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Abstract: Composite plates with holes are common in engineering applications, such as the automo-
tive and aerospace industries. Three-dimensional braided carbon/epoxy polymers are an advanced
textile composite and are used in various structures due to their high damage resistance and relatively
low manufacturing cost. When a braided polymer plate with a hole is used in engineering applica-
tions, it is necessary to know its mechanical behavior under loading conditions using analysis theory
to design it better. However, the effects of stress distribution with shear deformation theories on the
variable thickness of the braided polymer plate (carbon/epoxy) with a hole under tensile loading
have not been reported yet. In this paper, a study is conducted to evaluate shear deformation theories
for a braided polymer plate with variable thickness and a hole in the center, analyzing the stresses and
their concentration variations. First, multiscale modeling and analysis are performed to determine
the mechanical properties of the plate. Then, finite element analyses are performed on a homogenized
macro plate with a hole. The analysis process is verified by comparison with the available literature.
Results show that the first-order shear deformation theory calculates 37, 56, and 70 percent less
maximum transverse shear stress than the high-order shear deformation theory (Reissner–Mindlin)
and the elasticity theory for thin, moderately thick, and thick braided polymer plates, respectively.
Additionally, changing the theory has no significant effect on circumferential stress, radial stress, Von
Mises stress, and stress concentration factor. As a result, this research can provide researchers and
designers with structural intuition for a braided polymer plate with a center hole.

Keywords: plate with hole; carbon/epoxy polymer; braided composites; finite element analysis;
stress behavior; stress concentration factor (SCF); shear deformation theories; thickness aspect

1. Introduction

The 3D braided polymer composites are advanced textile polymer composites. They
have a wide range of excellent mechanical properties, such as high out-of-plane strength,
excellent damage and impact resistance due to the outstanding internal structure of 3D
braided preforms. This leads to the widespread use of 3D braided composites in different
fields, such as aeronautics, marine, transportation, and other industries. Different holes or
openings are typically drilled into these composites’ plates to reduce the system’s weight
and allow access to system equipment [1]. However, due to specified cut-outs, significant
stresses are formed around the holes or openings when a plate is subjected to tension
or shear pressure. Therefore, an accurate knowledge of stresses and stress concentration
is essential for designing such plates with holes. Due to time and cost issues in the
experimental methods, researchers are focusing on numerical and analytical methods [2].

Researchers have analyzed different conditions for a plate with a hole. Studies related
to isotropic plates with a hole have been covered widely in the past literature [3]. Afterward,
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considerations have also shifted toward orthotropic and laminated plates with holes. Hwai
Chung and Bin [4] established an empirical model to compute the stress concentration
factor (SCF) for isotropic/orthotropic plates with circular holes. Due to the difficulty in
obtaining the negative SCFs analytically, the suggested technique could not consistently
forecast the SCFs of orthotropic plates and cylinders under biaxial loads. Under the
varied transverse static loading conditions, Jain and Mittal [5] studied the influence of hole
diameter to plate width on SCF and deflection in isotropic, orthotropic, and laminated
composite plates. Mittal and Jain [6] also used two-dimensional finite element methods
to investigate the effect of fiber orientation on the SCF in a fibrous plate with a central
circular hole under transverse static loading. Their work is limited to case studies, such
as symmetric and antisymmetric laminates, and then fiber orientation effect on laminated
and woven composites. Toubal et al. [7] investigated the stress concentration in a circular
composite plate with a hole, and the aim was to focus on only the circular plate and
its stress concentration. Hashem et al. [8] calculated the SCF for arbitrarily oriented
irregular fiber laminas with square/circular holes using a numerical model. The work
was based on Howland and Heywood and mainly focused on a plate with a center square
hole. Lekhnitskii et al. [9] and Tan [10] proposed various formulations to investigate
stress concentration for infinite and finite orthotropic plates. Nicholas and Christoph [11]
investigated the stress concentration variables for cylindrically orthotropic plates. The
study focused on a circular orthotropic plate with a central circular hole. Additionally, an
experimental approach based on digital image correlation was reported by Mhallah and
Bouraoui [12] to determine the SCF for orthotropic and isotropic materials. Wang et al. [13]
investigated a functionally graded plate with an elliptical hole under tensile load and
found the inhomogeneity effect on the stress concentration and damage factor compared to
homogeneous materials. Apart from that, researchers have also analyzed the plate with a
center hole under heat load. Chaleshtari et al. [14] analyzed a symmetric laminate plate
with a rectangular hole under heat flux loads and investigated the effect of hole rotation and
heat flux angle on thermal stress around the hole. Recently, Zappino et al. [15] proposed
an experimental and numerical study to see the capabilities of additive manufactured
composite materials to reduce stress and strain concentrations in open-hole plates. The
study was conducted on isotropic and anisotropic plates with a hole. So far, most of the
studies considered plates with a different kind of hole for stress distribution around the
hole and calculated the effect of plate length versus the diameter of the hole with isotropic
and orthotropic laminates. The literature shows that a design study of braided polymer
plate with a hole in terms of stress and its concentration factor has not yet been investigated.
Further, the shear deformation theory effect on variable thicknesses has also not been
reported in the existing literature.

