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Abstract

The precise interplay between large-scale functional neural systems throughout the brain is 

essential for performance of cognitive processes. In this review we focus on the default 

mode network (DMN), one such functional network that is active during periods of quiet 

wakefulness and believed to be involved in introspection and planning. Abnormalities in DMN 

functional connectivity and activation appear across many neuropsychiatric disorders, including 

schizophrenia. Recent evidence suggests subcortical regions including the basal forebrain are 

functionally and structurally important for regulation of DMN activity. Within the basal forebrain, 

subregions like the ventral pallidum may influence DMN activity and the nucleus basalis of 

Meynert can inhibit switching between brain networks. Interactions between DMN and other 

functional networks including the medial frontoparietal network (default), lateral frontoparietal 

network (control), midcingulo-insular network (salience), and dorsal frontoparietal network 

(attention) are also discussed in the context of neuropsychiatric disorders. Several subtypes of 

basal forebrain neurons have been identified including basal forebrain parvalbumin-containing 

or somatostatin-containing neurons which can regulate cortical gamma band oscillations and 

DMN-like behaviors, and basal forebrain cholinergic neurons which might gate access to sensory 

information during reinforcement learning. In this review, we explore this evidence, discuss the 

clinical implications on neuropsychiatric disorders, and compare neuroanatomy in the human 

vs rodent DMN. Finally, we address technological advancements which could help provide a 

more complete understanding of modulation of DMN function and describe newly identified 

BF therapeutic targets that could potentially help restore DMN-associated functional deficits in 

patients with a variety of neuropsychiatric disorders.
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1. Introduction

The neural mechanisms which support consciousness and our engagement with the external 

world remain poorly understood. Such processes necessitate the precise cooperation of 

specialized functional networks, which must dynamically coordinate their activity and 

interactions as a function of task performance and cognitive demand. Accurately defining 

the brain regions that comprise these networks, their properties, and the mechanisms which 

regulate their function can provide novel targets for therapeutic interventions for a number of 

neurological disorders associated cognitive deficits.

One such functional network that has garnered significant interest over the last few decades 

is the default mode network (DMN), a large-scale brain circuit that is activated during 

quiet wakefulness and deactivated during goal-directed tasks which evoke cognitive load. 

This network is conserved across a number of mammalian species, including humans, 

nonhuman primates, cats, and rodents and generally includes the medial prefrontal cortex 

(mPFC), the posterior cingulate cortex (PCC) and its surrounding regions in lateral parietal 

and temporal cortices (Shulman et al., 1997; Buckner et al., 2008; Raichle, 2015; Nair et 

al., 2018) (See Table 1). This network is somewhat unique in its brain-wide connectivity 

and capacity for integrated information processing, especially within contexts requiring a 

memory-based “autopilot” behavioral role (Vatansever et al., 2017). Activation of the DMN 

is also increased during advanced forms of thought and has been suggested to allow people 

to extract themselves from a first-person perspective to evoke introspection, imagination, 

mental state attribution, planning, and social inferences (Anticevic et al., 2012; Buckner and 

DiNicola, 2019; Jenkins, 2019). The network’s equidistance from sensory and motor areas 

in both anatomical and functional connectivity domains allows for high levels of abstraction, 

sensory integration, and information processing (Margulies et al., 2016).

There are multiple functionally distinct brain networks, beyond the DMN, which compete 

for activation. Several functional networks have been observed to exhibit activity that is 

anticorrelated with the DMN, particularly during externally oriented cognition (Buckner and 

DiNicola, 2019). This suggests that the DMN is suppressed while these networks become 

active. These anticorrelated networks include the dorsal frontoparietal network (D-FPN, 
attention network), midcingulo-insular network (M-CIN, salience network) or the lateral 

frontoparietal network (L-FPN, control network, see Table 1 for more detail) (Anticevic 

et al., 2012; Uddin et al., 2019). DMN suppression has been suggested to support certain 

types of goal-directed cognitive process. The M-CIN may also help transition between 

the DMN and L-FPN to guide attention towards behaviorally or biologically relevant 

stimuli (Menon, 2015), while the L-FPN appears to be a top-down “functional hub” that 

manages interactions between the various brain networks (Marek and Dosenbach, 2018). 

However, DMN activity has also been observed to be important for cognition and behavior, 
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especially within specific contexts. Certain cognitively demanding tasks that require self-

referential thinking (i.e., autobiographical planning) can lead to coactivation of the DMN 

and L-FPN (Spreng et al., 2010) [for more examples see Spreng, 2012]. Additionally, 

subregions of the DMN including the precuneus demonstrate activation during externally-

focused task performance (information processing speed task, high level prediction-error), 

perhaps acting as a transition between the DMN and task-positive networks (da Silva et al., 

2020; Brandman et al., 2021; Lyu et al., 2021). A healthy balance between the activity of 

these brain networks appears essential as abnormally strong DMN functional connectivity 

or deficient DMN activation/suppression can be associated with certain neuropsychiatric 

disorders (Anticevic et al., 2012; Hamilton et al., 2015; Zhou et al., 2016).

Our present understanding of DMN activity is based principally on work utilizing either 

positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) 

techniques (Jenkins, 2019). This almost exclusive reliance on correlational findings from 

neuroimaging studies can lead to varying results that are difficult to interpret. Thus, 

there is a need for future work focusing on understanding the properties of DMN from 

different levels of analysis. Below, we describe the role of abnormal DMN function in 

neuropsychiatric disorders with a particular focus on schizophrenia and describe recent 

clinical and preclinical findings which may provide novel insights into the biological 

mechanisms responsible of modulation of DMN activity. Finally, we discuss technological 

advancements that may lead to further insight into the biological mechanisms behind the 

DMN.

2. The role of the DMN in schizophrenia and other neuropsychiatric 

disorders

Abnormalities in DMN activity have been reported across numerous neurological and 

neuropsychiatric disorders (For a comprehensive review of this topic see; Whitfield-Gabrieli 

and Ford, 2012; Mohan et al., 2016; Hu et al., 2017; Allen et al., 2019). Here, we provide 

a brief discussion focusing on DMN activity in schizophrenia, a disorder where patients 

experience hallucinations and delusions along with generalized cognitive and social deficits. 

