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Purpose: To investigate the feasibility of extracting a low-dimensional latent structure
of anterior segment optical coherence tomography (AS-OCT) images by use of a β-
variational autoencoder (β-VAE).

Methods: We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261
participants from the ongoing AsanGlaucoma Progression Study. After hyperparameter
optimization, the images were analyzed with β-VAE.

Results: Themean participant agewas 64.4 years, withmean values of visual field index
and mean deviation of 86.4% and −5.33 dB, respectively. After experiments, a latent
space sizeof 6 andβ valueof 53 were selected for latent space analysiswithβ-VAE. Latent
variables were successfully disentangled, showing readily interpretable distinct charac-
teristics, such as the overall depth and area of the anterior chamber (η1), pupil diameter
(η2), iris profile (η3 and η4), and corneal curvature (η5).

Conclusions: β-VAE can successfully be applied for disentangled latent space represen-
tation of AS-OCT images, revealing the high possibility of applying unsupervised learn-
ing in the medical image analysis.

Translational Relevance: This study demonstrates that a deep learning–based latent
space model can be applied for the analysis of AS-OCT images.

Introduction

Anterior segment optical coherence tomography
(AS-OCT) has become a crucial tool for assessing
the iridocorneal angle in recent decades.1 Assessment
of the iridocorneal angle is of paramount impor-
tance in the diagnosis of primary angle closure (PAC).
Parameters derived from AS-OCT have been used in
various tasks, including subclassification, monitoring
pre– and post–laser peripheral iridotomy changes, and
the natural course of long-term structural changes in

eyes with PAC.2–5 Such studies have relied on manual
measurements necessitated by the technical difficulties
of developing satisfactory machine learning models.
In the 2010s, deep neural networks, more specifically
convolutional neural networks (CNNs), were applied
for various computer vision tasks with great success.6

Several deep neural networks have been success-
fully trained to achieve accuracy comparable to human
measurements of AS-OCT images, including in the
detection of scleral spur, prediction of plateau iris,
detection and grading of angle closure, and assess-
ment of angle parameters.7–10 However, labeling is
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vital in the training of the supervised model, and
every parameter has to be manually defined, marked,
and measured in these studies. Additionally, parame-
ter definitions need to be simple and clear enough to
measure manually because overly complex parameters
are not only laborious to measure but also difficult
to reproduce in a deep learning model. Even though
the accuracy of reproducing human labels is compa-
rable to human measurement in supervised models, it
suffers from high correlation among the parameters
themselves, especially when the number of parame-
ters increases, which limits the interpretability of the
outcome.11

A good example of a conventional method that
analyzes many intercorrelated parameters is principal
components analysis (PCA). PCA transforms origi-
nal variables into a set of new orthogonal variables
(or principal components).12 By choosing the first few
principal components, PCA can be used to reduce
the data dimensions and could be applied for medical
image analysis.13,14 Such a procedure could be applied
to a large set of parameters defined and measured by
experts; however, while PCA effectively accounts for
intercorrelation and reduces parameter dimensions, it
is not intuitively interpreted and does not guarantee a
representation of the full image, including geometric
and physical features. To overcome such limitations, a
hybrid approach combining CNN-based autoencoder
with PCA has been developed for optical coherence
tomography images demonstrating good accuracy in
discrimination of glaucomatous versus nonglaucoma-
tous optic nerve head as well as excellent visualization
of latent structure.15

Lately, a family of models called deep generative
models has been developed with recent advances in the
field of deep learning.16 Such models aim at learning a
disentangled latent space, a nonlinear low-dimensional
representation of the data space, which can be used
to generate new images. “Disentangled” is analogous
to “independent” in conventional statistics. One of the
widely used generativemodels is the variational autoen-
coder (VAE).17 When combined with CNN architec-
ture, a combination sometimes called a convolutional
VAE, aVAE framework becomes a relatively simple but
powerful tool for unsupervised learning of disentan-
gled latent space from images. Therefore, VAE archi-
tecture can be applied to extract the essence of the
entire image in a low-dimensional form via latent space
projection, making it suitable for deep learning analy-
sis.

A strong advantage of CNNs over traditional
human-measured parameters is visualization. Conven-
tionally, every parameter has been defined by experi-
enced specialists to capture an important aspect of the
image. Hence, an interpretation of a single parame-

ter, which is a scalar quantity, is straightforward per
se, but it becomes increasingly difficult with a larger
number of parameters. In contrast, while also being a
scalar quantity, every latent variable in a VAE repre-
sents certain aspects of the whole image. Also, a latent
variable or combination of latent variables can be
directly visualized, which is invaluable in terms of
interpretation. Once modeled, latent variables can be
applied to tasks, such as diagnosis, classification, or
longitudinal analysis.