Therefore, the current research work presents stress behavior with the effectiveness of
analysis theories for variable thicknesses of a 3D braided polymer composite plate. Firstly,
multiscale modeling of the braided composite plate is conducted. Then, the analysis process
is verified and extended to the currently considered plate. Under various conditions, the
results are presented for circumferential, radial, and transverse shear stresses. Additionally,
SCF is determined for polymer braided composite plate concerning plate width/hole
diameter (w/d). As analytic treatment of such a problem is highly challenging, the finite
element approach is used for the entire study.

2. Modeling and Analysis
2.1. Modeling

The braided anisotropic plate with a center hole is modeled for investigation. Due
to heterogeneity, three-scale modeling is performed, namely micro, meso, and macro, as
shown in Figure 1. At the micro and meso levels, homogenization is performed to calculate
mechanical stiffness for the macro plate in order to analyze it in Section 2.2.
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Figure 1. Multiscale modeling for braided polymer plate.

First, the yarn properties are calculated in microscale homogenization based on fiber
distribution. The main constituents are epoxy resin and T300 carbon fiber, as shown in
Table 1. The hexagonal distribution is adopted on a microscale to cover accurate details.
Then, the unit cell model based on the yarn trajectory is built in the mesoscale based on
a 1*1 four-step braiding manufacturing process [16]. This 1*1 four-step braiding process
forms the braided composite by a rectangular preform in a cyclic process, so yarns are
distributed uniformly across the plate and around the hole. Therefore, uniformity is
considered for analysis. The cross-section of the yarn is taken to be an elliptical shape with
a 36.5-degree braiding angle. Afterward, the microscale and mesoscale finite element (FE)
model is prepared, as presented in Figure 2. In the micro- and mesoscale modeling, it is
assumed that the epoxy matrix is fully bonded with carbon fiber, and there are no voids
between them. Additionally, the composite is pure, which means there are no impurities
in it during the manufacturing process. Meshing is completed with C3D20R hexahedral
elements, and meshing quality is also checked for better prediction [17]. The elements
corresponding to the micro- and mesomeshed model are 99,431, and 384,741, respectively,
with an element size of 0.01 mm. Element orientation is maintained for fiber bundles to
control heterogeneity. Finite element analysis (FEA) is applied in Abaqus python code at the
microscale, with matrix and fiber properties to calculate yarn properties; those are verified
by the rule of mixture and Halpin–Tsai empirical formula according to Equations (1)–(4)

Eii = VfEf + VmEm, (i = 1) (1)

Ejj

Em
=

1 + ξ ∗ η ∗Vf
1− η ∗Vf

, η =

(
Ef
Em

)
− 1(

Ef
Em

)
+ ξ

, ξ = 2, (j = 2, 3) (2)

Gij

Gm
=

1 + ξ ∗ η ∗Vf
1− η ∗Vf

, η =

(
Gf
Gm

)
− 1(

Gf
Em

)
+ ξ

, ξ = 1, (i, j = 1, 2; 1, 3; 2, 3.) (3)