Disturbances in the DMN or in the ability to rapidly switch between functional networks 

can have significant consequences on cognition, attention, and memory (Whitfield-Gabrieli 

et al., 2009; Anticevic et al., 2015; Woodward and Heckers, 2016). Abnormal regulation of 

DMN and M-CIN transitions may result in salience being applied to meaningless external 

and internal stimuli, perhaps giving rise to hallucinations and delusions (Palaniyappan 

and Liddle, 2012). Indeed, hallucinations in schizophrenia are associated with sudden 

disengagement of the DMN and disinhibition of sensory regions, and hallucinations seem 

to disappear when L-FPN regions are activated (Waters et al., 2012; Jardri et al., 2013; 

Lefebvre et al., 2016; Leroy et al., 2017; Allen et al., 2019). Additionally, the volume of 

the M-CIN is associated with the severity of delusions and hallucinations in patients with 

schizophrenia (Crespo-Facorro et al., 2000; Palaniyappan et al., 2011).

DMN suppression facilitates certain types of goal-directed cognitive processes (Anticevic 

et al., 2015; Buckner and DiNicola, 2019). Patients with schizophrenia show sustained 
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activation in DMN subregions and reduced activation in anticorrelated networks including 

the L-FPN during tasks involving executive function (Minzenberg et al., 2009; Nygard et 

al., 2012; Razavi et al., 2013; Kindler et al., 2015). Thus, an impaired ability to switch 

between these networks may lead to downstream cognitive impairment (Hugdahl, Loberg, et 

al., 2009; Hugdahl, Westerhausen, et al., 2009; Allen et al., 2019). Zhou and colleagues used 

resting-state fMRI approaches during a working memory task and found that within first 

episode schizophrenia patients, those with cognitive impairments show reduced suppression 

of DMN regions including the mPFC and PCC, while those without cognitive impairments 

do not (Zhou et al., 2016).

Despite inconsistent findings regarding network oscillation frequencies across patients with 

schizophrenia, NMDA receptor dysfunction may alter theta and delta rhythms among DMN 

and hippocampal regions which could affect working memory, network rhythms, and other 

schizophrenia-related phenotypes (Hunt et al., 2017). Both clinical and preclinical findings 

suggest that DMN cortical function, as measured by fMRI bold signal, appears to be linked 

to gamma band activity as measured by local field potential (Leopold et al., 2003; Fox et 

al., 2018). Clinical studies reveal that gamma band oscillations in DMN-associated brain 

regions are enhanced during quiet wakefulness, transiently suppressed during cognitive tasks 

in a manner that is time-locked to the initiation of task performance, and are proportional 

in amplitude to task difficulty (Miller et al., 2009; Dastjerdi et al., 2011; Ossandon, Jerbi 

et al., 2011; Ramot et al., 2012; Nair et al., 2018). Suppression of gamma oscillations 

in DMN regions during a sensorimotor task also occurs in nonhuman primates (Hayden, 

Smith et al., 2009; Pearson et al., 2011) and cats (Popa et al., 2009; Nair et al., 2018). 

Recent preclinical evidence supports these observations using transgenic serine racemase 

knockout mice, a model of NMDA receptor dysfunction that exhibits phenotypes similar 

to schizophrenia (Basu et al., 2009; DeVito et al., 2011; Balu et al., 2012; Puhl et al., 

2019; Balla et al., 2020). Serine racemase knockout mice have recently been shown to 

exhibit impaired social memory (Aguilar et al., 2021). Pairing EEG recordings with social 

task performance revealed that the DMN-associated prefrontal/anterior cingulate cortex of 

these knockout mice showed elevated spontaneous broadband gamma activity just prior to 

social investigations. This effect was associated with suppressed task-evoked gamma-band 

response, likely due to impaired suppression of DMN-like spontaneous gamma band activity 

in this transgenic model.

Recent clinical findings have elucidated a potential mechanism behind impaired deactivation 

of DMN activity in psychiatric disorders. Using fMRI and magnetic resonance spectroscopy 

(MRS) approaches in healthy human adults, Gu and colleagues discovered that functional 

network interactions between a DMN node (PCC) and the M-CIN mediates the association 

between the PCC’s excitatory-inhibitory balance and task-induced deactivation of the DMN 

(Gu et al., 2019). This suggests that deficient DMN deactivation during task performance 

could have two underlying mechanisms: 1) an excitatory-inhibitory imbalance in a DMN 

node like the PCC (which could be rescued with pharmacological targeting), and/or 2) 

desensitization to long-range salience network (M-CIN) inputs on a DMN node (which 

could be rescued with neuromodulation and upstream circuit targeting) (Gu et al., 2019).
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Beyond schizophrenia, abnormal functional connectivity within the DMN has also been 

associated with Alzheimer’s disease (Greicius et al., 2004). In Parkinson’s disease, enhanced 

DMN connectivity has been associated with hallucinations. Abnormal DMN connectivity in 

mood disorders can be associated with rumination, the duration and number of depressive 

episodes, and cognition (Mohan et al., 2016). Specifically, depressive rumination in major 

depressive disorder (MDD) may be caused by abnormally strong functional connectivity 

between the DMN and a subregion of the prefrontal cortex (Hamilton et al., 2015), while 

hyperactive DMN activity in MDD may be linked to cognitive impairment (Rose et al., 

2006). Abnormal network connectivity exists across many networks in MDD including the 

DMN, salience network (M-CIN), and control network (L-FPN) (Brakowski et al., 2017). 

Anxiety and affective disorders are also suggested to be influenced by DMN abnormalities. 

Increased DMN activation may enhance anxiety and worry (Servaas et al., 2014; Gentili 

et al., 2015), but its relationship during task performance may depend on the task utilizing 

executive functions (Eysenck et al., 2007; Fales et al., 2008; Maresh et al., 2014; Allen et al., 

2019).

Finally, a resting-state fMRI study of children ages 7–12 with autism spectrum disorder 

(ASD) revealed hyperconnectivity within the M-CIN, DMN, frontotemporal, motor, and 

occipital (visual) networks compared to typically developing children’s brains (Uddin et 

al., 2013, 2019). Specifically, posterior DMN regions including the precuneus, posterior 

cingulate, and left angular gyrus all showed greater functional connectivity in children with 

ASD compared to typically developing children, which might be associated with social 

and interpersonal cognition deficits (Uddin et al., 2013). Other studies have reported DMN 

hypoconnectivity in adults and adolescents with ASD which was correlated with the severity 

of their social and communication deficits, but these cohorts were slightly older (~ 11–20 

years old) (Assaf et al., 2010).

