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Snowflake: A deep learning-
based human leukocyte
antigen matching algorithm
considering allele-specific
surface accessibility

Matthias Niemann1*, Benedict M. Matern2 and Eric Spierings2,3

1Research and Development, PIRCHE AG, Berlin, Germany, 2Center for Translational Immunology,
University Medical Center, Utrecht, Netherlands, 3Central Diagnostic Laboratory, University Medical
Center, Utrecht, Netherlands
Histocompatibility in solid-organ transplantation has a strong impact on long-term

graft survival. Although recent advances inmatching of both B-cell epitopes and T-

cell epitopes have improved understanding of allorecognition, the immunogenic

determinants are still not fully understood. We hypothesized that HLA solvent

accessibility is allele-specific, thus supporting refinement of HLA B-cell epitope

prediction. We developed a computational pipeline named Snowflake to calculate

solvent accessibility of HLA Class I proteins for deposited HLA crystal structures,

supplemented by constructed HLA structures through the AlphaFold protein

folding predictor and peptide binding predictions of the APE-Gen docking

framework. This dataset trained a four-layer long short-term memory

bidirectional recurrent neural network, which in turn inferred solvent accessibility

of all known HLA Class I proteins. We extracted 676 HLA Class-I experimental

structures from the Protein Data Bank and supplemented it by 37 Class-I alleles for

which structures were predicted. For each of the predicted structures, 10 known

binding peptides as reported by the Immune EpitopeDataBase were rendered into

the binding groove. Although HLA Class I proteins predominantly are folded

similarly, we found higher variation in root mean square difference of solvent

accessibility between experimental structures of different HLAs compared to

structures with identical amino acid sequence, suggesting HLA’s solvent

accessible surface is protein specific. Hence, residues may be surface-accessible

on e.g. HLA-A*02:01, but not on HLA-A*01:01. Mapping these data to antibody-

verified epitopes as defined by the HLA Epitope Registry reveals patterns of (1)

consistently accessible residues, (2) only subsets of an epitope’s residues being

consistently accessible and (3) varying surface accessibility of residues of epitopes.

Our data suggest B-cell epitope definitions can be refined by considering allele-

specific solvent-accessibility, rather than aggregating HLA protein surfacemaps by

HLA class or locus. To support studies on epitope analyses in organ transplantation,

the calculation of donor-allele-specific solvent-accessible amino acidmismatches

was implemented as a cloud-based web service.

KEYWORDS
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Introduction

Histocompatibility of patients and organ donors has been

shown to correlate with long-term graft survival in organ

transplantation (1). The formation and/or presence of

antibodies towards the mismatched donor HLA plays an

important role in that. Antibody recognition of donor HLA is

dependent on the patient’s immune reactivity towards

determinants on these mismatched donor HLA. The

determinants that specifically interact with these antibodies

have been designated as the antibody epitopes. The amino acid

composition and tertiary structure of these donor epitopes may

differ from the epitopes formed by recipients’ HLA proteins,

allowing B-cell receptors to distinguish self epitopes from non-

self epitopes, allowing for effective immune responses (2).

Several algorithms have been developed to convert HLA

mismatches into B-cell epitope mismatches between two

individuals. The HLAMatchmaker algorithm was the first

HLA-centric algorithm to define antibody-accessibility based

on a limited set of experimental crystal structures. The

HLAMatchmaker algorithm groups amino-acid positions and

their corresponding configurations for defining the so-called

Eplets (3). The EPRegistry database has subsequently been

developed as a central repository listing these Eplets (4, 5). By

defining residue-specific physicochemical properties, potential

explanations for epitope-specific antibody affinity were provided

(6). The polymorphism of the HLA-gene region, compounded

by pairing of two individuals in a transplantation setting,

however, yields such a large number of combinations of

HLA epitopes, that verifying each mismatched epitope

indistinguishably by antibody reaction patterns is challenging

if possible at all (7). Moreover, it has been suggested that

basically every amino-acid mismatch is capable of triggering

an immune response (8, 9). The HLA-EMMA algorithm exploits

amino-acid mismatching, by only considering polymorphic

amino-acid residues at solvent-accessible positions based on

reported experimental structures of various HLA loci as

potential B-cell receptor targets (10).

