.5 µg, thereby preventing the binding of PAC-1,
as compared to samples without HSA-CD39 (40.40 ± 15.28; 0.40 ± 0.26; 0.35 ± 0.30;
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0.33 ± 0.15 vs. 67.93 ± 4.96, respectively; % activated platelets ± SD, p < 0.0001). Similarly,
storage at 4 ◦C resulted in successful hydrolysis of ADP; therefore, HSA-CD39 at 0.05 µg,
0.1 µg, 0.25 µg and 0.5 µg prevented PAC-1 binding shown by flow cytometry, compared
to samples without HSA-CD39 (37.38 ± 6.70; 0.70 ± 0.26; 0.50 ± 0.17; 0.50 ± 0.00 vs.
65.03 ± 6.81, respectively; % activated platelets ± SD, p < 0.0001).
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Figure 2. Functionality analysis of different concentrations of the HSA-CD39 construct. (A) Functionality analysis using
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The functionality of HSA-CD39 was investigated every week for two months (dried
in polystyrene tubes and stored at RT) via flow cytometry (Figures 3C and S2). HSA-CD39
hydrolysed ADP and stopped platelet activation at ≥0.25 µg protein after rehydration, com-
pared to samples without HAS-CD39 after week 1 (0.40 ± 0.17 vs. 59.33 ± 30.28; p < 0.001)
and week 8 (3.80± 2.33 vs. 43.23± 6.73; % activated platelets± SD, p < 0.001). The enzymatic
properties of HAS-CD39 were similarly active through the 8 weeks of storage.

Direct analysis of ADP dephosphorylation by HSA-CD39 was conducted using an
ATP bioluminescence assay. Increasing concentrations of HSA-CD39 resulted in linear and
significant reductions in ADP concentration in comparison to the HSA control (Figure 4A).
Similar effects were observed using lyophilised HSA-CD39, which demonstrates its long-
term stability (Figure 4B).

3.3. HSA-CD39 Fusion Protein as an Anti-Thrombotic Coating for Different Medical Materials

HSA-CD39 was coated onto surface materials of medical devices such as stain-
less steel, polyurethane, nitinol BlueOxide and Ti. Stainless-steel plates were coated at
0.05 µg/mm2 (0.25 µg of HSA-CD39 on about 0.5 mm2) and resulted in a significant reduc-
tion in platelet activation. Direct HSA-CD39 coating on the plates resulted in successful
ADP dephosphorylation as compared to non-coated plates (Figure 5A; 0.17 ± 0.06 vs.
70.70 ± 22.55; % activated platelets ± SD, p < 0.0001) and similar results were observed
when the plates were washed thrice prior to exposure of ADP (Figure 5B; 0.93 ± 0.80 vs.
69.43 ± 21.99; p < 0.0001). Likewise, HSA-CD39 coating demonstrated good enzymatic
activity for hydrolysing ADP on polyurethane, compared to HSA-coated stents (Figure 5C;
1.88± 1.25 vs. 65.23± 17.71; p < 0.001) and nitinol BlueOxide stents (Figure 5D; 0.30 ± 0.20
vs. 34.53 ± 5.13; p < 0.001). Furthermore, we investigated the stability of HSA-CD39
after coating on Ti plates and sterilisation with EO (Figure 5E). HSA-CD39 coating at
0.1 µg/mm2 (0.5 µg of HSA-CD39 on about 0.5 mm2 of plate) resulted in successful ADP
dephosphorylation as compared to the control HSA coating, both before (0.57 ± 0.29 vs.
36.73± 8.88; p < 0.001) and after EO sterilisation (0.22± 0.17 vs. 37.44± 8.17; p < 0.001). No
difference was noted in the function of HSA-CD39 after sterilisation with EO (0.57 ± 0.29
vs. 0.22 ± 0.17; ns).



Pharmaceutics 2021, 13, 1504 8 of 18
Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 3. Flow cytometry demonstrating HSA–CD39 functionality when dried in polystyrene tubes 
and stored at RT for at least 8 weeks. Functionality of HSA–CD39 in hydrolysing ADP is still seen 
after drying in polystyrene tubes and storage at (A) 4 °C for 24 h or (B) at RT for 24 h. Flow cytometry 
was performed to determine the % of activated platelets. (C) HSA–CD39 is still functional after 7 
days of storage at RT. (D) HSA–CD39 is still functional after 8 weeks of storage at RT. The different 
groups were compared using repeated-measures ANOVA and Bonferroni post hoc tests. ns = non-
significant. Values of at least 3 independent experiments are depicted (% activated platelets ± SD, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001). 