3. Subcortical control of the DMN: role of the basal forebrain

3.1. Studies of subcortical DMN control in healthy human participants

Recent clinical studies have provided great leaps in our understanding of the DMN and 

its regulation. Given the widespread nature of DMN-associated processes, mechanisms 

involved in DMN modulation are likely to involve brain regions which influence neural 

activity in a widespread/global manner. Interestingly, several recent studies have identified 

subcortical regions which are functionally and structurally important for DMN function 

including the basal forebrain (BF) and thalamic subregions (Alves et al., 2019; Uddin 

et al., 2019; Harrison et al., 2021; Li et al., 2021). Alves and colleagues used novel 

optimized methods to analyze imaging data (MRI, resting state fMRI) from healthy humans 

to reimagine a basic anatomical map of the DMN based on functional alignment (Alves 

et al., 2019). This method identified highly interconnected regions as novel DMN nodes. 

Next, they used tractography of diffusion-weighted imaging and a graph theory analysis 

to characterize the structural connectivity of this DMN model and confirmed these novel 

additions to the DMN anatomical map. They concluded that subcortical regions including 

the BF, anterior thalamus, and mediodorsal thalamus should each be considered a central 

part of the default mode network based on their functional and structural connectivity (Alves 
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et al., 2019). Their representation of the BF consisted of the nucleus basalis of Meynert, 

the diagonal band of Broca, and medial septal nuclei. There are some limitations to the 

study; the DMN maps compared nuclei locations with templates which did not account for 

individual variability, and tractography can be somewhat inaccurate. Nevertheless, the use of 

complementary structural and functional approaches that align with known neurochemistry 

create a convincing argument.

In a separate study, Li and colleagues utilized state of the art analysis of 7 T fMRI of resting 

state activity in a large cohort of healthy humans to more comprehensively map DMN 

subcortical connectivity, revealing extensive interconnections between the cortical DMN and 

subcortical regions beyond the BF and thalamus, including the brainstem, hypothalamus, 

basal ganglia, and ventral tegmental area (Li et al., 2021). Their analysis utilized a novel 

tensor decomposition method that improved contrast and spatial alignment, and they’ve 

released their subcortical DMN connectivity map in common formats for future research. 

Limitations of this method include its inability to account for severe spatial misalignment 

among subjects, and the challenge of applying this high resolution (7 T) map onto fMRI 

machines with lower resolution (3 T).

Another recent neuroimaging study supports these findings, and further suggests that BF 

and thalamic nodes have distinct influences on DMN function (Harrison et al., 2021). Here 

they observed that the BF was involved in driving suppression of DMN activity during 

transitions from resting-state to externally focused task-oriented behavior. The mediodorsal 

thalamus on the other hand, was observed to influence DMN activation during internally 

focused cognition. Dynamic causal modeling, a method of analysis that identifies the causal 

influences of brain regions on each other by studying interregional connections in baseline 

and dynamic (task) conditions, confirmed these findings (Harrison et al., 2021). Broadening 

the DMN to include additional subcortical regions may explain how this functional network 

can be involved in complex neural processes such as memory and emotional regulation 

(Alves et al., 2019).

Despite such findings, the influence of these subcortical brain regions on DMN 

activity remains controversial. Munn and colleagues have recently shown that subcortical 

neuromodulatory regions like the brainstem’s locus coeruleus (norepinephrine-rich region) 

and the BF’s nucleus basalis of Meynert (acetylcholine-rich region) could significantly 

influence cortical energy states and large-scale network transitions (Munn et al., 2021). 

Phasic bursts of locus coeruleus activity acted like a chemical catalyst, “flattening” the 

energy landscape required to transition between large scale brain networks, while phasic 

bursts of nucleus basalis of Meynert activity “elevated” the energy landscape making 

transitions between brain networks less likely (Munn et al., 2021). Resting-state fMRI 

findings revealed that the locus coeruleus became more active than the nucleus basalis of 

Meynert a few seconds before participants realized they were no longer paying attention, 

suggesting that the locus coeruleus can manipulate energy landscapes which may drive 

changes in conscious awareness (Munn et al., 2021). Therefore, these ascending arousal 

systems are likely involved in dynamic changes in brain networks and conscious awareness.
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A recent series of fMRI neuroimaging experiments in human volunteers demonstrated how 

the anterior insular cortex appears to manage transitions between the default mode network 

and dorsal attention network (D-FPN) in response to sensory stimuli during conscious brain 

states (Huang et al., 2021). Unconscious brain states had minimal anterior insular cortex 

activation and no switching between the DMN and dorsal attention network in response to 

stimuli. Furthermore, if the anterior insular cortex was less active during the pre-stimulus 

baseline period, the subject was less likely to consciously notice a brief stimulus. Thus, the 

anterior insular cortex appears to “gate” conscious access to external sensory information 

(Huang et al., 2021). Notably, neither the BF nor thalamic regions were shown to have 

associations with these specific kinds of transitions between the DMN and dorsal attention 

network in this work. Thus, completely characterizing the role of such subcortical regions on 

functional network activity remains an area of active investigation.

3.2. Human vs preclinical DMN studies

Although the majority of DMN research has been performed in a clinical setting, preclinical 

approaches are becoming more common. Such work is critical to providing the ability to 

elucidate the biological mechanisms underlying the intrinsic connectivity and regulation 

of DMN (Gozzi and Schwarz, 2016). Beyond humans, DMN-like networks have been 

characterized in across a range of mammalian species including macaque (Vincent et al., 

2007), rat (Lu et al., 2012) and mouse (Stafford et al., 2014; Whitesell et al., 2021) 

supporting the idea that more invasive, circuit level studies focused on DMN could be 

performed in lower level organisms.