This was a pilot study of unsupervised deep
learning aiming to investigate the capacity of VAEs
in ophthalmologic image analysis. Using AS-OCT
images, we first optimized hyperparameters and then
explored latent variables in detail to ensure that the
latent variables represent interpretable distinct anterior
segment characteristics.

Methods

Participants

We retrospectively reviewed electronic medical
records of all participants who had undergone an
AS-OCT examination (Visante OCT, version 3.0; Carl
Zeiss Meditec, Dublin, CA, USA) under controlled
room lighting conditions (0.5 cd/m2) from the ongoing
Asan Glaucoma Progression Study. All participants
initially underwent a complete ophthalmic examina-
tion, including a review of medical history, measure-
ment of best-corrected visual acuity, measurement
of manifest refraction, slit-lamp biomicroscopy,
Goldmann applanation tonometry, gonioscopy,
funduscopic examination, stereoscopic optic disc
photography, retinal nerve fiber layer photography,
and a visual field test (Humphrey field analyzer;
Swedish Interactive Threshold Algorithm 24-2; Carl
Zeiss Meditec, Jena, Germany). We excluded the
following patients: those with acute angle closure,
phacomorphic glaucoma, or phagocytic glaucoma;
patients with a history of ophthalmic surgery, includ-
ing laser peripheral iridotomy, implantable Collamer
lens insertion, anterior chamber lens implantation,
penetrating keratoplasty, cataract surgery, or vitrec-
tomy; patients with secondary glaucoma, including
neovascular or uveitic glaucoma; and those with
anterior chamber or corneal abnormalities, including
iridocorneal synechiae and high iris insertion, irido-
corneal syndrome, or keratoconus. If a participant
had undergone multiple AS-OCT examinations, the
highest-quality image, defined as showing good visibil-
ity of the scleral spur, was selected for analysis. Both
eyes of the same patient were included if eligible. A 0°
to 180° scan acquired in anterior segment quad mode
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with a size of 1200 × 1500 pixels (height by width)
was center cropped to create a 512-pixel × 1024-pixel
image, which was then resized to 256 × 512 pixels and
a grayscale color mode. As a result, 2111 eyes of 1261
patients were included in this analysis.

All procedures conformed to the Declaration of
Helsinki, and this study was approved by the insti-
tutional review board of the Asan Medical Center,
University of Ulsan, Seoul, Korea. The requirement
for informed consent was waived due to the study’s
retrospective design.

Image Preparation With Automated
Segmentation

We followed the methods described by Pham et al.
to construct a deep CNN for segmenting AS-OCT
images into three classes: (1) 130 randomly chosen
AS-OCT images from the training set were manually
segmented by an experienced glaucoma specialist
(KHS) using Fiji18 software into three segments—the
iris, the corneoscleral shell, and the anterior chamber;
(2) a modified U-net was trained with manually drawn
segmented images; and (3) all images were segmented
using a modified U-net (Supplementary Figs. S1 and
S2).18–20 The resulting segmented images had three
channels corresponding to the iris, corneoscleral shell,
and anterior chamber, each coded with 1 on a 0
background. Segmented images were aligned with
rotation and translation with a spatial-transformer
network.21

Construction of a Deep Neural Network

Obtaining an interpretable disentangled latent space
was key to our study. Ideally, each latent variable
would represent a distinct but interpretable aspect
of anterior segment configuration, which, in combi-
nation, would describe important aspects of an AS-
OCT image completely. In reality, an image cannot be
perfectly represented by latent space, nor can the latent
space be completely disentangled and interpretable.
There are trade-offs: (1) increasing the number of latent
variables will result in a better overall representation
of an AS-OCT image but with less interpretable latent
space, and (2) forcing a higher degree of disentangle-
ment might result in a posterior collapse and blurred
images with a β-VAE framework. Hence, despite the
model being unsupervised, the optimization of hyper-
parameters was a critical part of the study.

To explore the capability of deep generative models
for representing AS-OCT images, we analyzed four
steps: (1) construction of a β-VAE model, (2) deter-
mination of the optimal size of the latent space,

(3) determination of the optimal value of β by compar-
ing reconstruction accuracy and exploring the latent
space, and (4) visualization and interpretation of the
latent space in the final model. Actually, steps 2 and
3 were performed concurrently, but we have presented
them sequentially for practical reasons.