υij = Vfυf + Vmυm, (i, j = 1, 2; 1, 3; 2, 3.) (4)

where Eij, Ejj, Gij, and υij are longitudinal, transverse, shear modulus, and Poission ratio.
Em/Gm, υm, and Vm are matrix modulus, poission ratio, and voulme fraction. Ef, Gf, υf,
and Vf are fibers’ transverse and shear modulus, Poisson ratio, and volume fraction. ξ is
the reinforcing efficiency, mainly depending on fiber geometry and packing; in some cases,
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such as circular fiber arrangements, it is considered as 2 for transverse modulus and 1 for
shear modulus, and η is the average number called the stress partitioning factor, which
varies between 0 to 1 [18].

Table 1. Material properties used in the unit cell model in microscale.

Constituent. ↓ Properties
→

Young Modulus (GPa) Shear Modulus (GPa) Poisson Ratio
Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz

Fiber Carbon T300 230 40 40 24 24 14.3 0.26 0.26 0.399
matrix Epoxy resin 3.5 0.35

Yarn (fiber
volume fraction

(0.52))

Microscale ho-
mogenizations

(microscale unit
cell)

121.28 10.16 10.16 7.93 7.93 4.36 0.303 0.303 0.375

Braided polymer
plate with a
center hole

Mesoscale ho-
mogenizations
(mesoscale unit

cell)


15.78
7.35

14.25
0
0
0

7.38
15.73
14.27

0
0
0

8.55
8.53
28.29

0
0
0

0
0
0

18.25
0
0

0
0
0
0

18.21
0

0
0
0
0
0

11.55
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Figure 2. Micro- and mesoscale models.

Then, the mesoscale unit cell is analyzed to calculate the final effective stiffness with
calculated yarn properties (microscale) and matrix material in Abaqus python code. Gener-
ally, the mechanical properties of braided composites can be described by nine independent
elastic constants in the material stiffness matrix [19,20]. Analyses are performed by six
displacement and periodic boundary conditions to obtain the material properties of the
micro- and mesoscale. Face, edge, and vertex coupling are applied for pure tension and
shear to propose the repeating nature. This can be achieved by classifying the node sets
on the cell’s faces, edges, and vertices. In this condition, the displacement field under a
macroscopic strain can be expressed as

ui(x1 x2 x3) = u0
i + us

i (x1 x2 x3) (5)

u0
i = ε0

ijxj (6)

In the above equations, Equation (6) u0
i = ε0

ijxj represents the linear displacement field
in the periodic composites. The modification of the linear displacement field is covered by
the right side of Equation (5) (us

i (x1 x2 x3)), due to the heterogeneity of composites, which
is the periodic part of the boundary’s linear displacement field. The displacement field
of Equations (1)–(2) can be applied on boundaries in parallel opposite pairs and can be
written as uk+

i = ε0
ijx

k+
j + us

i and, uk−
i = ε0

ijx
k−
j + us

i .
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where k+ and k− specify the opposite parallel objects’ kth pair. Thus, due to periodic-
ity, us

i is the same at the two opposite boundaries.

uk+
i − uk−

i = ε0
ijx

k+
j − xk−

j = ε0
ijx

k
j (7)

.
Equation (7) denotes displacement variations between two parallel limitations (edge

surface, corners) and can be called displacement periodic boundary conditions. Due to the
constant nature of x+j − x−j for nodes’ pair with a defined macroscopic strain, this can be
applied in finite element analysis as nodal displacement conditions.

After applying all conditions and completing the analysis, postprocessing is performed
to obtain the elastic modulus and Poisson ratio through E11 = σ11/ε11, E22 = σ22/ε22,
E33 = σ33/ε33, G12 = τ12/γ12, G13 = τ13/γ13, G23 = τ23/γ23, νij = εjj/εii (i, j = 1,2,3). Where 1,
2, and 3 stand for x, y, and z directions, respectively, followed by Equations (8)–(10).