An fMRI comparison study revealed generalized similarities across the putative rat DMN, 

“old world” monkey DMN, and human DMN (Lu et al., 2012). During the resting state, 

rats show DMN-like connectivity in the following regions (human DMN counterparts in 

parentheses, see Fig. 1): orbital cortex (orbital frontal cortex), prelimbic and cingulate cortex 

(medial prefrontal/anterior cingulate cortex), auditory/temporal association cortex (lateral 

temporal cortex), posterior parietal cortex including secondary visual cortex (inferior parietal 

lobe), granular and dysgranular retrosplenial cortex (posterior cingulate/retrosplenial cortex), 

and dorsal CA1 of hippocampus (hippocampus/parahippocampal cortex). Rats additionally 

showed a unique activation along the medial ridge of the cingulate cortex which did not 

appear in human brains at rest (Lu et al., 2012). Mandino and colleagues also compared 

resting state brain networks across human, macaque, and mouse brains by using a “triple-

network” organization model that incorporates interactions between the salience (M-CIN), 

default mode, and central executive networks (L-FPN) to provide insight into trans-species 

comparisons as well as psychiatric and neurological disorders (Mandino et al., 2021). They 

confirmed generally homologous brain networks across these species, but the serotonin 

system (especially dorsal raphe) was associated with the salience network in mice instead 

of the DMN, as in humans. Limitations included isoflurane administration to sedate the 

animals into a resting state for the fMRI which could have biased the results, and the 

imaging resolution may not be sufficient to detect rat brain subregions with sufficient clarity 

(Lu et al., 2012; Mandino et al., 2021).
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A recent study avoided the limitation of anesthesia in a mouse resting state fMRI study. 

Gutierrez-Barragan and colleagues trained C57Bl6/J mice to tolerate head-fixed resting-state 

fMRI scans with minimal stress and compared the functional connectivity in the awake state 

to other mice under halothane or isoflurane-medetomidine induced anesthesia (Gutierrez-

Barragan et al., 2022). Although they observed many similarities between brain networks 

in awake mice and primates, some differences like a segregation of posterior vs midline 

DMN are not observed in higher primates (Vincent et al., 2007). This is potentially due to 

enhanced cortical differentiation in the primate brain compared to the rodent postero-lateral 

cortex (Gutierrez-Barragan et al., 2022).

Despite such findings, comparing brain networks across species is neither straightforward 

nor without controversy. Anatomical neurological landmarks and “connectivity fingerprints” 

are useful at identifying homology between species, especially in brain regions linked to 

common functions like movement or perception (Krubitzer, 2007; Balsters et al., 2020). In 

contrast, brain networks involved in higher level cognitive capabilities like the DMN and 

frontoparietal networks are much harder to identify across species based on their widespread 

physical locations and divergent cortical evolution (Xu et al., 2020). One solution is 

comparing functional connectivity across species engaged in a similar task. Similarities in 

functional organization were extracted from humans and macaques while watching movies 

(Mantini et al., 2012) or while at rest (Milhamet al., 2018), while using anatomical cross-

species landmarks and individual comparisons to strengthen the validity of the approach (Xu 

et al., 2020). This work revealed greater levels of functional homology between humans and 

macaques in unimodal brain regions, while lower similarity was observed in systems linked 

to attention and more complex aspects of higher order cognition, with the most profound 

changes observed in the posterior DMN. These findings suggest more significant changes in 

DMN and other complex functional network architecture across distant species like humans 

and rodents.

In summary, comparing brain network activity across species is a particularly challenging 

task, but good experimental design can lead to impactful, informative preclinical studies. 

For a recent in-depth review of this topic with direct comparisons of the resting state 

networks and their underlying anatomy across humans, rats, and mice, please see Xu 

et al. (2022). For the purposes of this review, activity in the rodent anterior cingulate 

cortex and prelimbic cortex will be considered potentially relevant to rodent DMN activity 

depending on behavioral context. However, please note that this approach may be unreliable 

without simultaneous information from other DMN nodes. The rodent mPFC is involved 

in many cognitive tasks, similar to the human dorsolateral PFC, suggesting activity in 

PFC subregions like the anterior cingulate may represent different brain networks (DMN / 

M-CIN) in different contexts (Xu et al., 2022). An in-depth review of the neuroimaging 

literature regarding prefrontal homology between humans and rodents is outside the scope 

of this review, but could help clarify which prefrontal regions should and should not be 

considered DMN-relevant (Laubach et al., 2018; Schaeffer et al., 2020; van Heukelum et al., 

2020).
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3.3. Preclinical studies of subcortical DMN control

Over the last few years an increasing number of preclinical studies, discussed below and 

featured in Fig. 2, have focused on the BF as playing a central role in modulation of 

DMN activity across a number of experimental modalities. The BF has been shown to be a 

major neuromodulatory hub, supporting broad functional connections with neocortical and 

subcortical brain regions critical to cognition (Lin et al., 2015; Yang et al., 2017; Zaborszky 

et al., 2018; Gombkoto et al., 2021). Further, degeneration of BF across age and with certain 

neuropathological conditions, such as Alzheimer’s disease, has been associated with both 

functional and cognitive impairment (Schmitz et al., 2016; Markello et al., 2018). Taken 

together these findings support the idea that BF plays a significant role in DMN modulation.

In macaques, unilateral inactivation of the nucleus basalis of Meynert, a BF structure 

with major GABAergic and cholinergic cortical projections, caused an intra-hemispheric 

reduction in global spontaneous fMRI signal fluctuations but did not seem to significantly 

affect resting-state fMRI networks including the DMN (Turchi et al., 2018). As we 

now understand, BF activity can decrease the likelihood of switching between networks 

(Harrison et al., 2021; Munn et al., 2021). Thus, inactivation of the nucleus basalis 

of Meynert in primates facilitated switching between the various networks during their 

conscious resting state activity (Turchi et al., 2018). Future experiments investigating the 

impact of stimulating this BF subregion on induced network transitions could be relevant for 

modeling aspects of schizophrenia. Nevertheless, this was an important step in determining 

which BF subregions are involved in DMN regulation.

In rodents, resting state fMRI data in awake mice replicated brain networks measured 

in anesthetized conditions but uniquely had stronger arousal-related BF connectivity with 

the DMN, other brain networks, and cortico-hippocampal regions (Gutierrez-Barragan et 

al., 2022). Awake mice also had more “cross-talk” between networks, and more regional 

anti-correlation (posterior vs midline DMN) compared to anesthetized states (Gutierrez-

Barragan et al., 2022). This provides distinct evidence that BF and thalamic regions shape 

resting state fMRI network dynamics in the awake mouse, mimicking human imaging data 

(Alves et al., 2019). Limitations of this study include potential differences in arousal states 

between marginally stressed head-fixed mice and human resting state fMRI, the possibility 

of low doses of anesthesia causing intermittent consciousness, and the use of a single sex 

(male) (Gutierrez-Barragan et al., 2022). Nevertheless, this work represents one of many 

novel protocols for awake rodent resting state fMRI data collection which will aid the 

translatability of future rodent fMRI research (Jonckers et al., 2014; Ma, Ma, et al., 2018; 

Ma, Perez, et al., 2018; Stenroos et al., 2018; Liu et al., 2020; Gutierrez-Barragan et al., 

2022).