Constructing a β-VAE Model
A VAE is a probabilistic deep generative model in

which the distribution of the latent variables, posterior
pθ (z|x), is approximated to prior pθ (z), most commonly
assumed to be a Gaussian distributionN(0, I).17 A loss
function of the VAE is given as

L (θ, φ, β; x) = −Eqφ(z|x) [log pθ (x|z)]
+ DKL(qφ (z|x)||p (z)) (1)

where in our case, x is an image, z is a latent space,
q�(z|x) is the estimated probability function of latent
factors (probabilistic encoder parametrized with �),
pθ (x|z) is the likelihood of generating a true image given
latent factors (probabilistic decoder parametrized with
θ ), E is the expected value, and DKL is the Kullback–
Leibler divergence (KLD).

The practical problembehind everyVAE is aweight-
ing of the reconstruction loss (the first term on the
right side of Equation (1)) and KLD. Toomuch weight
on the reconstruction loss will result in a poor disen-
tanglement of the latent space, while too much weight
on the KLD will result in a posterior collapse. As our
segmented images are essentially one-hot encoded, we
have binary cross-entropy for the calculation of recon-
struction loss, which is a negative log-likelihood of
the Bernoulli distribution. If each pixel in the image
were independent, the total log-likelihood of the image
would be equal to the sum of the log-likelihoods of the
individual pixels. However, this is not applicable to all
cases.

To address this problem, we have used a β-VAE
framework,22 which has been proposed to enhance
disentanglement in VAE, where the loss function is
defined as follows:

L (θ, φ, β; x) = −Eqφ(z|x) [log pθ (x|z)]
+ βDKL(qφ (z|x)||p (z)) (2)

To specifically address the problem of correlation
between image pixels, a weight could also be added
to the reconstruction term. But because there is no
universal solution for the determination of appropri-
ate weight for reconstruction loss of image data, we
decided to manipulate β rather than further complicat-
ing the model by the addition of a hyperparameter.

The encoder and decoder components of the β-VAE
were constructed according to the model described by
Han et al.23 with rescaling of parameters: (1) input
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and output image sizes were scaled up from 128 × 128
to 192 × 448 × 3, (2) the number of filters in each
step was reduced (multiplied by a filter multiplier), and
(3) latent space was set to values explained in the
following section. To determine the optimal number
of filters, we compared models with the number of
filters reduced by filter multipliers of 1/16, 1/8, and 1/4.
There was no significant improvement in reconstruc-
tion accuracy, while some instability issues arose with
filter multipliers of 1/8 and 1/4 in certain situations. We
decided to use a filter multiplier of 1/16 in all models
presented in this article.

Determination of theOptimal Size of the Latent Space
Two additional manipulations were done to

segmented images before training the β-VAE: (1) a
corresponding horizontally flipped image was created
for every image, and (2) margins were cropped out,
resulting in images with a size of 192 × 448 pixels.
For training and validation of β-VAE models, we
randomly assigned 80% of the data to the train-
ing set (1692 eyes of 1007 patients) and 20% to the
validation set (419 eyes of 254 patients). Both eyes
of the same patient were guaranteed to be assigned
to the same group using stratified sampling. After a
preliminary explorative step to roughly approximate
reasonable values of β, we constructed eight models
with β set to 53 and another eight models with β

set to 54, with latent space dimensions from 4 to 11.
The resulting reconstruction accuracy and KLD were
compared to determine the optimal size of the latent
space.

Determination of the Optimal Value of β
Using a latent space size determined in the previous

step, we constructed eight otherwise identical models
with differing β values ranging from 5−1 to 56, with
each step multiplied by a factor of 5. We compared
the reconstruction accuracy and KLD of the models,
and we inspected selected samples. We explored full
latent space for all models, but we present only the
most prominent latent variable from each model in the
Results section for practical reasons.

Visualization and Interpretation of the Latent Space
Using the hyperparameters determined in previ-

ous steps, we trained a final model. Full visualization
of latent space for z values of −2 to 2 is presented
with manual rearrangement of latent variables from
η1 to η6. We also generated a dynamic animated image
to aid interpretation.