 
Figure 4. HSA–CD39 shows efficient ADP hydrolysis and can be lyophilised at higher concentrations without reduction 
in functionality. (A) Bioluminescence assay showing a reduced ADP concentration (%) for increased HSA–CD39 concen-
trations compared to the HSA control (** p < 0.01; **** p < 0.0001 compared to 0.5 µg HSA control, n = 4). Different groups 
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Figure 3. Flow cytometry demonstrating HSA-CD39 functionality when dried in polystyrene tubes
and stored at RT for at least 8 weeks. Functionality of HSA-CD39 in hydrolysing ADP is still seen
after drying in polystyrene tubes and storage at (A) 4 ◦C for 24 h or (B) at RT for 24 h. Flow cytometry
was performed to determine the % of activated platelets. (C) HSA-CD39 is still functional after 7 days
of storage at RT. (D) HSA-CD39 is still functional after 8 weeks of storage at RT. The different groups
were compared using repeated-measures ANOVA and Bonferroni post hoc tests. ns = non-significant.
Values of at least 3 independent experiments are depicted (% activated platelets ± SD, ** p < 0.01,
*** p < 0.001, **** p < 0.0001).
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Figure 4. HSA-CD39 shows efficient ADP hydrolysis and can be lyophilised at higher concentrations without reduction in
functionality. (A) Bioluminescence assay showing a reduced ADP concentration (%) for increased HSA-CD39 concentrations
compared to the HSA control (** p < 0.01; **** p < 0.0001 compared to 0.5 µg HSA control, n = 4). Different groups were
compared using repeated-measures ANOVA and Sidak’s test. (B) Functionality of lyophilised HSA-CD39 shows that high
amounts of the fusion protein (>1.0 µg) are still active after lyophilisation (n = 4, **** p < 0.0001 compared to PBS control).
Values of at least 3 independent experiments are depicted.
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Figure 5. HSA-CD39 can be coated onto stainless steel, polyurethane stents and nitinol BlueOxide stents even after
sterilisation with EO without reducing its functionality. (A) Significant reductions in platelet activation can be seen
with different concentrations of HSA-CD39-coated stainless-steel plates without washing. (B) HSA-CD39 coated onto
stainless-steel plates displays a reduced but still significant reduction in platelet activation after washing with PBS before
analysis in flow cytometry. Bar graphs depict % of activated platelets. (C) Dried and coated HSA-CD39 on polyurethane
stents as well as nitinol BlueOxide stents. (D) Shows effective prevention of platelet activation as analysed via flow
cytometry. (E) HSA-CD39 and HSA for comparison, coated on Ti plates, shown to be still functional in hydrolysing ADP
after EO sterilisation. The different groups were compared using repeated-measures ANOVA and Bonferroni post hoc tests.
ns = non-significant. Values of at least 3 independent experiments are depicted (% activated platelets ± SD, * p < 0.05,
** p < 0.01, *** p < 0.001 **** p < 0.0001).

3.4. HSA-CD39 Fusion Protein Coating Allows for Endothelialisation

Fluorescence microscopy images of the HSA-CD39-coated nitinol BlueOxide plates
displayed good endothelialisation performance. Sterilised plates were coated with HSA-
CD39 or just PBS. hECs were seeded onto the coated plates, followed by incubation for 48 h.
No differences between the DAPI-stained hECs regarding cell morphology, cell growth
and cell count could be detected compared to the non-coated bare nitinol BlueOxide plates
(Figure 6A,B). Additional quantitative analysis of the microscope pictures using ImageJ
confirmed this result (Figure 6C).