A series of recent preclinical studies from the Rainer lab have demonstrated how BF activity 

influences brain states including the DMN. Using single unit and local field potential 

recordings in rats, they demonstrated that spontaneous gamma band oscillations in the 

BF’s ventral pallidum and nucleus basalis were elevated during behavior associated with 

increased DMN activity (e.g. quiet wakefulness and grooming) and strongly suppressed 

during externally directed behaviors associated with reduced DMN activity (e.g. novel 

object or arena exploration) (Nair et al., 2018). Further, granger causality analysis showed 
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that spontaneous gamma band activity in the BF influenced gamma band activity in the 

anterior cingulate cortex, an important node of the DMN in humans and rodents (Stafford 

et al., 2014), and this influence was especially strong when animals were in the home cage 

setting (Nair et al., 2018). Together, these findings suggest that the BF plays a critical role 

in the regulation of DMN-like activity in mice. However, they do not speak to the precise 

mechanisms behind the BFs role in this process.

While the BF is generally associated with its cholinergic projections, GABAergic neurons 

are particularly numerous in the BF; a subpopulation of which project to the cortex (Brown 

and McKenna, 2015). Such long-range GABAergic projections have been suggested to play 

an important role in long range synchronization (Buhl and Singer, 1989; Jinno et al., 2007; 

Melzer et al., 2012), including those between the basal forebrain and cortex (Manns et 

al., 2000). A follow-up study by Lozano-Montes and company, focused on optogenetic 

manipulation specifically of parvalbumin (PV) expressing fast-spiking GABAergic neurons 

in the magnocellular preoptic area of BF in male PV-Cre rats. As shown in Fig. 2A, 

they observed increased behaviors relevant to DMN activity, as well as entrainment of the 

anterior cingulate cortex at a 30 Hz stimulation frequency (Lozano-Montes et al., 2020). 

Nonspecific electrical stimulation of the BF’s magnocellular preoptic area, which likely 

activates a combination of BF networks of PV neurons, somatostatin (SST)-containing 

GABAergic neurons, glutamatergic neurons, and cholinergic neurons, generally replicated 

the effects of PV-specific stimulation but also enhanced memory performance. This might be 

due to BF cholinergic neuron activation which can facilitate learning & memory formation 

(Hasselmo, 2006; Lozano-Montes et al., 2020).

Further work from this group has examined how optogenetic stimulation or inhibition of 

the male rat ventral pallidum, a subregion of BF, affected DMN brain states, gamma band 

oscillations, and learning (Klaassen et al., 2021). Here they observed that inhibition of 

ventral pallidum GABAergic and cholinergic cells appeared to suppress gamma oscillations 

in the ventral pallidum and anterior cingulate cortex (two DMN nodes) in a home cage 

setting, inactivate the DMN brain state, impair responses in an automatic lever-pressing task, 

and slightly improve acquisition during a complex attention-associated auditory task (Fig. 

2B). Excitation of ventral pallidum GABAergic cells had opposite effects, enhancing gamma 

oscillations in the ventral pallidum and anterior cingulate cortex, and “trapping” animals in 

a DMN-like state of internal focus with less attention on external stimuli, which resulted in 

impaired acquisition of an auditory discrimination task. This suggests the ventral pallidum 

regulates DMN brain states to aid in instantly switching between internally (DMN) and 

externally (attention) guided behaviors. Together, this series of studies provide compelling 

evidence that the BF does in fact represent a DMN node and suggest that BF PV neurons 

play a role in the regulation of DMN activity. However, they remain somewhat limited, as 

they simultaneously inhibited GABAergic and cholinergic cells which makes it difficult to 

distinguish their distinct roles (Klaassen et al., 2021). Most importantly, the studies from this 

group rely exclusively on local field potential activity in a single cortical brain region and 

the BF as a proxy for DMN activity. Future studies should aim to explore neural activity in 

additional DMN nodes to get a more complete understanding of the strength, timing, and 

coordination of this directional relationship.
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Similar findings were obtained in another recent study, which showed that tonic (constant 

low-wattage) optogenetic excitation of BF PV neurons in mice (in the diagonal band/

magnocellular preoptic area) enhances broadband gamma activity in the anterior cingulate 

cortex (McNally et al., 2021), reminiscent of the DMN-like gamma activity reported in the 

Rainier group (Fig. 2C). Also, BF PV stimulation was reported to impair performance 

in a novel object recognition task. However, tonic BF PV stimulation also induced 

hyperlocomotion (McNally et al., 2021) which is not consistent with stereotypical DMN 

behaviors. This contradictory finding is perhaps due to the nature of the stimulation 

parameters utilized in this study. Such excessive stimulation of BF PV neurons may impair 

the ability to functionally modulate DMN-related broadband gamma activity in the cortex. 

This would result in excessive cortical excitation (elevated broadband gamma activity, 

hyperlocomotion), leading to inefficiencies in the ability to actively switch between network 

states, required for processing task-related sensory input.

Supporting this idea, tonic excitation of BF PV neurons in mice was observed to impair 

the 40 Hz auditory steady state response (ASSR) (McNally et al., 2021). The ASSR is an 

auditory task where the cortex entrains to the frequency of auditory stimuli. Patients with 

schizophrenia consistently show deficits in the 40 Hz ASSR (Kwon et al., 1999; Light et 

al., 2006; Brenner et al., 2009; Hirano et al., 2015; Thune et al., 2016). Selective auditory 

attention is important for the power of the ASSR (Manting et al., 2020). Thus, impairment 

of the ability to properly suppress DMN-like gamma band activity would likely impair 

task performance. Further supporting this idea, ventral pallidum GABAergic stimulation 

in rats impairs attention to external stimuli and acquisition of an auditory discrimination 

task (Klaassen et al., 2021). Prior work from McNally and colleagues additionally reported 

that optogenetic inhibition of BF PV neurons also leads to impaired 40 Hz ASSR (Kim et 

al., 2015) while phasic optogenetic stimulation can either enhance or decrease the ASSR 

depending on the relative time of presentation of optical and auditory stimuli (Hwang et al., 

2019). Together, these findings suggest that appropriately timed synchronous activity of BF 

PV neurons can enhance ASSR responses while either inappropriate inhibition or elevation 

of spontaneous activity of BF PV can impair ASSR responses, illustrating the necessity of 

proper BF PV function to fine tune levels of DMN-like spontaneous gamma band activity 

for optimal cortical processing. Future studies could explore evidence of a direct connection 

between BF PV stimulation and DMN regulation by recording from within multiple DMN 

nodes with local field potential electrodes, testing additional locations for BF PV stimulation 

such as the ventral pallidum, and recording more behavioral characteristics associated with 

the DMN (grooming).