There are less than 100 distinct HLA Class I and less than 50

distinct HLA Class II crystal structures deposited in the RCSB

Protein Data Bank (PDB, www.rcsb.org) (11), while more than

13,600 classical HLA Class I and more than 5,600 HLA Class II

protein variants have been reported by the IPD-IMGT/HLA

database [version 3.47 (12)]. Given this imbalance and
Abbreviations: APE-Gen, Anchored Peptide-MHC Ensemble Generator;

BRNN, bidirectional recurrent eural network; IEDB, Immune Epitope

DataBase; HLA, human leukocyte antigen; MSE, mean squared error; PDB,

Protein Data Bank; ReLU, rectified linear unit; RMSDA, root mean square of

dihedral angle differences; RMSSA, root mean square of solvent accessibility

differences; SDA, square of dihedral angle difference; SE, squared error; SSA,

square of solvent accessibility difference.
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the complex and time-consuming process of X-ray

crystallography, it is not feasible to generate structure data for

every HLA protein in order to identify surface residues. Thus,

neural network predictors have been suggested to predict

arbitrary proteins’ surfaces (13, 14). Refining and integrating

aforementioned concepts, we developed a deep-learning

prediction pipeline for solvent accessibility defining allele-

specific surface epitopes. Our surface prediction is trained on

experimental HLA structures of the PDB, which were

supplemented by HLA structures predicted by DeepMind’s

recent AlphaFold protein folding predictor (15–17). Due to

the structural differences between HLA Class I and Class II

proteins and the different distribution of available experimental

structures, our prediction pipeline’s implementation needs

specific optimization based upon the respective HLA classes.

Herein, we present the results for our HLA Class I-specific

pipeline. Based on our surface predictor, we implemented a

matching algorithm as a web service allowing for real-time

application in transplantation diagnostics. The full stack

matching algorithm, named Snowflake, is available online

(www.pirche.com), featuring machine-readable batch matching

and a human-readable detail browser.
Materials and methods

Extraction of experimental structures
from PDB

HLA protein structures were extracted from the PDB using

the full text search term “hla”. The found structures were filtered

by structures comprising chains “A”, “B” and “C”, whereas chain

B’s amino-acid sequence was expected to match beta-2-

microglobulin (UniprotKB entry P61769). The supposed alpha

chains were aligned to the IPD/IMGT-HLA database (12)

(version 3.46.0) using BLAST (18) via the Biopython library

(19). Structures were only considered further if a BLAST score of

1300 was exceeded. HLA-allele names and identifiers were

assigned to the protein structures based on the maximum

number of identical amino acid configurations and lowest

HLA identifier in case of a tie.
Structural prediction of non-crystallized
HLA proteins

Given the large number of known HLA genes and the

complexity of generating structural data experimentally, the

AlphaFold (15–17) (DeepMind Technologies Limited, London,

UK) protein structure inference pipeline (v2.0) was applied to

supplement the PDB data. As the public AlphaFold Database

does not cover HLA variants, the AlphaFold software was

installed on an Amazon Web Services Elastic Cloud Compute
frontiersin.org
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server (Amazon Web Services Inc., Seattle, US) to run de novo