3.5. Haemocompatibility and In Vitro Proof of Function of HSA-CD39-Coated Nitinol Blue Oxide
Stents and PVC Tubes

HSA-CD39-coated nitinol BlueOxide stents and uncoated stents were loaded into PCV
tubes and incubated with fresh human blood to determine their haemocompatibility and
thrombogenicity [22,38]. PVC tubes without stents were used as an additional control. A
baseline reading was analysed before the blood was placed into circulation through the
stents or tubes. At the endpoint, the blood was collected for comparison analysis. No
significant changes were measured in white blood cells, red blood cells, haemoglobin or
haematocrit compared to the baseline, the control tube without stent and the uncoated
stent (Figure 7A–D). Significant reductions in the number of platelets were found when



Pharmaceutics 2021, 13, 1504 10 of 18

blood was circulated in the PVC control tube and the uncoated groups, compared to the
baseline (221,000.6 ± 23,000.84 and 133,000.2 ± 24,000.3 vs. 259,000 ± 36,000, respec-
tively; number of platelets/µL ± SD, p < 0.05). However, no difference was observed
in the HSA-CD39-coated nitinol BlueOxide stents as compared to the baseline reading
(229,000.0 ± 27,000.74 vs. 259,000 ± 36,000; ns) (Figure 7E). These results indicate that
the platelets in the PVC tube control and the uncoated groups aggregated, whereas no
aggregation occurred in the HSA-CD39-coated nitinol BlueOxide stents. Activation of
the coagulation cascade was determined by measuring the formation of the TAT com-
plex before and after perfusion (Figure 7F). An increased readout of the TAT complex for
the uncoated stent group was shown compared to the baseline, the control and also the
HSA-CD39-coated stent group (446.4 ± 225.5 vs. 2.37 ± 0.45; 24.02 ± 11.45; 42.72 ± 11.26,
respectively; µg/L TAT complex formation ± SD, p < 0.01).
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Figure 6. HSA-CD39 coated onto nitinol BlueOxide plates has no negative impact on endothelialisation. Incubation of HSA-
CD39-coated nitinol BlueOxide stents with hECs. Analysis performed after 48 h with DAPI staining under epifluorescence
microscopy. (A) Blank plate incubated with hECs. (B) HSA-CD39-coated plate incubated with hECs. (C) Quantitative
analysis of coated (HSA-CD39) and uncoated (PBS control) plates. Original magnification: 10×. Values of at least
3 independent experiments are depicted.
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Figure 7. HSA-CD39 coated onto nitinol BlueOxide stents shows no effect on blood haematology
or haemocompatibility using a dynamic in vitro thrombogenicity model. Haematology analysis
of coated stents before and after circulation for 60 min at 150 mL/min (thrombogenicity model).
(A) White blood cells. (B) Red blood cells. (C) Haemoglobin. (D) Haematocrit. (E) Platelets.
(F) TAT complex using ELISA measurements. Baseline: directly after venepuncture. Control: tube
only. Uncoated: bare nitinol BlueOxide stent. The different groups were compared using repeated-
measures ANOVA and Bonferroni post hoc tests (% activated platelets ± SD, * p < 0.05, ** p < 0.01).
Values of at least 4 independent experiments are depicted.

After circulation, uncoated and HSA-CD39-coated stents were also analysed via SEM.
Representative SEM images of each stent from the same blood donor, displayed at different
magnifications, showed distinct differences in the blood cell adhesion (Figure 8). The
uncoated stent showed homogenous adhesion of several blood cells, especially platelets,



Pharmaceutics 2021, 13, 1504 11 of 18

and an increased fibrin network for all blood donors, such that only a few platelets could
be detected on the surface of the HSA-CD39-coated stent (Figure 8). SEM imaging of
HSA-CD39 coating on the PVC tubes showed a reduction in cell adhesion on the inner
surface of the HSA-CD39-coated tube after circulation as compared to the other control
groups (Figure 9). In particular, the non-treated and HSA-coated tubes showed more cell
adhesion compared to the HSA-CD39-coated tube.
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Figure 8. HSA-CD39 coated onto nitinol BlueOxide stents reduces blood cell adhesion during incubation in a dynamic
in vitro model. SEM analysis of coated nitinol BlueOxide stents after circulation with human whole blood for 60 min at
150 mL/min (thrombogenicity model). Uncoated: bare nitinol BlueOxide stent. Different magnifications (35×, 500× and
1000×) show the amount of blood cell adhesion.
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fusion protein is stable in storage and is still highly functional in reducing platelet activa-
tion and adhesion for up to 8 weeks (Figures 3 and 4B). HSA–CD39 also protects platelet 
activation and inflammation processes, which are commonly evoked by foreign materials 
such as stainless steel, Ti, nitinol (an alloy of nickel and Ti), polyurethane stents and PVC 
(Figure 5). 