If tonic BF PV stimulation can induce phenotypes that mimic psychosis, perhaps tonic BF 

PV inhibition can alleviate psychotic phenotypes. Intriguingly, McNally et al. (2021) also 

observed that optogenetic inhibition of BF PV neurons partially rescued the elevation in 

cortical gamma band oscillations evoked by subanesthetic ketamine, a common method used 

to model aspects of schizophrenia. These experiments suggest BF PV neurons represent 

a promising therapeutic target in conditions like schizophrenia where DMN regulation of 

cortical gamma oscillations has gone awry, with the potential to improve DMN suppression 

and task-based switching between network states.
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PV-containing neurons are not the only BF neuron subtype that can influence DMN-like 

brain states or behaviors. BF SST neuron manipulation also has wide-reaching consequences 

impacting cortical activity in DMN-relevant regions and inducing changes between DMN-

like and arousal-like behaviors and brain states. Espinosa and colleagues used optogenetic 

approaches to inactivate BF SST neurons in transgenic mice during quiet resting state 

conditions and found that prelimbic cortex single unit activity was enhanced, while 

prelimbic coherence between single and multi-unit activity was reduced in frequencies 

below 10 Hz (Espinosa et al., 2019b). BF SST inhibition also enhanced the power of 

prelimbic low gamma band oscillations (20–40 Hz), reduced the power of prelimbic 

slow oscillations (0.5–1 Hz), and enhanced locomotor activity (Espinosa et al., 2019b). 

Importantly, as show in Fig. 2C, the influence of BF SST activity appears to be mediated via 

inhibition of local BF cell types (PV, cholinergic & glutamatergic), suppressing the synaptic 

inputs to those cell types in a format conducive to sleep, while reduced BF SST activity can 

increase synaptic activity in the cortex and will likely have similar results in other targets of 

the BF (Do et al., 2016; Espinosa et al., 2019b).

In a related study, Espinosa and colleagues recorded local field potential and single unit 

activity in two BF regions, the medial septum and ventral pallidum, in transgenic mice. 

They discovered that optogenetic inhibition of ventral pallidum SST neurons reduced ventral 

pallidum gamma oscillations in anesthetized mice and enhanced locomotion in conscious 

mice, while optogenetic inhibition of medial septum SST neurons had no effects on local BF 

gamma oscillations but reduced spatial memory in the Y maze task (Espinosa et al., 2019a). 

This and their previous work (Espinosa et al., 2019b) suggests that ventral pallidum SST 

activity is positively correlated with local BF gamma band oscillation activity and negatively 

correlated with prefrontal gamma band oscillation activity, making ventral pallidal SST 

neurons a key component of BF control of the DMN. Future studies should replicate this 

work in conscious mice to avoid the confounds of anesthesia on brain states and SST 

neuronal activity, and test SST activation in addition to inhibition.

By using fiber photometry to study the activity of BF cholinergic and GABAergic neurons in 

transgenic VGAT-Cre mice, Hanson et al. demonstrated how these signals change on a rapid 

time scale during an olfactory-dependent go/no-go task (Hanson et al., 2021). Specifically, 

BF cholinergic activity is enhanced during reward seeking behaviors and is subsequently 

suppressed by reward delivery, potentially signaling reinforcement. BF GABAergic activity 

was enhanced nonspecifically during reward seeking and non-reward seeking behaviors and 

suppressed by reward delivery. This study helps us understand how local cholinergic and 

GABAergic signaling in the BF may influence top-down regulation of sensory processing to 

affect reward-seeking behaviors and positive reinforcement (Hanson et al., 2021). This study 

adds additional context to the cell type-specific mechanisms of BF control of the DMN 

network.

In anesthetized transgenic rats undergoing resting state fMRI scans, unilateral chemogenetic 

stimulation of BF cholinergic neurons reduced functional connectivity and resting state 

neural activity within intra-hemispheric DMN-associated regions (Peeters et al., 2020). 

However, functional connectivity was not significantly lateralized to the contra-hemispheric 

DMN in many specific subregions (Peeters et al., 2020). Therefore, BF cholinergic 
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activation seemed to suppress the global functional connectivity of the DMN network within 

a hemisphere, rather than strongly suppress connectivity within a few DMN subregions. 

Although these rats were neither conscious nor freely behaving, the authors believe that BF 

cholinergic activation may be an underlying mechanism of DMN suppression during tasks 

and attention (Peeters et al., 2020).

Finally, we note that the BF has been shown to have reciprocal connectivity with the 

insular cortex (Do et al., 2016; Zaborszky et al., 1997), a cortical brain region that plays 

a central role in the salience (M-CIN) network. While there has been minimal preclinical 

work examining the functional aspects of the connection been these regions, this places the 

BF in privileged position to regulate rapid dynamic switching between internally focused 

brain states (DMN) to externally focus states (M-CIN). Taken together, the above preclinical 

findings strongly support the idea that BF plays an important role in regulation of DMN 

function. However, there is still a great deal of work that remains to be done to definitively 

prove this hypothesis.

Future studies should include precise messaging about subregions of the BF or anterior 

cingulate cortex that are being targeted to improve rigor and reproducibility. These regions 

are also involved in attention, learning, and plasticity in addition to their relevance to the 

DMN, indicating involvement of other overlapping brain networks. Cholinergic neurons in 

posterior BF regions (nucleus basalis Meynert) are functionally connected with salience 

(M-CIN) and attention networks (D-FPN) in humans, while cholinergic neurons in anterior 

BF regions (medial septum, diagonal band of Broca) are functionally connected with default 

mode and episodic memory networks (Fritz et al., 2019). These data mimic findings 

based on lesion studies and axonal tracing studies in animal models (Zaborszky et al., 

2015). Experiments that target distinct cell populations can help distinguish the BF’s 

modulation of DMN vs other brain networks and behaviors [see Lozano-Montes et al., 

2020]. Subregions of the anterior cingulate cortex (orbital cortex, prelimbic cortex) are part 

of the rodent’s DMN and salience (M-CIN) networks (Tsai et al., 2020) and these neurons 

can be persistently active during periods of sustained attention in rats (Wu et al., 2017) 

which is uncharacteristic of a DMN mindset. Imaging or electrophysiological data from 

multiple DMN nodes along with behavioral data would help confirm whether activation in 

the anterior cingulate cortex is indeed associated with the DMN.