calculations. Generating HLA-protein 3D structures via

AlphaFold is a heavy computational task. Consequently, only

HLA proteins were selected for structure prediction when their

serologic and antigenic groups were not already covered by

structures from the PDB. For visualization purposes, structures

were superimposed as described by Golub et al. (20) via the

Biopython library (19).
Render peptide in predicted structures’
binding groove

The inferred structures comprise the proteins’ respective

alpha chain and the beta-2-microglobulin, but lack a bound

peptide. The presence of such a peptide alters the solvent

accessibility for residues involved in the peptide-binding

domain. Despite AlphaFolds high prediction accuracy and

capability to infer multimeric structures, it is not designed to

predict binding of antibodies (17). To supplement the predicted

structures with peptides, the Immune Epitope Database (IEDB,

www.iedb.org) (21) was screened for nonameric peptides being

reported as binders to the respective HLA protein. For predicted

alleles without reported binders, the IEDB-reported peptides of

the allele with the highest amino acid identity in the extracellular

domains were considered as binders. For each allele, a subset of

ten peptides was extracted and each peptide’s position in the

HLA binding groove was predicted by the Anchored Peptide-

MHC Ensemble Generator (APE-Gen) (22) to account for

peptide-specific changes of accessibility.
Structure comparison

Comparing experimental protein structures by calculating

the Euclidean distance of the respective residues’ coordinates is

sensitive to local differences that propagate through the whole

tertiary structure. The relatively small changes in dihedral angles

in the backbone may twist the entire molecule, even though large

functional units remain identically shaped. Increased Euclidean

distances of al l subsequent posit ions wil l thus be

overrepresented. Furthermore, comparing Euclidean distances

requires structures to be superimposed. Although axes units are

identical, the experimental structures deposited in the PDB have

varying coordinate centers and axes orientations, requiring prior

computational superimposition of the structures, which may

introduce additional bias. As a robust alternative, torsion angles

of the amino acids’ backbones - characterized as dihedral angles

phi (j) and psi (y) - have been considered. The position-specific

square of dihedral angle differences (SDA) and the overall root

mean SDA (RMSDA) were calculated. Compared to evaluating

Euclidean distances of atom pairs of identical amino acid
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sequence structures, RMSDA is superimposition-independent

and local differences do not propagate through the structure (as

reviewed by (23), Figure 1). Additionally, the position-specific

square of solvent accessible surface area differences (SSA) and

the overall root mean SSA (RMSSA) were calculated as a

functional distance metric. Predicted structures of the five

most frequent proteins of experimental structures reported in

the PDB were compared to estimate the prediction performance.

However, these predicted structures were not used in the neural

network training data set.

SDAi = (jai − jbi )
2 + (yai − ybi )

2

RMSDA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2no

n

i=1
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2 + (yai − ybi )
2

s
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2

RMSSA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(SAai − SAbi )

2

s

Calculation of protein-residue-specific
surface area

For all experimental and inferred HLA-protein structures,

each residues’ solvent accessible surface area was calculated

considering the Shrake-Rupley algorithm (24), implemented

by the Biotite library (25). Essentially, this algorithm is the

numerical equivalent of rolling a marble (i.e. probe) over a

structure (i.e. HLA protein) to identify which parts of the

structure (i.e. residues) get in contact with the marble. The

probe radius was set to 1.4 Å corresponding to the size of water

molecules. Surface area computation of alpha chain residues

considered the proteins’ alpha chain, beta-2-microglobulin and

bound peptide simultaneously.
Neural network design

The experimental and inferred HLA structures comprise only a

fraction of known HLA Class I proteins. To create a database of

surface accessible residues for all HLA Class I proteins, a long short-

term memory bidirectional recurrent neural network (BRNN) (26)

was implemented, that chained the HLA alpha chains’ amino-acid

configurations as one-hot-encoded inputs and the residues’ surface

areas as output. The network configuration stacked a bidirectional

layer with rectified linear unit (ReLU) activation of 100 neurons, a

second bidirectional layer with 64 ReLU neurons, a third

bidirectional layer with 32 ReLU neurons and the output layer
frontiersin.org
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considering a linear activation function. Position-specific surface

area was limited to 100, corresponding to the 85th percentile, in

order to account for protruding residues with disproportionate

surface area. Surface area was divided by 100 resulting in values

ranging from 0 to 1. Network training used Adam optimization for

efficient gradient descent (27). The model-generation and inference

was implemented in the Python programming language (Python

Software Foundation, version 3.5.1) using Keras (https://keras.

io)/Tensorflow 2 (https://www.tensorflow.org).
Comparison of calculated surface area
with other methods

The performance of the applied surface prediction pipeline

was evaluated by comparing the predicted surface accessibility of

72 IMGT-IPD/HLA-reported HLA Class I reference alleles (based

on IMGT 3.46.0 (28),) with the predictions provided by NetSurfP

2.0 (13) and PaleAle 4.0 (14). Relative solvent accessibility

predicted by PaleAle was divided by 100 to match the other

predictors’ outputs. The produced relative solvent accessibility

scores were mean-centered. Position-specific squared error (SE)

and mean squared errors (MSE) were calculated pairwise between

the predictors and reference alleles. Amino acid sequence

positions with large SE were visualized in PyMol 2.3.0. Amino

acid positions with solvent accessibility scores exceeding the

respective predictor’s mean solvent accessibility were considered

accessible and inaccessible otherwise.
Frontiers in Immunology 04
Epitope matching based on surface-
accessible amino acid residues