Table. Baseline Demographics

Characteristic Training Set Validation Set P Value

Age, y 63.2 ± 12.2 64.1 ± 11.9 0.335
Sex, female 675 (67.0) 169 (66.8) 0.960
Laterality, right 852 (50.3) 213 (51.0) 0.817
VFI, % 86.3 ± 23.7 86.9 ± 23.7 0.667
MD, decibels −5.38 ± 7.69 −5.12 ± 7.83 0.527

Values are presented as mean ± SD or number (%). MD,
mean deviation; VFI, visual field index.

Statistical Analysis

Pytorch (version 1.9.1; Facebook’s AI Research lab
(FAIR), Menlo Park, CA, USA) running in a Python
(version 3.7; Python Software Foundation, Wilming-
ton, DE, USA) environment was used for neural
network training. The mean binary cross-entropy
multiplied by the number of pixels (258,048) was used
to compare original and reconstructed images, and
a sum was used to compare KLD. All models were
trained with Adam optimizer for 3000 epochs. Analy-
ses were performed using SAS 9.4 (SAS Institute, Inc.,
Cary, NC, USA). The χ2 test was used for comparison
of categorical variables and the independent Student’s
t-test for continuous variables.

Results

Demographics

The mean participant age was 64.4 years, with more
females (66.9%) than males (33.1%) and all patients
being of East Asian ethnicity (Korean). The propor-
tion of left and right eyes was roughly equal (49.5%
vs. 50.5%, respectively), while the mean values of
visual field index and mean deviation were 86.4% and
−5.33 dB, respectively. There were no significant differ-
ences in any of the parameters between the training set
and validation set (Table).

Determination of the Optimal Latent Space
Size

In models with β set to 53, increasing the size of
the latent space resulted in improved reconstruction
accuracy and KLD (Fig. 1A). In contrast, with β set
to 54, reconstruction accuracy did not improve signif-
icantly with a latent space size of 6, which could have
implied the presence of a posterior collapse (Fig. 1B).

While numerically more accurate, excessively large
latent space is likely to generate latent variables that
are indiscernible from one another by the human
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Figure 1. Reconstruction loss (left axis, same in both figures) and KLD (right axis, different between figures) of the test set by latent space
dimensions at (A) β = 53 and (B) β = 54.

eye, decreasing the model’s interpretability. Hence, we
decided to use 6 for the size of the latent space in the
following analyses, whereafter some posterior collapse
might have occurred at higher β values.

Reconstruction Accuracy and KLD for
Different β Values

Reconstruction accuracy was relatively stable until
β reached 54, whereafter the reconstructed image
became significantly blurry. At β = 56, a complete
posterior collapse occurred. While comparing β = 53
and β = 54, reconstruction accuracy was better at β =
53 because of some visually noticeable blurring at β =
54. In sample image 1, the reconstructed image is less
accurate at β ≥ 54 than β ≤ 53. In sample image 4,
the thickness of the iris and diameter of the pupil keep
decreasing until β = 54 (Fig. 2).

Exploration of Latent Space for Different
β Values

We chose one of the most prominent latent
variables—that which generated the deepest anterior
chamber—from each model for a visual comparison
of latent space between different β values. At β = 50,
the latent variable did not seem to be properly centered
around 0, and the generated images were noisy, but
this gradually improved with increasing β. At β values
of 53 through 55, the main feature represented by the
latent variable became clear—the depth of the anterior
chamber. A posterior collapse happened at a β value of
56, meaning that manipulating z did not introduce any
noticeable change (Fig. 3).

Visualization and Interpretation of the Latent
Space in the Final Model

The most prominent latent variable was η1, which
accounted for the largest variability of anterior
chamber dimensions. On detailed exploration, we
noticed that with decreasing anterior chamber dimen-
sions, not only depth but width of the anterior chamber
also decreased. Additionally, the iris seemed to become
more curved, with decreasing anterior chamber dimen-
sions, while cornea seemed to be slightly thicker
with the deeper anterior chamber. The second latent
variable, η2, seemed to be mainly related to pupil
diameter. Also, the anterior surface of the lens seemed
to shift forward with a larger pupil. The next two latent
variables, η3 and η4, seemed to represent differences in
iris profiles—both variables generated thinner irides at
z = −2 and thicker irides at z = 2. However, η4 gener-
ated more curved irides than η3 at z = −2, whereas
η3 generated more curved irides than η4 at z = 2.
η5 seemed to bemainly related to corneal curvature and
lens vault; at z = −2, the corneosclera was flatter while
the lens vault was smaller than at z = 2. Differences
induced by changing z values of η6 were only subtle but
seemed to be mainly related to asymmetry (Fig. 4 and
Supplementary Movie S1).

