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ABSTRACT

In protein–DNA interactions, particularly transcrip-
tion factor (TF) and transcription factor binding
site (TFBS) bindings, associated residue variations
form patterns denoted as subtypes. Subtypes may
lead to changed binding preferences, distinguish
conserved from flexible binding residues and reveal
novel binding mechanisms. However, subtypes must
be studied in the context of core bindings. While
solving 3D structures would require huge experi-
mental efforts, recent sequence-based associated
TF-TFBS pattern discovery has shown to be
promising, upon which a large-scale subtype study
is possible and desirable. In this article, we investi-
gate residue-varying subtypes based on associated
TF-TFBS patterns. By re-categorizing the patterns
with respect to varying TF amino acids, statistically
significant (P values� 0.005) subtypes leading to
varying TFBS patterns are discovered without
using TF family or domain annotations. Resultant
subtypes have various biological meanings. The
subtypes reflect familial and functional properties
and exhibit changed binding preferences supported
by 3D structures. Conserved residues critical for
maintaining TF-TFBS bindings are revealed by
analyzing the subtypes. In-depth analysis on the
subtype pair PKVVIL-CACGTG versus PKVEIL-
CAGCTG shows the V/E variation is indicative for dis-
tinguishing Myc from MRF families. Discovered from
sequences only, the TF-TFBS subtypes are inform-
ative and promising for more biological findings,
complementing and extending recent one-sided
subtype and familial studies with comprehensive
evidence.

INTRODUCTION

Protein–DNA interactions play a central role in genetic
activities (1,2). In particular, transcription factor (TF,
the protein side) and transcription factor binding site
(TFBS, the DNA side) bindings are critical and primary
protein–DNA interactions to be deciphered for gene regu-
lation. So TF-TFBS bindings will be our focus throughout
the article. Despite the great variations shown among dif-
ferent whole-length TF and TFBS sequences, part of them
are conserved as TF binding domains (tens to hundreds of
residues) and TFBS motifs (usually several to 20 residues),
respectively. Within the distance of forming hydrogen
bonds, short TF and TFBS subsequences show more
conserved patterns. These associated short binding subse-
quences (within 10 residues; 6–8 in our experiments) of
both TFs and TFBSs surrounding the interacting bonds
are denoted as binding cores. However, predicting these
short binding cores on both the TF and TFBS sides from
sequences only is very challenging.

Amino acid residue variations in the TF binding cores
may lead to intriguing different corresponding TFBS
sub-patterns. For example, [A/P]KV[E/V]IL-CA[C/G][C/
G]TG may be found to be TF-TFBS binding cores.
Specifically, PKVEIL may bind to CAG[C/G]TG,
whereas PKVVIL to CACGTG. We denote such
associated TF-TFBS residue variations as subtypes,
which should be studied in the context of associated
TF-TFBS core bindings. ‘PKVEIL-CAG[C/G]TG versus
PKVVIL-CACGTG (3rd column)’ and ‘PKVEIL-
CAG[C/G]TG versus PKVVIL-CACGTG (4th column)’
are two related (column-specific) subtype pairs. Subtypes
can reflect familial specificities, exhibit changed binding
preferences, distinguish conserved residues from flexible
ones and reveal novel binding mechanisms. Although
such high-resolution details are usually extracted from
3D structures with huge experimental efforts, abundant
low-resolution binding sequence data can be exploited to
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predict both testable TF-TFBS binding cores and
subtypes.

In this article, we for the first time introduce and study
residue varying subtypes based on our sequence-based
associated TF-TFBS pattern discovery (3). The brief
review is first given in the following sub-sections.
TF-TFBS subtype discovery methods are detailed in
‘Materials and Methods’ section. Experimental results
and verifications are reported in ‘Results and Analysis’
section, before the final ‘Discussion and Conclusion’
section.

TF-TFBS bindings in gene regulation

Because of functional importance of TF-TFBS bindings
on regulation, core interaction subsequences from bound
TFs and TFBSs are less likely to mutate and exhibit rec-
ognizable patterns (i.e. being conserved) from similar
TF-TFBS bindings. The short conserved subsequence
patterns on either TF or TFBS side are called motifs.
TFs have relatively long conserved regions called
domains of up to hundreds of amino acids (AA), but the
core interaction subsequences interacting with TFBSs are
shown to be highly specific (3,4). TFBS motifs are usually
short [within 10 base pairs (bp)], and long motifs (up to 20
bp) are usually composites of short patterns separated by
non-conserved gaps.

Existing data

Experiments to determine TF-TFBS bindings at the
sequence level include the traditional DNA footprinting,
gel electrophoresis and the new chromatin immunopre-
cipitation (ChIP) followed by chip (-chip) or sequencing
(-seq) technology (5,6). For the resultant TF-TFBS
binding sequence data, the resolution for a whole TF is
hundreds of AA without knowing the binding domains,
and the resolution for TFBSs is tens to hundreds of bp
depending on experiment techniques. Although sequence
level data contain noises and do not describe core protein–
DNA interactions directly, they serve as the most widely
available information for discovering elaborate binding
patterns (motifs) based on sequence conservation.

TRANSFAC (7) is one of the largest and most repre-
sentative databases for sequence-level binding data in
regulation, including TFs, TFBSs and nucleotide distribu-
tion matrices of the TFBSs (TFBS motifs). The data are
annotated and curated from peer-reviewed and experi-
mentally proved publications. ChIP-Seq technology
provides high-throughput and precise TF-TFBS binding
sequence data in vivo for discovering TFBS motifs (8).
High-quality ChIP-Seq motifs can serve as independent
and indirect verification for our subtypes.