The proposed method considers donor amino-acid

mismatches at allele-specific positions exceeding a surface

accessibility threshold (i.e. are predicted to be surface-

accessible) between two individuals as epitope mismatches

(Figure 2). The sum of such amino acid mismatches is

considered the Snowflake epitope mismatch score. The

algorithm is parameterized in the surface accessibility

threshold and the mode of reference loci: (1) intralocus

matching considers only the same recipient locus, whereas (2)

interlocus matching references all recipient’s HLA Class

I proteins.
Statistical analysis

All calculations were executed in R software (R 3.6.1, R

Foundation for Statistical Computing, Vienna, Austria).
Results

The PDB search yielded 1593 structures that were filtered

down to 676 HLA Class-I experimental structures (Figure 3).

The majority of experimental HLA Class I structures correspond

to the A*02:01 (n=272, ~40%) (Figure 4). Based on the
BA

FIGURE 1

(A) Cartoon plot of two independent crystal structures of HLA-A*02:614 in overlay. In pink structure 3MRE (PDB DOI: 10.2210/pdb3MRE/pdb)
and in green structure 3GSR (PDB DOI: 10.2210/pdb3GSR/pdb). Superimposition was based on atoms of identical amino acid residues. The blue
box indicates small changes in dihedral angles (purple circle) propagating into large Euclidean distances in the following loop structure. (B)
Euclidean distance between atom positions (orange) may overestimate the structural difference (P3-P5) due to distance-propagation of angular
difference at P1/P2 (blue) or suboptimal global superimposition. However, dihedral angles at P3-P5 are identical, only considering P1/P2 as
structurally different.
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experimental structures’ distinct HLA proteins, an additional 37

Class-I alleles (14 HLA-A, 16 HLA-B, 7 HLA-C) were selected

for structure prediction, covering all HLA Class I antigenic

groups. Rendering epitopes into the binding grooves of 37

predicted HLA structures failed in 41 of 370 cases (median =

0, mean = 1.11) due to internal errors in APE-Gen where energy

values exceed numeric limits. Distributions of position-specific

solvent accessible surface area are provided in Supplementary

Figure 1. Variance in surface area can be observed both for

positions in interaction with the bound peptide (29), as well as

residues outside the binding groove.

The distribution of pairwise RMSDA for the most common

structures is similar compared to the overall RMSDA

distribution considering structural variance across all HLA
Frontiers in Immunology 05
Class I proteins. Predicted structures’ RMSDA with their

corresponding experimental structures is similar to the

RMSDA deviation between experimental structures of the

same allele (Figure 5). Certain regions of the HLA have higher

SDA compared to rigid regions with low SDA (Supplementary

Figure 2). Noteworthy, SDA does not correspond to levels of

solvent accessibility (Supplementary Figure 3, Spearman’s rho =

0.135, p< 0.001).

There is considerable variance in RMSSA observed within

the various reported experimental structures of the same allele.

The RMSSA across all HLA Class I experimental structures is

however significantly higher compared to the allele-specific

RMSSAs, indicating a higher variance between individual

alleles (Figure 6). Also for the position-wise variance of surface
FIGURE 2

Snowflake HLA matching algorithm schematic. Donor amino-acid mismatches with a predicted threshold-exceeding allele- and position-
specific solvent accessibility (0.00 to 1.00, 0.00 being inaccessible, 1.00 being exposed) increase the Snowflake score by one.
FIGURE 3

Snowflake surface accessibility prediction pipeline. Blue arrows represent training data, pink arrows represent validation data, green arrows
represent data flow identical in both steps.
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area, certain regions of the HLA are subject to higher variance in

SSA than others (Supplementary Figure 4).
Compare surface prediction with
reference tools

After training the Snowflake surface predictor over 400

epochs, the loss function converged to ~0.02, so further

training did not alter neural network weights. The average

predicted relative solvent accessibility ranged lower for

NetSurfP and PaleAle (i.e. reference predictors) compared to

Snowflake (Figure 7A). After centering, the reference predictors

produced similar predictions with low MSE across reference

alleles (Figure 7B). Snowflake had considerably higher MSEs

considering the reference predictors (Figure 7B).
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The low MSE between NetSurfP and PaleAle was also

observed in the low position-specific SE (Supplementary

Figure 5) at the majority of amino acid positions. Position-

specific SE for Snowflake was substantially higher in certain

regions (Supplementary Figure 5). Classifying solvent

accessibility by exceeding the respective predictor’s mean score

yielded a considerable number of allele-dependent (e.g P3, P110,

P190) and allele-independent (e.g. P31, P167 or P219) deviations

between the Snowflake and the reference predictors (Figure 8).