Despite the model being unsupervised, all latent
variables were interpretable, suggesting good disentan-
glement, which can be confirmed by a visual inspection.
To summarize, each latent variable seemed to repre-
sent mainly the following aspects: the overall depth and
area of the anterior chamber (η1), pupil diameter (η2),
iris profile (η3 and η4), corneal curvature and lens vault
(η5), and overall asymmetry (η6).
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Figure 2. Reconstructed sample images frommodels with different β values with reconstruction loss calculated on the test set. RL, recon-
struction loss.

Discussion

With conventional methods, morphologic analysis
of the AS-OCT has been largely dependent on the
parameters deduced from clinical experience. In the
context of angle assessment, AS-OCT images have
been extensively analyzed using various parameters
that can be roughly categorized into the following:

1. Anterior chamber dimensions: anterior chamber
depth, anterior chamber width, anterior chamber
area, anterior chamber volume.

2. Angle width: angle opening distance, angle recess
area, trabecular iris angle, trabecular iris space
area, scleral spur angle.

3. Iris profile: pupil diameter (PD), iris area (IA),
iris curvature, iris thickness.

4. Lens position: lens vault.

The above list can be expanded if we include
measurements taken at different locations (e.g., 500
vs. 750 μm from scleral spur), secondary parame-
ters (e.g., relative lens position), or dynamic parame-
ters (e.g., iris area change by different lighting condi-
tions). Given that most anterior chamber parameters
are strongly correlated, combining those parameters
into a single model is not only technically challeng-
ing but also difficult to interpret.11 The problem gets
worse when accounting for the dynamic nature of
the eye—the pupil diameter changes with lighting
conditions, which affect anterior chamber parame-
ters.24,25 Also, despite the complexity, while effective in
capturing clinically important and prominent charac-
teristics, such parameters have limited ability to repre-
sent the AS-OCT image as a whole.

To address this limitation, we have applied a nonlin-
ear latent space model called convolutional β-VAE and
examined hyperparameters to find one that fits the best
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Figure 3. Latent variable generating the deepest anterior chamber for each β value. Sign of z values was adjusted to show a generated
image with a deeper anterior chamber on the right side.

Figure 4. Generated images from latent space of β = 53, with z values from −2 to 2. Each latent variable that has been altered is denoted
with a subscript η, while other latent variables are kept at 0. The sign of z values was adjusted so that for every latent variable, a generated
image with a deeper anterior chamber or larger pupil is displayed on the right side.
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scenario. Our model demonstrated encouraging results
despite being unsupervised, successfully disentangling
latent space so that it captures both intuitive and clini-
callymeaningful features of AS-OCT: the overall depth
and area of the anterior chamber (η1), pupil diameter
(η2), iris profile (η3 and η4), and corneal curvature (η5).

Zhang et al.26,27 have developed several algorithms
for detecting PAC using AS-OCT by mechanisms of
angle closure: pupillary block, plateau iris configura-
tion, thick peripheral iris roll, and all three mecha-
nisms. The authors measured 12 anterior segment
parameters twice under different lighting conditions.
In backward logistic regression models, with the excep-
tion of model 1 for plateau iris configuration, all eight
remaining models included no more than one param-
eter from each category: anterior chamber dimen-
sions (anterior chamber depth or volume), angle width
(angle recess area), iris profile (iris thickness or curva-
ture), lens vault, and dynamic changes (IA change or
IA change/PD change). Therefore, only four to five
parameters remained in the final models.

Compared with conventional parameters, latent
variables from a β-VAE model have some characteris-
tics more analogous to the actual physiology:

1. η1 could be a better single representation of
the anterior chamber dimension than any single
conventional parameter.

2. η1 could be a good single indicator of angle
closure: a smaller anterior chamber is associated
with a smaller anterior chamber width (analo-
gous to the phenomenon known as a crowded
anterior chamber) as well as a more curved iris
(which is hypothesized to happen in a pupillary
block).

3. Angle width is determined from a combination of
latent variables rather than froma separate entity;
the angle in the actual eye is likely to be a result
of multiple anatomic and physiologic features.

4. Half of all latent variables (η2, η3, and η4) seem to
be primarily associated with the iris, with features
difficult to parametrize. The iris is a highly diverse
component in the anterior chamber.