CD39 is a membrane-bound enzyme constitutively expressed on intact ECs. This 
NTPDase hydrolyses the nucleotides ATP and ADP [39,42,45]. CD39 has attracted major 
attention as a pharmacological agent [39,42,52,53]. Several studies have shown that the 
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infarction and stroke [54,55]. A hallmark study conducted in transgenic mice expressing 
CD39 demonstrated increased resistance to thrombosis when challenged by an acute fer-
ric-chloride-induced injury to their carotid artery [56]. Furthermore, overexpression of 
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Figure 9. HSA-CD39 coated onto PCV tubes reduces blood cell adhesion as analysed in a modified chandler loop model.
SEM analysis of PVC tubes to visualise the adhesion of platelets after circulation with human whole blood. (A) PVC
tube without blood contact. (B) Non-treated PVC tube incubated with blood. (C) Commercially available heparin
coating (Carmeda BioActive Surface®, Medtronic, Ireland). (D) HSA-coated PVC tube. (E) HSA-CD39-coated PVC tube
(magnification: 250×). Less adhesion of platelets was measured in HSA-CD39-coated tubes as compared to HSA or
non-treated controls. (F). Quantitative analysis of the percentage of area covered by platelets was performed using
ImageJ (% activated platelets ± SD, * p < 0.05). Values of at least 3 independent experiments are depicted.
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4. Discussion

Medical devices that are directly exposed to blood are often associated with inflam-
mation and thrombus formation [2,3]. The lack of biocompatibility of foreign materials
triggers inflammatory processes and activation of the coagulation cascade, as well as acti-
vation and aggregation of platelets in the blood [49–51]. The use of drug-eluting materials
and extensive anti-platelet therapy after surgery have shown improvements in safety and
efficiency. However, adverse drug interactions, pro-thrombotic events, poor endotheliali-
sation, hypersensitivity and bleeding complications still occur frequently [24]. Therefore,
research on a natural, non-allergic, bio- and haemo-compatible medical coating is required.
In this study, we genetically designed the fusion of HSA to CD39 in order to engineer a
recombinant multifunctional fusion protein which provides an ideal coating strategy for
blood-contacting material. The HSA component allows adherence of our fusion protein to
be passively adsorbed onto the materials, whilst the attached CD39 component prevents
thrombotic actions from occurring. The data indicate that our HSA-CD39 fusion protein is
stable in storage and is still highly functional in reducing platelet activation and adhesion
for up to 8 weeks (Figures 3 and 4B). HSA-CD39 also protects platelet activation and
inflammation processes, which are commonly evoked by foreign materials such as stainless
steel, Ti, nitinol (an alloy of nickel and Ti), polyurethane stents and PVC (Figure 5).