It is much more expensive and laborious to extract
high-resolution 3D protein–DNA interaction (TF-TFBS
binding) structures with X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopic
analysis. The experiments provide binding data at atom
level and clearly show interacting residues on both the
protein (TF) and DNA (TFBS) sides. The Protein Data
Bank (PDB) (9) is the most representative repository for
such data. However, the available 3D structures are very

limited compared with sequence data. On the other hand,
PDB data serve as valuable verification sources for
putative associated interaction patterns.

Existing methods to study protein–DNA interactions

On 3D structure data, ‘one-to-one binding codes’ between
single amino acids and nucleotides (1,10) for protein–
DNA interactions have been sought, followed by
‘training-based methods’ predicting protein binding
residues (11,12). These studies are mainly constrained by
the limited amount of 3D structures and only predict
bindings of individual residues.
On sequence data, the early computational attempt has

been ‘motif discovery’ of either TFs or TFBSs, with the
inspiring subtype discovery (13) focusing on the subtle
variations within single TFBS motifs. Recent TF-TFBS
‘associated pattern discovery’ from large-scale binding
sequence data demonstrates a very promising direction,
with 3D structure verification and novel predictions. A
few novel studies on ‘TF-TFBS binding co-evolution/
variation’ have also been proposed. They are briefly
reviewed as follows:

Motif discovery
By exploiting the similar subsequences (i.e. conserved
patterns) of TF/TFBS, motif discovery has long been
studied with certain success. Motifs are usually repre-
sented as consensus strings or position weight matrices
(PWMs) of the amino acid/nucleotide distributions (14).
Recently, TFBS motif discovery has been extended to
subtype discovery as groups of nucleotide variants
(subtypes) contribute to distinct modes of regulation
(13). Besides the existing challenges (15,16), a significant
limitation of TF or TFBS motif discovery is the lack of
linkage between to directly reveal the binding counterpart
(TF-TFBS) relationship. On the other hand, this article
considers both TFs and TFBSs beyond one-sided motif
discovery and investigates binding subtypes on large-scale
experiment-verified binding data (i.e. TRANSFAC) to
provide insights into motifs and detailed binding mechan-
isms. Various TFBS motif (PWM) comparison methods
have been developed (17–19), some of which are readily
employed (e.g. Euclidean distance and Pearson chi-square
test) while others can be explored in our future study.

Associated pattern discovery
Being the most widely available data, TF-TFBS binding
sequences are better exploited on both TF and TFBS
sides, than on only one side, for associated patterns to
reveal intriguing binding mechanisms (20). Recent associ-
ation rule mining (4) from TRANSFAC discovers exact
TF-TFBS patterns verified on both literature and PDB
3D structures. More recently, approximate associated
TF-TFBS pattern discovery (3) employing the probabilis-
tic model significantly expands the verifiable patterns
and outperforms traditional motif discovery methods, if
they are recruited in the TF part of the task. Associated
TF-TFBS patterns provide more general information than
individual TF-TFBS binding records. As multiple binding
records are included in one associated patterns, we
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alleviate the limitation imposed by insufficient data in
family-based and individual record-based studies.

Binding co-evolution/variation
There are also two novel studies addressing correlated
evolution/co-variations of TF-TFBS bindings from
sequences (21,22). Positive results are reported, and they
are related to our proposed work. Our TF-TFBS binding
subtype discovery distinguishes itself from the studies
from several aspects:

. The previous studies focus on a small number (3–4) of
specific TF families. Our study is general and large
scale on the whole TRANSFAC database (across all
possible families) and produces more biologically inter-
esting case studies and novel results.

. More importantly, although the previous studies rely
on known TF domain information, which may be
limited [mainly around 10–20 samples per dataset in
(22)], we work on computationally discovered approxi-
mate associated TF-TFBS patterns without requiring
such annotations. The associated patterns are more
conserved, facilitating more convenient analysis than
degenerate aligned patterns.

. The previous major results are about statistical signifi-
cances (21,22), and case studies are established upon
literature support only (21). We show not only statis-
tically significances but also evaluations extensively on
PDB 3D structures. The previous case studies (21,22)

have been fully covered and more interesting and
novel examples are presented in this study (summary
in Supplementary Data).

Although the previous studies are not directly compar-
able with our work here, our study complements and
enriches them with much more comprehensive evidence
and in-depth 3D analysis.

MATERIALS AND METHODS

In this section, we first present the TRANSFAC data,
introduce the associated TF-TFBS pattern discovery,
elaborate the subtype discovery methodology and then
describe the analysis and verification procedures. The
overview is shown in Figure 1. The corresponding
results to the methods are given in the next ‘Results and
Analysis’ section.

TRANSFAC data and associated TF-TFBS pattern
discovery

Following our previous work (3), we employ TRANSFAC
Professional ver 2009.4 (7), which contains 13 682 TF
entries (7664 with protein sequences) and 1225 matrices
of the TFBS nucleotide distributions, i.e. TFBS motif
consensuses. Each TF is associated with the set of
TFBSs it binds to and the corresponding TFBS
consensus. With the consensus dissimilarity threshold

Figure 1. TF-TFBS subtype discovery flowchart. 1. Associated TF-TFBS pattern discovery (3). 2. TF-TFBS subtype discovery: tk is the simplified
notation for TF instance Tj,k

(i); TFBSs are rearranged according to different tk, e.g. PKVEIL and PKVVIL. 3. TFBS motif subtype analysis: the red
bars in the middle indicate the statistically significant (P value� 0.005) residue variations and the distances are shown in white. 4. Comparison of
binding preferences: self: PDB verification ratio of the TFBS instances with the corresponding TF subtype; cross: verification ratio if the TFBS
instances are associated with the other (opposite) TF subtype. 5. Residues investigation in 3D structures.
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set at TY=0.3 to encourage more diverse groups (3), the
TF entries are grouped into 506 datasets each represented
by the consensus identifier Ci. The approximate associated
TF-TFBS pattern discovery is applied on all the data sets.
The major parameters in the example are set as TF/TFBS
width W=6,8 and the maximal substitution error
E=1,2. The resultant patterns are in the form of Tj

(i)
�

C(i), where T and C represent the jth TF and the ith TFBS
core patterns, i.e. PKVVIL and CAGGTG, respectively,
in Figure 1, Part 1. In that running example, three differ-
ent approximate instances belong to Tj

(i) with mismatches/
errors�E: AKVVIL, PKVEIL and PKVVIL, denoted as
t1, t2 and t3, respectively, when there is no ambiguity about
i and j. They collectively form a set ftk}.