As an example, the solvent accessibility prediction and SE of

A*02:01 have been provided in Supplementary Figure 6.

Generating visual representations of some of these

characteristic positions indicates allele-specific differences in

surface prediction (Figure 9). Amino acid position 167 of

A*01:01 is not predicted to be solvent-accessible by Snowflake,

PaleAle and NetSurfP. Despite PaleAle and NetSurfP predicting

the same position also not being accessible in an A*02:01,
FIGURE 4

Bar chart indicating the distribution of alleles in experimental structures. The number of structures is encoded on the y axis. Color indicates
locus, dashed border indicates structure prediction as outlined in the Materials and Methods section.
FIGURE 5

Boxplot indicating the pairwise root mean square dihedral angle differences (RMSDA) in degree across all experimental HLA Class I structures
and pairwise across the most common HLA Class I structures. Color depicts the source of the structure data (blue indicates experimental
structures from the PDB, pink indicates predicted structures as described in Materials and Methods). Horizontal panels consider separate
distributions of all, only buried or only exposed residues. Boxplots depict the median (horizontal line), first to third quartile (box); the highest and
lowest values within 1.5× IQR (whiskers) and outliers (circles), respectively. Labels refer to the number of structures being compared, with blue
labels referring to experimental structures and pink labels referring to predicted structures being compared with experimental structures.
frontiersin.org
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Snowflake estimates P167 being accessible (Figure 9B). In the

visual representation accessibility appears plausible. Notably,

positions 166 and 167 of A*01:01 have been described by the

Eplet 166DG. Although the corresponding amino acid positions

of A*02:01 are both surface accessible, no corresponding Eplet

166EW is defined.

For position 110 of A*02:01 the predictors disagree on

accessibility; PaleAle and NetSurfP negate solvent accessibility,

whilst Snowflake affirm accessibility. By visual representation,

accessibility of this position however appears plausible (Figure 9C).
Frontiers in Immunology 07
The positions 119 and 120 of A*02:01 appear to be masked

by the beta-2-microglobulin structure (Figure 9D). Opposed to

Snowflake and PaleAle both agreeing on the inaccessibility of

these positions, NetSurfP predicts accessibility. Coloring the

residues depending on their predicted solvent accessibility,

shows the masking effect of the bound beta-2-microglobulin,

rendering hidden amino acid positions, despite being potentially

polymorphic, antibody-inaccessible (Figure 10).

HLA Class I antibody-verified eplets are defined as one to

three amino acids. At each of respective positions, distinct
FIGURE 6

Boxplot indicating the pairwise root mean square surface area differences (RMSSA) across all experimental HLA Class I structures and pairwise
across the most common HLA Class I structures. Color depicts the source of the structure data (blue indicates experimental structures from the
PDB, pink indicates predicted structures as described in Materials and Methods). Horizontal panels consider separate distributions of all, only
buried or only exposed residues. Boxplots depict the median (horizontal line), first to third quartile (box); the highest and lowest values within
1.5× IQR (whiskers) and outliers (circles), respectively. Labels refer to the number of structures being compared, with blue labels referring to
experimental structures and pink labels referring to predicted structures being compared with experimental structures.
BA

FIGURE 7

(A) Solvent accessibility distribution of reference alleles as predicted by NetSurfP (i.e. “rsa”), PaleAle (i.e. Relative Solvent Accessibility) and
Snowflake. (B) Pairwise mean squared distance between centered predictions of NetSurfP and PaleAle, NetSurfP and Snowflake, and PaleAle and
Snowflake. Boxplots depict the median (horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers) and
outliers (circles), respectively.
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distributions of solvent accessibility were observed (Figure 11),

leading to different patterns of solvent accessibility: (i) Eplets

with consistently high predicted solvent accessibility (e.g. 127K,

193PV), (ii) Eplets with a consistent pattern of solvent

accessibility, where at least one amino acid position of the

Eplet has high predicted solvent accessibility (e.g. 145KHA,

44RT), and (iii) Eplets with high variance of predicted solvent

accessibility at one or more positions (e.g. 144K, 163R, 65RNA).