CD39 is a membrane-bound enzyme constitutively expressed on intact ECs. This
NTPDase hydrolyses the nucleotides ATP and ADP [39,42,45]. CD39 has attracted major
attention as a pharmacological agent [39,42,52,53]. Several studies have shown that the
administration of CD39 decreases the risk of thrombosis and protects against myocardial
infarction and stroke [54,55]. A hallmark study conducted in transgenic mice expressing
CD39 demonstrated increased resistance to thrombosis when challenged by an acute ferric-
chloride-induced injury to their carotid artery [56]. Furthermore, overexpression of CD39
in rat aortas diminishes the proliferation of smooth vascular cells and prevents neointimal
formation after angioplasty [46]. However, direct injection of CD39 is associated with
concentration-dependent bleeding complications [39,54]. To overcome this obstacle, our
laboratory genetically fused CD39 to a single-chain antibody that was specific to activated
platelets, resulting in a successful and bleeding-free targeted therapy in vivo [38–40]. We
further investigated this construct in a murine model of myocardial ischemia/reperfusion
injury, where we demonstrated that the activated-platelet-targeted CD39 provides signifi-
cant myocardial protection and preserves heart function [40]. Furthermore, using CD39
mRNA, we showed the CD39 protein has active enzymatic properties and can hydrolyse
ADP to AMP, thereby preventing platelet activation and proving the therapeutic potential
of CD39 [42]. In this current study, we harness the enzymatic properties of CD39 and
further utilise HSA for coating on several medically used materials. To demonstrate the
anti-thrombotic effects of this fusion protein, we used two markers of platelet activation,
the monoclonal antibody PAC-1 (specific for activated GPIIb/IIIa) and an antibody against
P-selectin (anti-CD62P) (Figure S1). Upon platelet activation, GPIIb/IIIa changes from
a low-affinity state to a high-binding-affinity state for fibrinogen/fibrin, thereby medi-
ating platelet aggregation [57–59]. Being the most abundant platelet receptor, with the
high density of 60,000 to 80,000 receptors per platelet, the activation of GPIIb/IIIa and
its resulting aggregation is a main contributor to thrombosis [58,60]. P-selectin’s role in
platelet aggregation is not as dominant, but it is seen as a sensitive marker of platelet
activation [41]. Since most blood-contact medical device failures are due to thrombosis, our
study has chosen to focus on platelet activation as a readout. Overall, our studies indicated
HSA-CD39 fusion protein is highly functional in hydrolysing ADP, a major player in the
platelet activation cascade, and at preventing platelet activation, adhesion and aggregation.

HSA has been widely used for the coating of medical products, possibly owing to
its inferred safety and stability given its abundance in human serum [61–64]. Serum hy-
poalbuminemia has been observed during inflammatory processes and in cardiovascular
events [29]. HSA is physiochemically stable and has been studied extensively in relation
to clinical use for the maintenance of blood homeostasis in medical conditions [61,63].
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Blood contact with foreign materials leads to the adherence of pro-thrombotic plasma
proteins (e.g., fibrinogen) on the materials’ surfaces, but studies have shown that adsorbed
albumin is able to passivate various materials, thereby providing an anti-thrombotic effect
by minimising platelet adhesion [26,64,65]. Furthermore, HSA is known to provide an an-
tioxidant effect, reducing complement cascade activation [62,65,66]. Clinically, HSA is used
in combination therapy with various drugs and bioactive proteins, or as an encapsulation
agent [64].

HSA coated on an arterial polyester prosthesis (Dacron®) displayed reduction in
platelet adhesion, less activation of the coagulation cascade and decreased formation of
fibrinopeptide A, as an index for decreased thrombin action, highlighting the importance
of structural design and surface chemistry [67,68]. Additionally, a HSA/polyethylenimine
multilayer coating on plasma-treated PVC was shown to resist platelet adhesion effec-
tively [69].

Ti is a material frequently used for orthopaedic implants and cardiovascular devices.
Adsorption of HSA into Ti has been shown to prevent adhesion of other blood proteins
and reduce bacterial adherence [70,71]. We harnessed these advantages of HSA, especially
its passive binding capacity, as part of our fusion protein to improve the biocompatibility
of medical devices. Our HSA-CD39 fusion protein provides protection against device-
induced platelet activation and inflammation processes, and thus minimises bleeding risk
and promotes adaptation of the surrounding tissue to the foreign material in situ. We
demonstrate the maintained functionality of our generated fusion protein HSA-CD39 on Ti
even after sterilisation with EO (Figure 5E). After radiation, sterilisation via EO is the most
commonly used process in the medical device industry and is performed after standard
protocols [72,73]. Therefore, we demonstrate a highly stable device coating already suited
to clinical translation.

The application of therapeutic recombinant proteins for a safe, biocompatible interface
on medical devices has attracted major interest in the biopharmaceutical industry. This
includes the pursuit of a perfectly haemocompatible, biopassive surface and the progress
in the application of active therapeutic compounds [74,75]. In the development of stents,
nitinol combines the properties of elasticity, biocompatibility and the shape-memory effect,
which makes it suitable for self-expanding stents. The native oxide layer formed on the
surface prevents nickel ions from binding to Ti, resulting in a nickel-free environment and
substantially reducing allergic reactions and toxicity [74,75]. To analyse our HSA-CD39
fusion protein in vitro, we used a flow diverter nitinol BlueOxide DERIVO embolisation
device, which has been evaluated for the treatment of intracranial aneurysms in clinical
trials (Figures 7 and 8) [76].