ε = Sσ (8)



ε11
ε22
ε33
γ23
γ13
γ12

=


1
E11

−υ21
E22

−υ31
E33

0 0 0
−υ12
E11

1
E22

−υ32
E33

0 0 0
−υ13
E11

−υ23
E22

1
E33

0 0 0
0 0 0 1

G23
S45 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12





σ11
σ22
σ33
τ23
τ13
τ12

 (9)

Cij = S−1
ij (10)

The calculated stiffness for the braided epoxy carbon fiber reinforced plate is shown in Table 1.
The calculated stiffness is verified with the existing literature’s experimental results. The literature
has a 17.91 GPa out-of-the-plane direction, and the currently calculated stiffness has 17.75 Gpa, which
shows a 0.89 percent error; this indicates that the calculated stiffness is significantly accurate [21].

Finally, the macroscale homogenized plate is modeled. The macro plate properties are obtained
by the combination of micro- and mesoscale analysis, so in the properties transfer process, it is
considered that there is no information loss during coordinate transfer. The plate section is assigned
by the calculated homogenized mechanical properties. The plate is subjected to a unidirectional
tensile load of 5000 N with fixed support at the second end, as shown in Figure 3. The geometry and
load are varied to collect various data for stress and SCF calculation.
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2.2. Analysis of Macro Plate
The finite element method (FEM) is a strong computational approach for numerical modeling

and optimization of structural geometry, especially when analytics is not possible, and experimenta-
tions are time and cost consuming [22]. The finite element analysis (FEA) is completed in the Abaqus
commercial code to incorporate the modeling and analysis [23]. The thickness of the plate varies
from thin, moderate thick to thick (0.8 mm, 4 mm, and 10 mm, respectively) according to the aspect
ratio (0.008, 0.04, and 0.1, respectively) to establish the effectiveness of the theory. For each case, the
length and width of the plate are equal to 100 mm and 100 mm, respectively, with a 10 mm center
hole diameter. The plate is analyzed by first-order shear deformation theory (FSDT), higher-order
shear deformation theory (HSDT; Reissner–Mindlin theory), and elasticity theory. Each thickness
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case is analyzed with all three theories. Mesh sensitivity analysis is performed to choose the optimum
mesh size, and the maximum circumferential stress is analyzed for different mesh sizes (1.5, 1.4, 1.2,
1, and 0.6 mm), as shown in Figure 4. Then, after obtaining the mesh convergence at 0.6 mm size,
mesh generation is completed with a universal element size of 0.6 mm, and the size of an element
is minimized near the hole to capture the exact changes; the model is divided into four faces near
the hole region with local sizes of 0.2, 0.3, and 0.4 mm far from the hole, respectively. It is refined
near the hole to calculate accurate behavior. Finally, a mapped mesh is assigned to the plate and
near the hole region to capture the exact geometry. The macro plate FE model is shown in Figure 5.
The second-order reduced integration is chosen because second-order reduced integration predicts
more accurate results than the corresponding fully integrated and first-order results. Additionally,
it reduces running time, especially in a three-dimensional analysis. Firstly, stress distribution and
concentration are calculated around a circular hole in a plate under uniaxial tension for the available
literature conditions to verify the analysis process. Then, it is completed for the considered cases.
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2.2.1. Theoretical Formulations
The plate is defined as thin, thick, and moderate thick based on its dimensions. In a very

thin plate, thickness is much less comparable to other dimensions, but in others, thickness has an
influential role in dimensions.

1
10
≥ t

w
≥ 1

2000
(11)

t and w are thickness and other smallest dimensions of the plate, respectively. This paper adopts
three theories for plate analysis: FSDT, HSDT, and elasticity theory. Equations (12)–(14) give the
displacement field in the first-order shear deformation theory [24].

u(x, y, z) = u0(x, y) + zψx(x, y) (12)

v(x, y, z) = v0(x, y) + zψy(x, y) (13)

w(x, y, z) = w(x, y) (14)

where u, v, and w, are displacement components in the x, y, and z directions, respectively; ψx and ψy
are rotations of the cross-section about the x and y axes, respectively; and u0 and v0 are displacement
components in the plate’s mid-plane.