3.4. Clinical implications of subcortical DMN control

Subcortical regions including the BF and thalamic subregions (anterior thalamus, 

mediodorsal thalamus) can regulate DMN activity, may be considered novel DMN 

nodes, and are relevant to the pathophysiology of schizophrenia. Schizophrenia-related 

abnormalities in the mediodorsal thalamus, a region important for information processing 

and communication with the prefrontal cortex, have been confirmed in postmortem brains, 

imaging, and lesion studies (Karimi et al., 2021). Schizophrenia patients have aberrant 

thalamocortical functional connectivity and exhibit structural alterations in the anterior and 

mediodorsal thalamus (Steullet, 2020). Disrupting mediodorsal thalamic activity through 

chemogenetics, optogenetics, or by reducing local synaptic strength induces schizophrenia-

like phenotypes in mice (Karimi et al., 2021).
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BF structure or function is also implicated in neuropsychiatric conditions. BF cholinergic 

nuclei have lower volumes in the brains of schizophrenia patients compared to healthy 

controls, which is associated with attentional deficits (Avram et al., 2021). Tonic stimulation 

of basal forebrain parvalbumin-containing neurons in mice induces electrophysiological 

and behavioral phenotypes that mimic schizophrenia (McNally et al., 2021). The ventral 

tegmental area is another subcortical region with extensive DMN connections and relevance 

to psychosis (Li et al., 2021). Changes in midbrain dopamine neuron activity underlie 

psychotic symptoms in schizophrenia patients, but there is no pathophysiology within 

the dopamine neurons themselves. Instead, aberrant regulation of midbrain dopaminergic 

regions occurs through upstream circuits which includes BF regions (nucleus accumbens, 

ventral pallidum, medial septum) and thalamic nuclei (Sonnenschein et al., 2020).

In summary, BF and thalamic subregions recently implicated in DMN control are also 

associated with the pathophysiology of schizophrenia, making them promising therapeutic 

targets. Abnormalities in structure, function, or activity within these regions may disrupt 

brain network activity in addition to inducing neuropsychiatric phenotypes. Conversely, 

restoring normal function in one or more of these key DMN nodes might simultaneously 

improve DMN function and alleviate psychotic phenotypes. For example, reducing 

hippocampal-driven inhibition on the ventral pallidum can alleviate a hyperdopaminergic 

phenotype in a rat model of schizophrenia (Aguilar et al., 2014), and activating or 

deactivating the ventral pallidum can engage or release DMN-like behavioral states in rats 

(Klaassen et al., 2021). This approach might have cascading therapeutic effects due to the 

brain-wide connectivity of the DMN, its importance in sensory and information processing, 

and its numerous interactions with other brain networks relevant to attention, cognition, and 

salience.

3.5. Non-fMRI approaches making characterization of DMN activity more accessible

Although fMRI continues to be the most common way to study changes in DMN activity, 

new techniques are making DMN research more accessible, particularly at the preclinical 

level. While resting state MRI studies in rodents have observed patterns of intrinsic 

correlation between DMN associated brain regions, it has been difficult to determine if 

rodent DMN-like activity can be suppressed during externally oriented task performance. 

Changes in neural oscillations correlate with fMRI bold measures, and can be used as a 

putative measure of activity to detect changes in DMN-relevant regions (Leopold et al., 

2003; Fox et al., 2018; Nair et al., 2018). Fakhraei et al. recently demonstrated how the 

rodent DMN can be studied using arrays of local field potential electrodes targeting multiple 

regions associated with DMN and other functional networks. These studies observed 

oscillatory activity within alpha and low beta frequencies (8–20 Hz) in DMN-associated 

regions that was correlated with activity in other DMN-associated regions. Further, they 

employed a novel visual stimuli based “go/wait” operant task along with distributed field 

potential measurements to show that this activity exhibits task related modulation in a 

manner similar to that described in human DMN studies (Fakhraei et al., 2021). This 

multi-site approach is likely to more accurately characterize functional networks such as 

DMN, and paves the way for future studies probing the circuit level function of DMN.
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Functional ultrasound (fUS) is a technique that utilizes ultrasonic waves to visualize blood 

flow throughout the brain with great temporal and spatial precision, allowing users to 

detect regions of brain activation and functional connectivity similar to fMRI. Ferrier and 

colleagues have used this technique in lightly sedated mice to demonstrate how changes 

in DMN activation can be studied without fMRI. Unilateral whisker stimulation activated 

the contralateral barrel cortex as expected, but also suppressed activity and interhemispheric 

correlation within the DMN-associated retrosplenial cortex (Ferrier et al., 2020). This new 

technology has the capability to make rodent imaging more portable and accessible. Further, 

it can be performed in freely behaving animals, and be combined with other experimental 

modalities (e.g. optogenetics, electrophysiology). While current issues with motion artifacts 

(Ferrier et al., 2020) may hinder early widespread adoption, this technology provides a 

novel and powerful means to elucidate the mechanisms behind modulation of functional 

connectivity for networks including DMN.

4. Conclusion

In summation, the DMN and its interplay with other functional networks are likely 

responsible for maintaining the neural framework allowing appropriate oscillatory activity 

for higher cognitive function which gives rise to conscious experience (Jerath and Crawford, 

2015). The literature regarding regulation of the DMN has evolved rapidly over the last few 

years, to the point where the DMN now includes subcortical structures like the BF. A great 

deal of exciting experimental work is being done at both the clinical and preclinical level, 

and new technologies and approaches are making it easier to explore these questions without 

requiring an fMRI and a well-behaved conscious animal. Many promising therapeutic targets 

have been identified including BF PV and BF SST neurons which can regulate cortical 

gamma band oscillations and DMN-like behaviors (Espinosa et al., 2019b; Lozano-Montes 

et al., 2020; McNally et al., 2021), BF cholinergic and GABAergic neurons which might 

gate access to sensory information during reinforcement learning (Hanson et al., 2021), 

and specific BF subregions including the ventral pallidum (Espinosa et al., 2019a) and 

nucleus basalis of Meynert (Munn et al., 2021). A testable hypothesis about the mechanisms 

underlying the DMN deactivation deficit in psychiatric disorders will also influence future 

studies (Gu et al., 2019). Precision medicine may allow patients to be treated based on 

their specific functional deficits and rescuing the role of the DMN and its interactions with 

other brain networks may alleviate cognitive deficits and other maladies in a variety of 

neuropsychiatric conditions.
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Fig. 1. Diagram of DMN-relevant regions in human and mouse brain.
Human (A) and mouse (B) brain represented as midline sagittal slice (left) and lateral view 