Similar patterns were observed for non-antibody-verified Eplets

(Supplementary Figure 7). Compared to antibody-verified
Frontiers in Immunology 08
Eplets, positions of non-antibody-verified Eplets were more

often predicted to be inaccessible.

Snowflake matching was integrated in the previously

described PIRCHE Risk and Acceptable Mismatch Profile

epitope matching suite (30). The PIRCHE web service allows

semi-automated HLA typing data import (GL String, HML,

CSV) and provides interfaces to major HLA typing kit vendors’

software suites to load HLA typing data quickly and error-free.

Interactive bar charts provide interlocus and intralocus

Snowflake scores along with PIRCHE scores, allele frequencies,
FIGURE 8

Pairwise comparison of predictions considering reference alleles with respective predictor’s mean as cutoff for surface accessibility.
FIGURE 9

Highlighted amino acid positions of selected structures. The HLA alpha chain is colored in dark green, beta-2-microglobulin is colored in light
green, the bound peptide is colored in blue, and the highlighted amino acid positions are colored pink. (A) Position P167 is predicted by
Snowflake and the reference predictors to be buried in A*01:01. (B) The same position P167 in A*02:01 is predicted by Snowflake to be
accessible, by the reference predictors again predicted to be buried. (C) The reference predictors estimate position P110 in A*02:01 to be
buried, whilst Snowflake considers it accessible. (D) For A*02:01, positions P119 and P120 are contact points with the beta-2-microglobulin.
Whilst Snowflake considers these positions not being accessible, NetSurfP considers them as accessible.
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predicted shared T cell epitopes and mean fluorescence

intensities of single antigen bead assays (Figure 12).
Discussion

A wide range of universal software tools characterizing

potential B-cell epitopes has been described in the literature

(e.g. ElliPro (31), NetSurfP (13), PaleAle (14), DiscoTope (32),

BepiPred (33)). Specifically for transplant histocompatibility

matching, these tools supported approaches of HLA B-cell

epitope definition and matching. HLAMatchmaker (3) (www.

epitopes.net) and EPRegistry (4, 5) (www.epregistry.com.br)

define a manually curated database of antibody-accessible

amino acid configurations (i.e. eplets) based on a limited

number of experimental HLA structures. Verifying each of

the s e ep l e t s by an t i bod i e s and e s t ima t ing the i r

immunogenicity however remains challenging (7, 34). The
Frontiers in Immunology 09
EMS-3D model considers a multidimensional score of

electrostatic dissimilarity between donor and recipient HLA,

which may be an additional metric to characterize the HLA

surface (6).

In the present study, we describe the Snowflake algorithm, a

newly developed deep learning-based HLA-matching algorithm

that considers allele-specific surface accessibility. Snowflake

applies a strategy comparable to the one used by the pHLA3D

database (phla3d.com.br) (35). Both approaches complement

the experimental structures of the PDB by in silico predicted

structures of pHLAs using a homology modeling pipeline

approach in order to spatially locate amino acid positions in

HLA proteins without available structures. Snowflake applies

AlphaFold for structure prediction as it appears to outperform

the “satisfaction of spatial restraints”-approach of MODELLER,

which was used to construct the pHLA3D database (15). As

Snowflake considers multiple binding peptides during training,

peptide-specific bias in solvent accessibility of binding groove
BA

FIGURE 10

(A) Solvent accessibility-colored residues of A*02:01. Beta-2-microglobulin is colored in green. (B) Residues masked by the beta-2-microglobulin
structure are predicted to be inaccessible. Color (gradient from red to purple to blue) based on Snowflake score, red tones indicating higher solvent
accessibility, blue tones indicate lower solvent accessibility.
FIGURE 11

Distributions of solvent accessibility of respective antibody-verified Eplets positions. Color corresponds to the amino acid position within the Eplet.
Boxplots depict the median (horizontal line), first to third quartile (box); the highest and lowest values within 1.5× IQR (whiskers), respectively.
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residues is taken into account. Comparing the Snowflake-

predicted surface accessibility with the calculated solvent-

accessible surface area of pHLA3D database structures

confirms a concordance between the approaches for the

majority of amino acid positions (Supplementary Figure 8).