In the area of coating strategies, antibodies against CD34 and CD133 coated onto
stents have been evaluated in a rabbit model, showing reduced intimal proliferation and
re-stenosis as compared to bare metal stents and gelatine-coated stents [62,63,75,76]. Using
these antibodies to attract vascular-circulating endothelial progenitor cells (EPCs) leads to
adhesion of a functional endothelial layer of EPCs on the stent surface after vascular injury.
Murine monoclonal CD34-coated stents (GenousTM, OrbusNeich) were proven to be safe
and enhance endothelialisation in various clinical trials [77,78]. Our study demonstrates
good endothelialisation rates and a reduction in platelet activation (Figure 6).

Haemocompatibility analysis of our HSA-CD39 protein showed no influence on whole
human blood. Using uncoated bare metal nitinol BlueOxide stents, we noted a significant
reduction in platelet count, which also implies increased platelet aggregation. Our HSA-
CD39-coated stents, on the other hand, showed no significant decrease in platelet count
and additionally showed a reduced TAT complex, indicating minimal platelet aggregation
and minimal coagulation cascade activation, respectively (Figure 7) [28].

Addressing the issue of the handling and storage of sensitive medical products, our
data demonstrate preserved enzymatic activity of HSA-CD39 after drying, lyophilisation,
coating, washing, sterilisation and 8 weeks of storage. We have shown that HSA-CD39 can
be used as a new coating strategy across various devices and blood-contacting materials.
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Our HSA-CD39 protein approach reduces platelet adhesion, activation and further
inflammatory processes, therefore providing a great clinical advancement in the realm
of bioprostheses by minimising the need for anti-thrombotic therapy, which is inherently
linked to potential bleeding complications. There are some limitations to our study. We
have shown that HSA-CD39 coating on our materials was present after washing steps were
conducted and remained highly functional in its activity to hydrolyse ADP. However, we
have not directly measured the amount of protein lost. Different materials may require
other coating methods, which may expose our fusion protein to heat or other storage
conditions. Although we have demonstrated that our fusion protein is more effective
in reducing platelet activation, adhesion and aggregation, we have not systematically
defined which of the individual components, HSA or CD39, are the cause of the described
benefits. Further characterisations of HSA-CD39 should include the contributions of the
individual fusion protein components. We have conducted ex vivo blood circulation
and demonstrated that HSA-CD39 coating resulted in less platelet aggregation; however,
future in vivo experiments will be conducted to determine the anti-thrombotic and anti-
inflammatory properties of the materials post implantation. Additionally, the contribution
of reduced ADP levels, in comparison to the generation of adenosine via the use of P2Y
receptor inhibitors or A2A adenosine receptor blockers in vivo, will allow us to define
the effects of HSA-CD39 more thoroughly. In addition, future investigations into the
coating strategies, temperature changes and storage conditions, as well as a diverse range
of biomaterials, will be explored.

5. Conclusions

In this study, we have generated a recombinant fusion protein combining the anti-
thrombotic and anti-inflammatory properties of CD39 with HSA as a suitable coating for
medical devices in order to reduce foreign-material-associated complications. Our newly
designed HSA-CD39 fusion protein is highly functional in preventing platelet activation,
adhesion and aggregation. It is also stable after EO sterilisation and can be coated onto
several materials typically used in medical devices. HSA-CD39 coating can mitigate the
healing process, improve the incorporation of foreign material into the surrounding tissue
and reduce interactions with blood components such as coagulation proteins, platelets and
leukocytes. Overall, our HSA-CD39 fusion protein is a natural bioactive interface which is
highly potent in the prevention of platelet activation and inflammation; therefore, its use
for medical device coating provides potential benefits for patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13091504/s1, Figure S1: Representative images of fluorescence histograms via
flow cytometry demonstrating HSA-CD39 prevents platelet activation using two markers of platelet
activation; Figure S2: Flow cytometry demonstrating HSA-CD39 can be dried in polystyrene tubes
and stored at RT for up to 7 weeks.
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