5. Lens vault seems to increase with a larger pupil,
which also seems to happen in the real eye but
with a lesser magnitude.24,26

While every latent variable is unique to the specific
model, and thus the reproducibility and comparability
are limited, once established, the latent spacemodel can
provide advantages and possibilities. As the model is
mathematically designed to promote disentanglement
of the latent space, we can expect the amount of struc-
tural information contained to be maximized. Hence,

the latent spacemodel could be better suited for model-
ing the dynamic patterns of the anterior chamber from
differing lighting conditions or degrees of accommo-
dation, which is difficult with conventional parameters.
Such models would greatly facilitate multicenter and
longitudinal research. Also, latent variables could be
used for unsupervised diagnosis of PAC, classification
of PAC depending on the mechanism of the disease,
or quantitative and qualitative analysis of underlying
mechanisms of the disease.

Our model shares many similarities to the model
developed by Panda et al.15 for the analysis of
optical coherence tomography images of the optic
nerve head—both models involve segmentation, use
a convolutional autoencoder, and extract a low-
dimensional latent representation of target structure.
However, there are also differences—Pandas et al.15
have combined segmentation and generation of the
latent space in one network followed by PCA for
further reduction of dimension of the latent space. In
contrast, we have built a dedicated network for segmen-
tation while the β-VAE solely focuses on obtaining
disentangled low-dimensional latent representation of
already segmented images. As a result, we expect the
former approach to bemore efficient at extracting most
informative latent vectors for discrimination of glauco-
matous versus nonglaucomatous optic discs, while our
approach is better suited for general structural explo-
ration of the anterior segment.

We have shown that careful tailoring of hyperpa-
rameters is necessary to achieve a meaningful repre-
sentation of latent space. Our results suggest that even
with a latent space size of 6, the meaning of the last
latent variable is less intuitive. While increasing the size
of latent space might improve reconstruction accuracy,
derived latent space is likely to haveworse interpretabil-
ity. In addition, manual optimization of hyperparam-
eter β is the key to constructing a β-VAE model.
While increasing the value of β is expected to promote
disentanglement of the latent space, it also might
lead to poorer reconstruction. Currently, there is no
universally accepted measure to find the optimal value
of β, especially for unlabeled data as in our example;
hence, visual inspection plays an important role.22 We
have found that while the reconstructed image might
look similar, the latent space is drastically different
depending on the value of β. At lower β values, recon-
structed images from a single latent variable looked
noisy, somewhat reminiscent of an impressionist or
abstract painting.With increasing β, latent space repre-
sentation improved until β reached 53, whereafter
reconstructed images became blurry, and a complete
posterior collapse happened at a β of 56. Our example
underlines the importance of adjusting hyperparame-



Deep Learning-Based Latent Space Model for AS-OCT TVST | February 2022 | Vol. 11 | No. 2 | Article 11 | 9

ter β while designing a β-VAE.Also, because the degree
of correlation between pixels will be different for every
data set, β must be carefully tailored for every model to
achieve ameaningful representation of the latent space.

Nonetheless, our model also has demonstrated
shortfalls and limitations. While reconstructed images
are surprisingly good given the small latent dimen-
sion of 6, there is still room for improvement. Also,
as can be expected from a VAE framework, increas-
ing β resulted in better latent space disentanglement;
however, at higher values, the reconstruction accuracy
deteriorated rapidly. Hence, hyperparameters have to
be optimized manually, which can be subjective and
laborious, a known problem for a VAE framework.28
Another important potential issue includes the balance
of labels: the model will be less effective at representing
rare instances. Simple categorical labels are relatively
straightforward to balance, but balancing images—
which are all unique themselves—is more difficult.
Manual balancing by the researcher might introduce
subjective bias, while there seems to be no univer-
sal standard for unsupervised balancing of unlabeled
images. Also, while true latent structure of the anterior
segment does not change, results from the generative
model are dependent on the data set, meaning that
the results may differ depending on the subjects and
imaging modality. Newer devices would capture more
details of the anterior segment, which could be infor-
mative for generative models also.

Conclusions

We have shown that a generative model can be
applied for disentangled low-dimensional latent space
representation of AS-OCT images. Further optimiza-
tion of the latent space model and analyses using the
latent space are warranted.
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Supplementary Material

Supplementary Movie S1. An animated movie
showing the dynamic changes of generated images.
Each image represents a single latent variable each
(range z = −2 to z = 2), while other latent variables
are kept at z = 0.
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