However, each structure has a number of amino acid positions

with large deviation between pHLA3D and Snowflake (i.e.

outliers) indicating differences in parts of the predicted

structures. Considering protein flexibility and different

optimization strategies, these differences may however be

technical artifacts of the respective tool chain’s characteristics.

To incorporate simulated HLA structures into surface

prediction, Snowflake implemented its own HLA surface

predictor comparable to both NetSurfP 2.0 and PaleAle 4.0.

Similar to Snowflake, these predictors implement a deep learning

neural network architecture using BRNN to predict (amongst other

characteristics) relative surface accessibility. Both networks have

been trained with the experimental structures reported in the PDB

(13, 14). Limiting on solvent accessibility as predicted output,

Snowflake’s deep learning model has been trained exclusively on

HLA Class I structures, tailoring its prediction capabilities

specifically to HLA Class I proteins. The observed lower

numerical distance between predictions of NetSurfP and PaleAle

compared to Snowflake and these predictors (Figure 7) may be

caused by a different strategy in preprocessing calculated surface

area. Considering predicted structures as additional training data is

an advantage over NetSurfP and PaleAle, as it incorporates domain-

specific knowledge on protein folding into solvent accessibility

prediction. It must be considered that learning-based surface

prediction is obsolete if the predicted structures have been

generated for all known HLA alleles. Proving the predictors’

reliability and accuracy requires more experimental structures of
Frontiers in Immunology 10
HLA proteins that have not been analyzed so far. Given the

complexity of X-ray crystallographic experiments, this

remains challenging.

Although HLA Class I experimental structures showed little

overall structural variance in dihedral angles between alleles

(Figure 5), solvent accessibility varied across different alleles,

indicating solvent accessibility to be allele-specific (Figure 6).

Visual representations of characteristic positions support this

hypothesis (Figure 9). Consequently, amino acid matching

approaches may be improved by considering solvent

accessibility of the respective amino acid of the specific allele,

providing a consistent explanation for epitopes’ directionality.

Despite strong numeric correlation between Eplets and

Snowflake, some difference in epitope definition may arise.

The example in Figure 9 shows strong accessibility for

positions 166 (glutamic acid) and 167 (tryptophan) of

A*02:01, yet there is no Eplet 166EW defined. As described by

(3), the interlocus comparison with HLA-B and -C typically

shows matched monomorphic configurations at these positions.

However, in the meantime there are HLA-B and -C surface-

expressible alleles described, which do not share the EW

configuration at these positions (data not shown).

Consequently, there may be scenarios where a common

hypothetical 166EW is not found in the recipient’s self-Eplets,

potentially provoking an immune response. Similar examples

are 253Q without a corresponding common 253E or 131S

without a corresponding common 131R. Although these

situations are likely rare, this indicates potential gaps in Eplet

definitions. Furthermore, verifying Eplets with low population

frequency by antibody reaction patterns remains challenging.

The herein presented definition of epitope mismatches provides

a consistent allele-specific process.
FIGURE 12

PIRCHE Risk and Acceptable Mismatch Profile including PIRCHE-II epitope scores (blue bars), mean fluorescence intensities of imported single
antigen bead assays (pink bars), shared T-cell epitopes with previous immunizers (orange bars), allele frequencies (pale green bars), interlocus
Snowflake scores (purple bars) and intralocus Snowflake scores (dark green bars).
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The position-specific solvent accessibility at amino acid

positions encoding for antibody-verified Eplets (Figure 11,

Supplementary Figure 7) varies for some of the reported

Eplets. This variation suggests that the three-dimensional

structure of such Eplets is dependent on the complete

structure of the allele they are occurring in. This dependency

raises the question, if antibody reactions against these Eplets are

equally pronounced for alleles with lower accessibility compared

to alleles with higher accessibility of the corresponding amino

acid positions. Accessibility of non-antibody-verified Eplets

generally appeared to be comparatively lower. The lower

accessibility may be the cause for lack of antibody verification

in the first place, and supports the hypothesis that non-antibody-

verifiable internal Eplets act as proxies by impacting the protein

surface from within.