The discovered associated patterns can be evaluated and
verified using TF-TFBS 3D structures [1948 entries as in
(3)] from PDB (9). We focus on the verification ratios, RTF

on the TF side and RTF-TFBS on both the TF-TFBS sides.
For example, in Figure 1, Part 1, we have a pattern
PKVVIL-CAGGTG. If under the pattern we have one
AKVVIL, four PKVEIL and five PKVVIL TF instances,
and both PKVEIL and PKVVIL can be found in core
binding pairs in PDB, then RTF= (4+5)/(1+4+5)=0.9
for this associated pattern. If only PKVVIL-CACGTG
(five instances) match the binding pairs in PDB on both
sides while PKVEIL-CACGTG (four instances) does
not, RTF-TFBS=5/10=0.5. Summarizing all associated
patterns discovered, we can have the averaged AVG
RTF-TFBS to measure the overall performance.

More technical details and the corresponding results
can be found in the Supplementary Data.

TF-TFBS subtype discovery

On the basis of the successful discovery of approximate
protein–DNA (TF-TFBS) associated patterns, we can
further study the detailed binding variations contributed
by residues which otherwise cannot be accommodated
using the current limited amount of 3D structure data.
By investigating the approximate (i.e. varying) TF in-
stances in the associated patterns and extending the
consensuses to the corresponding TFBS instances, we
extract TF-TFBS residue variations (column-specific
subtypes) and calculate the distances within a subtype
pair. The details are elaborated as follows.

In the TF (core) motif discovery, data are subject to
redundancy removal to avoid spurious motifs due to
over-sampling (3). In residue variation subtype analysis,
however, it is desirable to retrieve as many instances as
possible, to ensure that the subtype discrimination does
not happen due to insufficient data samples. Furthermore,
examining samples beyond where the TF motifs are dis-
covered can extensively verify the pattern generality.
Therefore, distinct TF instances under a TF motif are
retrieved from the whole TRANSFAC together with the
corresponding TFBSs. As illustrated in Figure 1, Part 2,
for each distinct instance tk belonging to a TF motif, we
search the whole TRANSFAC for the TF sequences con-
taining it and retrieve all the corresponding bound TFBS
instances, denoted by a set fbsk,x} where x is the index for
a particular TFBS. Therefore, for two pairs tk � fbsk,x}

(PKVEIL-purple TFBSs) and tl � fbsl,y} (PKVVIL-blue
TFBSs), tk 6¼ tl, under the same associated pattern
(PKVVIL-CAGGTG), we can investigate how the
TFBSs fbsk,x} and fbsl,y} are different (i.e. TFBS
subtypes) with respect to the TFBS consensus C(i).
As raw TFBSs have different widths, they are aligned to

the consensus and truncated at the same width W. In par-
ticular, the W-conserved core of C(i) is chosen, i.e. the
W subsequence of C(i) with the most conserved nucleo-
tides. To measure nucleotide conservation in the consen-
sus, we assign conservation score 1 for each conserved
nucleotide A, C, G or T, 0.5 for mixed di-nucleotide R,
Y, M, K, W or S, 0.33 for mixed tri-nucleotide B, D, H or
V and 0.25 for the degenerated N. Then each TFBS (as
well as the reverse complement) is aligned to the
W-conserved core and the best aligned subsequence
(substitution only) is extracted, resulting in the aligned
core TFBS sets fbsk,x} and fbsl,y} with the same width W
for two different TF instances tk and tl. Note that
TRANSFAC contains noises and we discard TFBSs
that can only poorly aligned with the consensus
(mismatches� 0.5 *W). PWMs Mk for fbsk,x} (purple)
and Ml for fbsl,y} (blue) are then generated accordingly
as shown in Figure 1, Part 3.

TFBS subtype comparisons

To characterize and shortlist meaningful subtypes, com-
parisons are to be made between PWMs Mk (purple) and
Ml (blue) corresponding to the two distinct TF motif
instances tk and tl, respectively. In particular, column-wise
Euclidean distance and the P values for Pearson
chi-square test are employed. Although there are various
comparison methods, Euclidean distance frequently shows
best performance (17,19), and Pearson chi-square test is
also among the top ones when sample size is �20 (19),
which is exactly our case. Another reason to employ
chi-square test is to easily obtain comparable statistics
and intuitive P value thresholds to shortlist subtypes
accommodating different sample sizes in different data
sets. Other comparison methods such as Pearson
Correlation Coefficient (PCC) and average log-likelihood
ratio (ALLR) (17,19) produce consistent subtypes, mostly
covered by our results with appropriate thresholds
(see Supplementary Data for the comparisons). As the
focused results are consistent, we employ P values and
Euclidean distance in our analysis. Other advanced
methods such as mutual information (MI) (21,22) could
be employed in the future study.
The column-wise distance dcol can be calculated as

follows:

dcolðMk;Ml; qÞ ¼ ð
X

b

jMkðb; qÞ �Mlðb; qÞj
2Þ

1=2
ð1Þ

where b 2 fA,C,G,T} is the nucleotide, q is the qth column
in the PWM and L-2 norm (Euclidean distance) is
employed in our experiments.
To investigate into residue varying subtypes, the

column-wise distance dcol is focused on because the
subtypes are largely similar while only small portions
diverge. The positional discrimination is critical to
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explain the binding differences for the highly conserved
TF motif instances with only few mismatches.
Comparing the Euclidean distance (dcol) only may not

be precise enough to evaluate subtypes, as there are
sample size variations and biases in TRANSFAC
leading to distorted distances. Therefore, statistical signifi-
cance is employed to first compare and shortlist the TFBS
PWM columns for two different TF instances tk and tl.
Because we focus on residue varying subtypes, the statis-
tical analysis is performed on the nucleotide level (PWM
columns) rather than the motif level.
In particular, Pearson chi-square test of independence

for two samples/outcomes (k and l) is employed. The null
hypothesis is that the nucleotide frequency in the PWM
column p (the occurrence of the outcomes) is statistically
independent. The expected frequency for r 2 fk,l} and b 2
fA,C,G,T} is

Er;b ¼
ð fk;b þ fl;bÞð

P
c2fA;C;G;T g fr;cÞ

N
; ð2Þ

where in general f*,c denotes the frequency count of nu-
cleotide c in PWM column M*(c,q) for * 2 fk,l}, and N is
the total count of nucleotide frequencies of the two
samples. The �2 statistic is

�2ðMk;Ml; qÞ ¼
X

r2fk;l g

X

b2fA;C;G;T g

ð fr;b � Er;bÞ
2

Er;b
ð3Þ

and the degree of freedom is (2–1)(4–1)=3. The P value
can be calculated at the resolutions of 0.001,
0.002, 0.005, 0.01, etc. The statistically significant
subtypes are selected for further investigation based on
the threshold P value� 0.005. In other words, we only
focus on those statistically significant subtype pairs in
the text below. Corresponding results are in the later
‘TF-TFBS Subtype Results’ section.

Subtype investigation and analysis

There are various potential biological meanings and im-
plications for the shortlisted TF-TFBS subtypes. They
may reflect binding properties of the TF residues, exhibit
changed binding preferences, differ in conservation due to
contacting chemical bonds or carry other specific func-
tions in regulatory mechanisms. The possibilities are
investigated and verified with the following procedures
from several aspects. The whole subtype discovery proced-
ure is illustrated in Figure 1.

Overview
The subtypes imply different kinds of mechanisms and
information with biological meanings:

. The subtypes may be directly involved in core
TF-TFBS bindings. The varying residues may show
flexibilities which are tolerated in the bindings on
one hand and also exhibit changed binding preferences
on the other. They are analyzed in sub-section
‘Subtype Comparison of Binding Preferences’ using
3D structures.

. The invariant (conserved) TF residues and/or TFBS
nucleotides are likely to be critical contacting
residues whose changes may significantly affect the
chemical bonds. The information to discriminate
conserved and flexible residues is useful for better
modeling the error distributions of TF and/or TFBS
motifs and improving existing motif representations,
e.g. PWMs. They are elaborated through sub-section:
‘Subtype Residues Investigation in 3D structures’.

. The subtypes may not be directly involved in protein–
DNA contacting chemical bonds. However, the statis-
tically significant variations are not likely to happen by
chance. They may imply regulatory mechanisms and/
or partners beyond direct protein–DNA interactions,
for example, co-activator binding and dimerization.
An interesting case that may lead to novel discoveries
will be addressed in sub-section: ‘In-depth Binding
Analysis’.

Subtype comparison of binding preferences
To compare the binding preferences within the statistically
significant subtype pairs, we make use of the procedure
used in verifying approximate associated TF-TFBS
patterns (3). The same binding protein–DNA (P-D)
pairs from PDB are employed. To evaluate a TF
subtype tk (a distinct TF motif instance in width W)
associated with a column from the corresponding set of
aligned TFBSs (fbsk,q} in width W), we should evaluate tk
with each instance bsk,q through enumerating all tk � bsk,q
pairs. Each tk � bsk,q is verified if both the TF and TFBS
subsequences are contained in certain PDB P-D pairs. We
record the verified count for the tk � bsk,q pairs. Note that
the verification is more stringent than our previous study
(3), which only requires a TFBS consensus to be approxi-
mately matched for verification.

The next step is to investigate whether the residue-
varying subtypes exhibit specific binding preferences by
comparing them with artificial controls (TFBS subtypes
associated with wrong TF instances). To check the
binding preference of a pair of two TF subtypes tk and tl
and their corresponding distinct TFBS patterns bsk,q and
bsk,r, we introduce cross-verification comparisons. Besides
the previous PDB verification count on tk with its actual
corresponding TFBSs (bsk,q), denoted as ‘Self’ verification,
we perform the same PDB verification on the artificial
control by associating the wrong tl with bsk,q, which is
denoted as ‘Cross’ verification (the control). Note that
the comparison is only performed when both TF instances
tk, tl are verified on PDB, to avoid bias on TF instances
with PDB evidence over those without. For the subtypes
left out, we may resort to literature search and detailed 3D
structure analysis.