(right). Homologous areas associated with the DMN that are visible in the sagittal view 

(left) include: 1) the human prefrontal cortex consisting of medial prefrontal cortex (mPFC) 

and dorsal prefrontal cortex (dPFC) and mouse medial orbital cortex (MO), prelimbic 

cortex (PrL), and anterior cingulate cortex (ACC), 2) human posterior cingulate (PCC) 

including precuneus (PCu) and retrosplenial cortex (RSP) and mouse medial cingulate 

cortex (MCC) and granular/dysgranular retrosplenial cortex (RSP), 3) thalamus (T), and 4) 

basal forebrain (BF). Lateral view: 5) human ventrolateral prefrontal cortex (VLPFC) within 

the inferior frontal gyrus, 6) human lateral temporal cortex (LTC) and mouse auditory/

temporal association cortex (TeA), 7) human inferior parietal lobe (IPL) which includes the 

angular gyms (AG) and mouse posterior parietal cortex (PPC) with secondary visual cortex. 

Figure created in BioRender.com.
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Fig. 2. Stimulation or Inhibition of BF Cell types: Impact on DMN-like Activity and Behaviors.
A) Stimulation of BF PV Neurons at gamma frequencies entrains GBO’s in the ACC and 

induces and maintains DMN-like behaviors including self-directed grooming, enhanced 

internal focus, and reduced attention to external stimuli (Lozano-Montes et al., 2020; 

Klaassen et al., 2021). In the absence of stimulation, DMN-like behavioral contexts induce 

coordinated GBO’s in the BF and ACC (Nair et al., 2018). B) Simultaneous tonic inhibition 

of BF cholinergic and GABAergic neurons suppresses DMN-like behaviors and reduces 

spontaneous GBO power in both the BF and ACC (Klaassen et al., 2021). C) Tonic 

stimulation of BF PV neurons (McNally et al., 2021) or disinhibition of BF neurons 

(unspecified cell type) through BF SST inhibition (Espinosa et al., 2019a, 2019b) has 

consequences that may be attributable to DMN activity. Either treatment likely results in 

enhanced BF PV activity due to local circuit interactions between BF cell types (Yang 

et al., 2017). Pro-DMN-like phenotypes include enhanced spontaneous GBO power in 

the ACC, reduced external task-elicited GBO’s in the ACC, and reduced novel object 

recognition performance suggesting impaired external attention (Espinosa et al., 2019a, 

2019b; McNally et al., 2021). Anti-DMN-like phenotypes include enhanced locomotion 

and reduced GBO coherence between the BF and ACC. In summary, the BF appears 

critical for induction, maintenance, and/or suppression of DMN activity likely through 

specific circuitry where cortically projecting PV containing neurons play a privileged role. 
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Figure created in BioRender.com. Abbreviations: anterior cingulate cortex (ACC), auditory 

steady state response (ASSR), basal forebrain (BF), cholinergic (ChAT), diagonal band 

(DB), default mode network (DMN), gamma-aminobutyric acid (GABA), gamma band 

oscillations (GBO), magnocellular preoptic area (MCPO), parvalbumin (PV), prelimbic 

(PrL), somatostatin (SST), ventral pallidum (VP).
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Table 1

Summary of relevant brain networks.

Default mode network (DMN) – Internal, introspective information processing (autobiographical memories, daydreaming, planning) that is 
suppressed during external stimulus-driven cognitive tasks and anticorrelated with networks relevant to cognitive control (lateral frontoparietal 
network and the midcingulo-insular network) (Anticevic et al., 2012). Major regions include the medial prefrontal cortex, posterior cingulate 
cortex and angular gyrus, while minor regions may include the inferior frontal gyrus, anterolateral middle temporal cortex, and posteromedial 
cortex (precuneus/retrosplenial) (Uddin et al., 2019; Smallwood et al., 2021). Also known as the medial frontoparietal network (Uddin et al., 
2019).

Lateral frontoparietal network (L-FPN) – Control network which can initiate and flexibly adjust cognitive control by managing information 
processing and the activation of other networks (Marek and Dosenbach, 2018). Relevant for cognition, working memory, and task-switching 
(Uddin et al., 2019). Major regions include the lateral prefrontal cortex, anterior inferior parietal lobule, and intraparietal sulcus, while minor 
regions may include subregions of the inferior temporal lobe, cingulate gyrus, precuneus, thalamus, and caudate (Uddin et al., 2019). Also 
known as central executive network, executive/frontoparietal/cognitive control network, and the extrinsic mode network (Uddin et al., 2019).

Midcingulo-insular network (M-CIN) – Salience network relevant for identifying and directing attention towards important or salient 
information, sometimes integrating information from external sensations with internal thoughts, goals, and plans (Palaniyappan and Liddle, 
2012; Uddin et al., 2019). Facilitates switching between the DMN and task-related networks to update prediction models and prepare behavioral 
responses (Palaniyappan and Liddle, 2012). Can manage sensorimotor functions to flexibly maintain cognitive control of goal-directed 
behaviors (Buckner et al., 2008; Anticevic et al., 2012; Marek and Dosenbach, 2018). The major regions include the bilateral anterior insula 
and anterior midcingulate cortex, while minor regions may include the inferior parietal cortex, right temporal parietal junction, lateral prefrontal 
cortex, and various subcortical regions (Uddin, Yeo et al., 2019). Also known as salience network, cingulo-opercular network, ventral attention 
network.

Dorsal Frontoparietal network (D-FPN) – Visuospatial attention network which can prime and focus attention on external stimuli and 
responses (Corbetta and Shulman, 2002; Anticevic et al., 2012; Buckner and DiNicola, 2019; Uddin et al., 2019). Major regions include 
superior parietal lobule, intraparietal sulcus, middle temporal complex, frontal eye fields, while minor regions include ventral premotor cortex, 
right dorsolateral prefrontal cortex, superior colliculus (Shulman et al., 1997; Anticevic et al., 2012; Uddin et al., 2019). Also known as dorsal 
attention network, dorsal attention system.
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