HLA epitope-matching algorithms based upon solvent-

accessible amino-acid mismatches are valuable tools in

antibody-based HLA-mismatch risk classifications. The

recently described HLA-EMMA (hla-emma.com) algorithm

considers these solvent-accessible amino acid mismatches as

potential B-cell receptor targets by defining solvent-accessible

amino acid positions per HLA locus. The HLA-EMMA

algorithm considers an amino acid position as solvent-

accessible, if PaleAle- or NetSurfP-solvent accessibility scores

exceed a certain threshold in at least one of the considered alleles

of a locus (10). This approach may, however, assign mismatched

amino acids of two alleles as epitope mismatch even though the

amino acids within the respective alleles aren’t surface-accessible

(Figures 8, 9A, B). Such misclassifications can result from the

fact that accessibility of the involved position was determined by

a structural alignment to a different allele. Consequently, by

using an allele-specific approach, Snowflake’s allele-specific

solvent accessibility of mismatched amino-acids may

increase specificity.

To confirm the impact of allele-specific solvent accessibility

experimentally, binding analyses of HLA epitope-specific

monoclonal antibodies to HLA as applied by Bezstarosti et al.

may be informative (36). Following the hypothesis, antibodies

against antibody-verified Eplets with a wide distribution of

surface accessibility (e.g. 138MI or 163R, Figure 11) are

expected to yield into a binding pattern proportional to the

respective alleles’ Eplet-accessibility. Linked mismatched amino

acid residues may however interfere with the complete antibody

footprint, which has to be considered as a potential confounder

of such experiments.

To fully evaluate the predictions of Snowflake, it is necessary

to consider potential limitations. Our solvent accessibility

prediction considered structural data generated by a protein

folding predictor. Such an approach is essential due to limited

and biased data of experimental HLA structures. Despite

advances in the field of protein folding predictors (37), it must
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be noted protein folding is one of the most challenging problems

in bioinformatics with predictions still lacking precision (38).

Our data indicate considerable structural variance between

experimental structures of the same allele, which may be

explained by the varying specific experimental setups on the

one part and by the flexibility of HLA molecules on the other

(39, 40). Though predicted solvent accessibility varies to a

greater extent across different alleles, protein flexibility and

dynamics may still alter the protein surface in vivo.

Second, validation of AlphaFold-predicted structures did not

account for structures being part of the training set and thus may

overestimate the suitability of rendered structures for epitope

analyses. Predicted positions of peptides in predicted HLA

structures only considered nonameric peptides. The method

may be further refined by including peptides of varying

lengths depending on length distributions of reported binders,

to evaluate the role of peptide length on solvent accessibility in

the groove-surrounding region.

Training data for surface prediction is biased towards HLA-

A*02:01 (Figure 4). Excluding structures based on sequence

similarity as suggested previously (13, 14) would, however,

significantly limits the training set. Considering the training

data bias being not only sequence-specific but also position-

specific, as positions have individual amino acid distributions

across HLA alleles, training data aggregation at the allele level is

insufficient. Lacking a robust aggregation option and accepting

the potential bias, the complete data sets were used for training.

The applied surface area calculation considered a probe

radius of 1.4 Å based on the size of water molecules. Given the

size of HLA-binding antibodies and the interaction area between

HLA and antibody (e.g. in PDB 6ID4 (41)), it may however be

considered to restrict antibody accessibility to larger probe sizes

or aggrega te so lvent access ib i l i ty wi th pred ic ted

ellipsoid protrusion.

Similar to all previously described HLA epitope matching

algorithms, the Snowflake core algorithm also requires protein-

level HLA typing data. By applying the previously described

haplotype frequency-based multiple imputation (42), Snowflake

scores can however be calculated with low- or intermediate

resolution HLA typing data. To the best of our knowledge,

Snowflake is the first HLA B cell epitope matching algorithm

natively supporting low-resolution typing inputs. The Snowflake

matching algorithm for batch processing or detailed matching is

available at pirche.com.

In summary, we herein presented the Snowflake B-cell

epitope matching algorithm, a deep-learning based software

evaluating allele-specific surface-accessible amino acid

mismatches applicable to all HLA Class I alleles. It refines

protein surface-restricted amino acid matching in the context

of transplantation and may support analyses on the

immunogenicity and antigenicity of HLA B-cell epitopes.
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Clinical studies are warranted to indicate correlation between

the Snowflake score and immunological events, such as

development of donor-specific antibodies.
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