The displacements variations (u, v, and w) are given by the following Equations (15)–(18) as per
the middle plane (z = 0) kinematics for HSDT (Reissner–Mindlin theoretical model) [25,26].

u(x, y, z) = −zθx(x, y) (15)

v(x, y, z) = −zθy(x, y) (16)

w(x, y, z) = w(x, y)
and θx = ∂w

∂x +φx
θy = ∂w

∂y +φy

(17)

where x, y is the in-plane and z are the transverse directions, and θx and θy are the angles of rotation
for xz and yz plane, respectively, including extra rotation term about x and y axes because, after
deformation, the normal plane is not really orthogonal to the middle plane.

u(x, y, z) =
ux(x, y, z)
uy(x, y, z)
uz(x, y, z)

(18)

In Equation (18), u(x, y, z) shows the displacement field in the elasticity theory, where u is the
displacement vector, and ux, uy and uz are projection of u on the x, y, and z axes. The elasticity theory
is the 3D theory, which is close to an exact solution [27].

The theoretical calculation of stress distribution around a circular hole is performed based on
Equations (19)–(21) for radial (σr), circumferential (σθ), and radial–circumferential (σrθ) directions
in a plate under uniaxial tension.

σr =
F
2

(
1− a2

r2

)
− F

2

(
1−4a2

r2 +
3a4

r4

)
cos 2θ (19)

σθ =
F
2

(
1+

a2

r2

)
+

F
2

(
1+

3a4

r4

)
cos 2θ (20)

σrθ= −
F
2

(
1+

2a2

r2 −
3a4

r4

)
sin 2θ (21)

where F is the applied load, a is the radius, and r is the changing length from hole distance. The
calculation of SCF is essential to calculate the maximum stress around the hole. According to
Peterson [28], the SCF (KT) is specified as the ratio of extreme stress (σmax) in the hole zone under
the actual loads to the nominal stress (σnom) in the section, as shown in Equations (22)–(25) For the
simple geometries, σmax is assessed using numerical methods or analytical procedures. Experimental
methods, such as photoelasticity or digital image correlation, can also be used to estimate it. In
contrast, σnom can be computed with the help of the strength of materials formulae.

KT =
σmax

σnom
(22)
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σnom =
F
t
∗ (w − d) (23)

σmax= KT∗σnom (24)

KT= 3 − 3.13(
d
w
) + 3.66(

d
w

)2
− 1.53(

d
w

)3
(25)

The above-shown equation of SCF is for the isotropic plate. Equation (26) shows SCF for
orthotropic cases where d/w is the hole diameter to plate width ratio.

K∞,1
T,o,p,u

K1
T,o,p,u

=
3
(

1 − d
w

)
2+
(

1 − d
w

)3 +
1
2

(
d
w

M
)6(

K∞,1
T,o,p,u − 3

)
∗[(1 − (

d
w

M)2 ] (26)

K∞,1
T,o,p,u can be calculated by

K∞,1
T,o,p,u= 1+

√√√√√2

√Ey

Ex
− νyx +

Ey

2Gyx

 (27)

M is the amplitude, which only depends on the geometry; for the case, the subsequent correlation
is noticed for a finite-width plate.

M2 =

√
1− 8

(
3(1 − d

w )
2+(1 − d

w )
3 − 1

)
2
(

d
w

)2 (28)

2.2.2. Analysis Validation
The analysis process is verified from the calculated results for isotropic/orthotropic plates

because of the availability of theoretical results [29]. The isotropic plate’s Young’s modulus and
Poisson ratio are 200 Gpa and 0.3. The theoretical maximum stress is 30.22 MPa, and the obtained
maximum stress from the current analysis is 30.40 for an isotropic case, as shown in Figure 6. The
error from the theoretical results is 0.6 percent. The radial and circumferential stress distributions
are also compared with the theoretical formulation. The calculated variation behaves according to
theoretical formulations (19)–(21). The distribution is shown in Figure 6b,c, which indicates there is
no stress for the sigma radial, and the highest is at the hole radius point (θ = 90◦) for circumferential
stress, which, as per the theoretical variation, shows the accuracy of the calculation.
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SCF is also calculated from theoretical calculations (Equations (22)–(28)) to validate the analysis
process [29,30]. SCFs are 2.72 and 2.73 from theoretical calculations, and from current results they are
2.69 and 2.70, respectively; the error is 1.1 percent from the theoretical calculation. This shows that
the current analysis process is significantly accurate. After verifying the analysis process, the results
are calculated for the braided polymer plate.