Intuitively, ‘Self’> ‘Cross’ indicates there are more PDB
structure evidence verifying the correctly associated
TF-TFBS subtype than the artificial control and thus
supports existence of the binding preferences. All the
‘Self’> ‘Cross’ percentages of the TF-TFBS subtypes are
then reported. Besides ‘Self’> ‘Cross’ verification per-
formed on each ‘individual’ TF subtype with the binding
preference ratio denoted as ‘Individual Subtype Ratios’,
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binding preference ratios for subtype pairs are also
introduced. If both TF subtypes in pair satisfy the ‘indi-
vidual’ verification tests, they are said to satisfy the ‘pair’
verification test. The corresponding ratio is denoted as
‘Pair Subtype Ratios’. One illustrative example is in
Figure 1. Because both individual ‘Self’ > ‘Cross’ verifica-
tion tests are satisfied for PKVEIL-CAGCTG (12/33
versus 0/33) and PKVVIL-CACGTG (103/113 versus 0/
113), ‘PKVEIL-CAGCTG versus PKVVIL-CACGTG’
satisfies the ‘pair’ verification test. Corresponding results
are in the ‘Comparison Results of Binding Preferences on
PDB’ section.

Subtype residues investigation in 3D structures
As the previous comparisons are indirect and have the risk
of sample bias in PDB, we further investigate into the
detailed binding (interaction) properties of the varying
and conserved residues on the PDB 3D structures. To
generate a concise map from the many (redundant)
subtypes, the statistically significant subtypes can be clus-
tered according to the associated TF-TFBS patterns on
both sides according to the maximal error E. As TFBSs
are more flexible and less conserved, we focus on the
residues (amino acids) on the TF side. They are
categorized into two types in each cluster, the varying
and the invariant (conserved) ones. It is then interesting
to analyze the biochemical mechanisms of the strongly
conserved residues (e.g. forming hydrogen bonds with
the TFBS nucleotides) and the varying residues (e.g.
showing specificities to different target TFBSs) by
investigating the 3D structures one by one. Corresponding
results are in the ‘Results of Residues Investigation in 3D
Structures’ section.

In-depth binding analysis
Finally, for statistically significant subtypes without
obvious evidence of direct interactions, we select interest-
ing examples to perform literature search for reasonable
interpretation. These cases are potential novel discoveries
leading to co-factor bindings and revealing more
intriguing regulatory mechanisms. Corresponding results
are in the ‘In-depth Analysis for Potential Co-factors’
section.

RESULTS AND ANALYSIS

In this section, the detailed TF-TFBS subtype results and
statistics are reported, followed by detailed variation
analysis and comprehensive verification.

TF-TFBS subtype results

Based on the approximate associated TF-TFBS patterns
discovered, subtype discovery was performed with width
W=6,8 and maximal error E=1,2. All pairs of TF
subtypes (i.e. different TF instances tk and tl within an
associated TF-TFBS pattern) and their corresponding
aligned TFBSs (PWMs Mk, Ml displayed as sequence
logos in Figure 1) were analyzed. If there were any nucleo-
tide differences leading to P value P� 0.005, the PWM
column q associated with the TF subtypes are recorded

and denoted as a subtype ‘pair’. Meanwhile subtype
pairs can be shortlisted by a column-wise distance thresh-
old Cdis� dcol. dcol is in the range of ½0;

ffiffiffi
2
p
�. As a proof of

concept, we focus on the associated patterns with
instance-level RTF-TFBS� 0.8, and the same analysis can
be applied on other patterns which are verifiable with
more PDB records in the future (3). The statistics of the
TF-TFBS subtypes are presented in Tables 1 and 2.

Subtype reflection of biological properties

We investigate into the TF subtype charge properties,
which are summarized in Table 3 (details in the
Supplementary Data). Residue variations are mainly
within the same positive (Pos) or neutral (Neu) charge
property groups, whereas variations with charge
properties changed and variations within the negative
(Neg) are rare. The observation is consistent with the
chemical properties of protein–DNA interactions. As the
backbone of DNA (TFBS) is negatively charged, positive
and neutral residues being hydrophilic are more likely to
be exposed on TF surfaces than negative ones. The DNA
prefers positive/neutral amino acids to negative ones.
Variations among different charge groups may signifi-
cantly affect the bindings and thus are not preferred.

Table 1. The statistics of the TF-TFBS subtype pairs

Setting Pair no. Pattern no. C(i) no. dcol

W6E1 5108 643 145 0.22
W6E2 6343 463 158 0.26
W8E1 1250 182 69 0.28
W8E2 2262 175 67 0.29

Pair no. indicates the number of significant TF-TFBS subtype pairs
with P� 0.005. Pattern no. indicates how many associated TF-TFBS
patterns with RTF-TFBS� 0.8 are included for the pairs. C(i) no. indi-
cates the corresponding number of consensus groups (labeled by
TRANSFAC PWM IDs). dcol is the average column-wise Euclidean
distance.

Table 2. The accumulated TF-TFBS subtype counts with different

Cdis values

Cdis� 0.8 0.7 0.6 0.3 0.1

W6E1 5 (3) 39 (9) 88 (18) 947 (121) 4785 (145)
W6E2 41 (15) 102 (22) 214 (43) 1759 (140) 6057 (158)
W8E1 10 (7) 23 (8) 72 (13) 420 (50) 1239 (69)
W8E2 98 (8) 29 (13) 98 (22) 822 (57) 2237 (67)

The numbers of TRANSFAC TFBS consensus groups C(i) involved are
shown in brackets.