3. Results and Discussion
Studies on a plate with a hole have been conducted in previous research. The previous work

deals with the stress and its concentration as a function of dimensions, loading, and the effects of
boundary conditions for isotropic, laminated, and various composite materials. These have not
been studied for a braided polymer plate. Additionally, the effects of analysis theory at different
thicknesses were not studied. Therefore, the design estimation of a braided polymer plate with a
center hole is presented. First, the multiscale modeling is conducted for a braided polymer plate to
analyze its behavior. Then, the homogenized plate properties are obtained by carbon fiber and epoxy
constituent for the numerical analysis; those are shown in Table 1. It is considered that there is exact
information passed between the coordinates (micro to meso, then meso to macro) for the multiscale
modeling. Multiscale modeling has another limitation: it is computationally expensive because it
involves solving the subscale at each gauss point and load step. This is why it is taken care of by
verifying the analysis process and results through the existing literature. Then, the macro analysis
model is prepared, and its section is assigned with calculated mechanical properties for analysis. The
optimum mesh size is selected after convergence of the mesh from different mesh sizes for an optimal
result, as shown in Figure 4. The results of the mesh convergence analysis are shown in Figure 7. It
can be seen that 0.6 mm is the optimal size for the macro plate because there is no difference between
the hoop stress results (both are the same, about 62 MPa) of 0.6 mm and 0.2 mm, and 0.2 mm takes
three times longer to perform the analysis. So, it does not make sense to choose a size denser than 0.6
mm. Moreover, the optimized mesh size (0.6 mm) is dense enough and covers the plates accurately.

Polymers 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

3. Results and Discussion 
Studies on a plate with a hole have been conducted in previous research. The previ-

ous work deals with the stress and its concentration as a function of dimensions, loading, 
and the effects of boundary conditions for isotropic, laminated, and various composite 
materials. These have not been studied for a braided polymer plate. Additionally, the ef-
fects of analysis theory at different thicknesses were not studied. Therefore, the design 
estimation of a braided polymer plate with a center hole is presented. First, the multiscale 
modeling is conducted for a braided polymer plate to analyze its behavior. Then, the ho-
mogenized plate properties are obtained by carbon fiber and epoxy constituent for the 
numerical analysis; those are shown in Table 1. It is considered that there is exact infor-
mation passed between the coordinates (micro to meso, then meso to macro) for the mul-
tiscale modeling. Multiscale modeling has another limitation: it is computationally expen-
sive because it involves solving the subscale at each gauss point and load step. This is why 
it is taken care of by verifying the analysis process and results through the existing litera-
ture. Then, the macro analysis model is prepared, and its section is assigned with calcu-
lated mechanical properties for analysis. The optimum mesh size is selected after conver-
gence of the mesh from different mesh sizes for an optimal result, as shown in Figure 4. 
The results of the mesh convergence analysis are shown in Figure 7. It can be seen that 0.6 
mm is the optimal size for the macro plate because there is no difference between the hoop 
stress results (both are the same, about 62 MPa) of 0.6 mm and 0.2 mm, and 0.2 mm takes 
three times longer to perform the analysis. So, it does not make sense to choose a size 
denser than 0.6 mm. Moreover, the optimized mesh size (0.6 mm) is dense enough and 
covers the plates accurately. 

 
Figure 7. Mesh convergence analysis for mesh size (mm), (a) 1.5, (b) 1.2, (c) 0.6, (d) 0.2. 