Table 3. Summary of TF residue variation charge properties

Variation charge Percentage Chemical

Pos-Pos/Neu-Neu High Hydrophilic, preferred
Changed/Neg-Neg Low Not preferred
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To focus on representative subtypes, we analyze the
results with Cdis� 0.6 among of all different Cdis
(Table 2). On the subsets of Cdis� 0.8,0.7,0.6, we
generated the Sequence Logos (23) for the TFBS
patterns (PWMs) corresponding to different TF subtype
pairs and visualized them for comparisons on the Project
Website, as shown by the examples in Figures 2–4. In
Figure 2a and b for W=6,E=1 and Cdis� 0.6, the
G/V differences in the TF pair CKGFFK-CKVFFK
lead to the different preferences of the 3rd and 4th nucleo-
tides of the TFBSs. The TFBSs CKGFFK binds are more
conserved at the two positions, whereas CKVFFK shows
more flexibilities. Similar results can be observed for
W=6,E=2,Cdis� 0.6 in Figure 3, indicating the consist-
ency of the subtype discovery results. Figure 4 shows
another related and consistent example, where C[DG/
ES]CKGFF affects [A/C]AAGGTCA (illustrated in
reverse complement TGACCTT[T/G].
As the subtypes were discovered without using any

domain or family information, it is meaningful to check
whether the subtypes reflect biological properties accord-
ing to existing annotations. Therefore, for all the distinct
TF subtypes with Cdis� 0.6, we checked the family anno-
tations of their TF records in TRANSFAC (7), i.e. the

class CL attribute in the factor records. We focused on
TF subtypes with substantially different family informa-
tion. As one short TF subtype instance can have many
TF records with slightly different class annotations, we
only recorded TF subtypes with different majority class
(>50%) annotations. Interestingly, for W=6, substantial
subtypes, 62% (E=1) and 80% (E=2), respectively,
show different major class annotations (note that
subtypes were discovered without annotations).

For example, TFs with AKVVIL/PKVVIL and
ERQRRN are all from bHLH-ZIP family (class C0012:
bHLH-ZIP), whereas TFs with PKVEIL and ERRRRN
are all from bHLH family (C0010: bHLH). The difference

Figure 3. Subtype pair PDB verification and comparison for M00959:
CKGFFR-CKVFFK, on the setting W=6, E=2. The variations on
TF residues lead to the differences on 3rd (Cdis=0.614) and 4th
(Cdis=0.751) nucleotides of the corresponding TFBS patterns
(PWMs).

Figure 2. Subtype pair PDB verification and comparison for M00959:
CKGFFK-CKVFFK, on the setting W=6, E=1. The variations on
TF residues lead to the differences on 3rd (Cdis=0.648) and 4th
(Cdis=0.765) nucleotides of the corresponding TFBS patterns
(PWMs).
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is whether there is a leucine zipper (ZIP) following the
basic helix–loop–helix (HLH) domain. Another example
is about subtypes of WFGNKR (C0006: homeo),
WFQNAR (C0025: LIM-homeo) and WFQNHR
(C0053: NK-2/Nkx). While the classes all belong to
homeo box domains, the additional LIM motif in C0025
is a zinc-binding domain most likely involved in protein–
protein contacts according to the class descriptions in
TRANSFAC. NK-2/Nkx is the Drosophila-specific
NK-homeobox to regulate gene transcription in a tissue-
and developmental stage-specific manner. The annotation
differentiation reflected by the subtypes not only shows
family consistency with annotations but also reflects
sub-familial functional specificities, including species,
tissue and developmental specificities. Therefore, the
subtypes are supported with biological meaningfulness.

For W=8, the percentage drops to 23% (E=1) and
24% (E=2), respectively. The results imply that shorter
subtypes (W=6) tend to distinguish TF family classes,
whereas longer subtypes (W=8) tend to be variations
within the same family or sub-family. This prompts for
further interesting biological investigation into the
subtypes in the future.

Comparison results of binding preferences on PDB

As mentioned previously, the ‘Self’ and ‘Cross’ verifica-
tion counts on PDB were compared, where the latter rep-
resents a control scenario when the TFBSs belonging to a

TF subtype are associated with the other (‘counter-’) TF
subtype in the pair. The individual and pair subtype ratios
on different Cdis threshold settings are shown in Figure 5
for both W=6 and W=8. The Self>Cross subtype
ratios on W=6 range from 0.86 to 1.00 for the individual
ratios and 0.76 to 1.00 for the (more stringent) pair ratios.
Similarly, the Self>Cross subtype ratios on W=8 are in
general� 0.73 except for E=1. The possible reason is that
W=8, E=1 may be a too stringent approximation
setting for approximate associated TF-TFBS subtypes,
because the approximation level E/W =1/8 is smaller
than 1/6, 2/6 and 2/8. The results support that the TF
subtypes do lead to specific binding preferences of TFBS
pattern variations that are not likely interchangeable.
These TF-TFBS subtypes provide more detailed informa-
tion to recognize TFBS sub-patterns for these highly
similar TF core subtypes and potentially better prediction

Figure 5. TF-TFBS ‘Self’> ‘Cross’ verification subtype ratios on PDB
records. Both individual and pair subtype ratios are shown. X axis
indicates E and Cdis threshold, e.g. 1, 0.7 meaning E=1, Cdis� 0.7.

Figure 4. Subtype pair PDB verification and comparison for M00727:
CDGCKGFF-CESCKGFF and M00763: CDGCKGFF-CESCKGFF,
on the setting W=8, E=1. The variations on TF residues lead to the
significant T/G changes in 8th position of the corresponding TFBS
patterns (PWMs).
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for TFBSs than mixing them together under the same
pattern (PWM).

Support from ChIP-Seq motifs
Besides the PDB binding preference evaluations,
high-quality motifs discovered from ChIP-Seq data can
independently and indirectly verify our subtypes
(discovered without ChIP-Seq). If one subtype (e.g.
PKVVIL-CACGTG) from a subtype pair matches a
ChIP-Seq motif well in terms of the binding TF type
and the TFBS pattern (e.g. a similar motif logo), while
the other subtype in the pair does not (e.g. KVEIL-
CAG[G/C]TG), we consider the difference between the
subtype individuals supported by ChIP-Seq evidence
qualitatively. In other words, a subtype can better match
the reliable ChIP-Seq motif evidence than an approximate
pattern with all sub-patterns mixed.
We selected the two most conserved TFBS ChIP-Seq

motifs from the recent stem cell study (8), namely the n/
c-Myc and Esrrb (estrogen-related receptor beta) motifs
discovered using both NMICA (24) and Weeder (25). We
compared the two motifs with the most similar subtypes
on the TFBS side for common properties. The examples,
detailed in the Supplementary Data, show that our TFBS
subtypes discovered are supported by the independent
ChIP-Seq data with not only the TF family information
but also the corresponding motifs.

Results of residues investigation in 3D structures

Besides the indirect binding preference comparisons, we
investigated the varying and the invariant (highly
conserved) TF residues in the clustered similar subtypes
described in the methods section. We clustered the
TF-TFBS subtypes with W=6, E=2 and Cdis� 0.6.
In particular, associated TFs and TFBSs within E=2
on both sides were grouped into one cluster. The
columns with Cdis� 0.6 (when compared with any other
instance) were marked by ‘*’. Note that different clusters
may look like shifted versions with each other. Since
merging shifted versions is non-trivial as the mismatches
distributions will be changed and interpretations for
merged clusters will be more involving, we will investigate
it in future work. The full list is available on the Project
Website. Here we focus on one of the clusters with at least

four different TF-TFBS subtypes excluding the TFs
without PDB binding-pair matches (labeled as N/A).
One example cluster is shown below, in the form of tk �
Ci: PDB matches of tk.

KAFFKR-AG**CA: 1HCQ; 1LAT; 1LO1;
KGFFKR-AG**CA: 1BY4; 1CIT; 1R0N; 1YNW;...
KGFFRR-AG**CA: 1A6Y; 1GA5; 1HLZ; 1KB2;...
KVFFKR-AG**CA: 1GLU; 1R4O; 1R4R; 2C7A;

In this example, if we consider the TF motif as
KAFFKR, the TF instances are t1=KAFFKR,
t2=KGFFKR, t3=KGFFRR and t4=KVFFKR
(mismatches from the consensus are underlined).
According to the residue categorization, K (1st), F (3rd),
F (4th) and R (6th) are invariant residues, whereas the 2nd
and 5th residues are the varying ones. The original TFBS
consensus group C(i) is shown to be AGGTCA. The lists
on the right show part of the PDB entries that verify tk.
We examined the corresponding PDB 3D structures (the
first high-resolution one for each tk) and checked how the
invariant and varying residues participate in the protein–
DNA bindings.

As illustrated in Figure 6, the interacting residues
labeled are in general K’s and R’s. The 2nd varying
residues (A/G/V) in the four different cases do not devas-
tate the critical interactions but may contribute to a dif-
ferent binding TFBS subtype (V in 1R4R). Although the
two invariant F’s (phenylalanine’s; labeled) do not directly
interact with TFBS residues, they may be critical to
maintain the suitable structure or architecture of the
DNA binding domains in all the different TFs (1HCQ,
1BY4, 1A6Y and 1R4R) for the DNA to bind. If we
look into the structure of the (helix turn helix) TFs, we
always find two aromatic residues (phenylalanine’s here)
behind the DNA interacting residues (K’s and R’s here).
The exceptions are the 5th residues (K/R), which are
critical interacting and varying residues, but they both
show similar properties such as being positively charged
and highly hydrophilic.

The observation applies not only to this cluster but also
to the other clusters (detailed analysis not shown). In the
clusters, the residues interacting with the TFBSs are
mostly positive charged, such as lysine (K) and arginine
(R), and vary frequently. On the other hand, those

Figure 6. Three-dimensional investigation of a subtype cluster example on PDB. The important residues for the protein–DNA interactions are
labeled.
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residues in the middle (which are considered to maintain
the structure of DNA binding domain) show some regular
and more conserved patterns. If we also pay attention to
the ‘*’ (Cdis� 0.6) columns on the TFBS sides, we will
find that in many cases the varying nucleotides are
concentrated within certain columns. This is interesting
and implies the subtypes on TF and TFBS sides may be
from highly correlated and specific evolution (22).

In-depth analysis for potential co-factors

Apart from the previous residues investigation, here
we analyze a typical subtype case without direct inter-
action evidence. The AKVVIL-CACGTG (No PDB)/
PKVVIL-CACGTG (verified in PDB 1NKP) (26) and
PKVEIL-CAG[G/C]TG (verified in PDB 1MDY) (27)
subtypes under 3D PDB investigation do not show clear
residue-specific bindings (detailed in Supplementary
Data). However, the corresponding TFBS patterns are
highly different. Note that CACGTG and CAG[G/C]TG
are not reverse complements of each other.

Nevertheless, we are interested in knowing the
underlying mechanisms. The [A/P]KVVIL and PKVEIL
subtypes are both found in the basic-helix-loop-helix
(bHLH) domains, but the difference they exhibit is
associated with different intriguing regulatory properties.
By searching the 13 682 TF records of TRANSFAC, we
find that the TF records with [A/P]KVVIL are all from the
Myc (c-Myc) family (38 records), of 25 different species
ranging from virus to human. Although AKVVIL mainly
appears in c/N/S-Myc TFs (17 records), PKVVIL mainly
appear in c/L/v-Myc TFs (21 records). On the other hand,
TF records with PKVEIL are all from the myogenic regu-
latory factor (MRF) family (31 records), except one
record named ‘bHLH’ lacking a specific TF name. In par-
ticular, PKVEIL appears in members of MRF including
MRF4, Myf-5, Myf-6, MyoD, myogenin, Nau (nautilus)
(28) and SUM-1 (sea urchin myogenic factor) (29), from
13 different species ranging from sea urchin to human.
This is also supported by the PDB matches: the 1NKP
(Myc-Max heterodimer) for PKVVIL-CACGTG and
1MDY (MyoD homodimer) for PKVEIL-CAGCTG.

The strong conservation and exclusiveness between [A/
P]KVVIL and PKVEIL imply potential biological signifi-
cance. Both the oncogenic Myc and the muscle-specific
MyoD bind to a similar TFBS pattern called E-box
(Enhancer Box) with consensus CANNTG, with a palin-
dromic canonical sequence of CACGTG. However,
previous research literature has discussed about the
binding preferences of the binding patterns: CACGTG
for Myc (30) and CAGCTG for MyoD (27), respectively.

We are interested in what roles the different V and E
play in PKVVIL and PKVEIL, respectively. According to
the crystal structures in 1NKP (26) with PKVVIL-CACG
TG and literature search, Myc and Max form a
heterodimer in DNA binding. Max lacks an activation
segment and serves as an obligate physiological
heterodimerization partner for Myc (26). Max has an R
that contacts the N7 atom of the G (4th) of CACGTG
(27). Myc-Max heterodimer further interacts with Miz-1
for repressing many genes (31,32). The binding capability

can be lost with a few residue point mutations. In particu-
lar, if the V (4th) in PKVVIL of Myc is mutated to D,
Myc fails to bind Miz-1 resulting in the binding deficient
MycV394D (32). It is worth noting that both D and E
exhibit similar properties: being polar, negative in charge
and thus hydrophilic, whereas V (in [A/P]KVVIL) is
non-polar, neutral and hydrophobic. Therefore, the
PKVVIL and PKVEIL subtypes are not likely to be dis-
covered just by chance. Moreover, the subtypes affect the
co-factor binding and thus probably lead to different regu-
latory functions in the context of Myc Miz-1 bindings.
How the subtypes [A/P]KVVIL and PKVEIL in the

bHLH family affect the regulatory mechanisms and
whether they are related to the different TFBS subtypes
of E-boxes are still open questions to us. Nevertheless, our
study not only identifies TF-TFBS subtypes directly
involved in binding preferences but also reveals subtype
residues important for regulatory mechanisms through
co-factor bindings. The V/E change is potentially import-
ant for categorizing the regulatory differences of the Myc
oncoprotein and muscle-specific MRF family. More
detailed regulatory mechanisms revealed for the Myc
bindings will definitely help oncology study.

DISCUSSION AND CONCLUSION

In this study, we have for the first time introduced a
large-scale subtype study based on the approximate
associated protein–DNA (TF-TFBS) pattern discovery.
Subtypes may lead to intriguing binding preferences and
patterns, distinguish conserved (invariant) residues from
flexible (varying) ones and reveal novel binding mechan-
isms. We have discovered subtypes of high statistical sig-
nificance. Discovered without involving 3D structure
experiments, the statistically significant TF-TFBS
subtypes have exhibited intriguing binding preferences in
verification comparison with PDB 3D structures and the
examples have been supported by ChIP-Seq data. With
more detailed 3D investigation on PDB structures, the
example subtypes are shown highly indicative to distin-
guish the critical (invariant) residues and flexible
(varying) residues on the TF side. The analysis also
sheds light to potentially important residues for maintain-
ing the structures/ architecture of the TF DNA binding
domains. Further investigating a typical case without
direct interaction evidence, we have found the TF
subtypes are associated with regulatory mechanisms
related to co-factor bindings. This study has identified
more detailed TF-TFBS bindings associations, provided
more solid and comprehensive evidence to support motif
subtype discovery and complement the previous studies
(21,22) on TF-TFBS binding co-evolution with limited
data. Because of the limit of our manual analysis, there
are still many more interesting subtypes to be analyzed in
the next stage. They are publicly available. The study has
shown potential to improve the understanding of gene
regulation.
The subtype discovery is based on the approximate

associated TF-TFBS pattern discovery, which makes
use of existing TFBS consensus from TRANSFAC.
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Further generalization on the modeling and search of
associated TF-TFBS patterns would provide more inform-
ative and sound patterns to facilitate more powerful
subtype discovery. One interesting direction is to set up
a model that accommodates associated subtypes directly
in TF-TFBS pattern discovery. The associated TF-TFBS
subtype study with respect to various species is our next
target. Further applications of the TF-TFBS subtypes
include better prediction of TFBSs given the TF informa-
tion based on a formal model and/or classifier and
large-scale study on 3D structure data with the associated
subtypes mined for more informative binding
mechanisms.
The subtype discovery and analysis have broad poten-

tial biological applications. Subtypes can help to spot
interesting variations that contribute to binding prefer-
ences, familial specificities and interacting mechanisms,
as our comprehensive analysis has shown. Hierarchical
annotation by introducing subtype besides site and
domain is one possible extension (7,33). Follow-up phylo-
genetic studies on subtypes can further shed light on evo-
lution and regulatory mechanisms. Subtypes can be
utilized for more accurate motif discovery. Current motif
matching suffers from false positives (34). As the
associated TF-TFBS patterns and subtypes are further
generalized, knowledge-driven motif matching can be de-
veloped as our next target to discriminate subtle variations
to distinguish true TFBSs from false hits. With more and
more data, subtypes can be further applied to analyze the
mechanisms of alterations in the viral upstream regulatory
region (URR) (35) to fight against diseases. The ultimate
understanding TF-TFBS bindings will lead to artificial
design of gene regulation circuits (36).
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