Afterward, stress distributions are calculated; it is also stated to understand calcula-
tion requirements with the effectiveness of shear deformation theory at different thickness 
conditions. There are distinct calculation strategies for numerical analysis; it should be 
known which calculation process considers the accurate effect of stress for the available 
thickness aspect. So, FSDT, HSDT (Reissner–Mindlin theory), and elasticity theories are 
considered in the analysis for thin (aspect ratio 0.008), moderately thick (aspect ratio 0.04), 

Figure 7. Mesh convergence analysis for mesh size (mm), (a) 1.5, (b) 1.2, (c) 0.6, (d) 0.2.

Afterward, stress distributions are calculated; it is also stated to understand calculation re-
quirements with the effectiveness of shear deformation theory at different thickness conditions.
There are distinct calculation strategies for numerical analysis; it should be known which calculation
process considers the accurate effect of stress for the available thickness aspect. So, FSDT, HSDT
(Reissner–Mindlin theory), and elasticity theories are considered in the analysis for thin (aspect ratio
0.008), moderately thick (aspect ratio 0.04), and thick plates (aspect ratio 0.1). The analysis process
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is verified with the available literature data and then extended for cases of braided plates. Stress
calculations are presented for analysis theories under variable thickness. It shows how the combined
effect affects the stress distribution. Table 2 illustrates transverse stress and SCFs distribution for a
braided polymer plate.

Table 2. Transverse shear stress and SCF for a braided polymer material.

Analysis Conditions
(Plate Thickness_Analysis Theory)

Maximum Transverse Shear Stress
(MPa)

Stress
Concentration

Factor
(Maximum)

(
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Maximum transverse shear stress, calculated by FSDT, is 37, 56, and 70 percent less than HSDT
and elasticity theory for thin, moderate thick, and thick plates, respectively. The results show that
transverse stress depends on the analysis theories for variable thickness. It indicates that HSDT
predicts similar results to the elasticity theory, as elasticity theory is the generalized 3D theory,
so HSDT (Reissner–Mindlin) can predict accurate transverse shear stress variation, but FSDT is
significantly different from the elasticity theory, so it cannot be considered for accurate transverse
shear stress distribution. When the plate’s aspect ratio (L/t) is increased, the results’ difference of
FSDT from HSDT and elasticity theory is increased. In addition, even transverse stress is significantly
lower for thin plates, but HSDT is needed for accurate calculation because, although the plate is
thin, the results’ difference is 35 percent, which is significantly high. It can also be seen in the
transverse shear stress versus the load graph in Figure 8, which shows the variation of transverse
stress with a change in load. The plot’s consideration point (across thickness A-A’) is at zero angle
along the loading direction. The results indicate that when the load is increased, the transverse shear
stress decreases; also, the decrease slope is the same for the analysis theories, but FSDT values are
significantly lower than HSDT and the elasticity theory. Figure 9 shows the shape function with
the normalized thickness coordinates at the center hole radius section; it indicates the sensitivity of
calculations of analytical theories. It is foundthat the shape function of FSDT is a tilted linear line
across the thickness, and HSDT curve behavior is the same as elasticity when calculating the behavior
along with thickness for a braided polymer plate. The trend of the obtained results is verified by the
existing literature. The transverse shear stress to load is checked to ensure that the trend of current
results is the same as in the literature [31]. As the analysis findings for a polymer braided plate with
center hole are conducted for the first time, only the analysis process and results trends are verified.
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In the case of the effect on SCF, it is found that the maximum SCF is the same for similar
theories and different thicknesses. Additionally, SCF varies with different theories, but the difference
is minimal. For example, HSDT calculates as accurately as elasticity, but FSDT calculates about
3 percent less than the elasticity theory, as shown in Table 2. All three theories calculate the same
maximum SCF for thin, moderately thick, and thick plates, but each theory has a different maximum
value (2.53, 2.60, and 2.61, respectively), which shows the effectiveness of the HSDT theory.

Stress around the hole is also checked to analyze the combined effect. Below, Figure 10 a,b
shows variations of circumferential and radial stress for different theories with varying thicknesses to
check the in-plane stress variations.
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It can be seen that hoop stress leads to higher stress slightly away from the middle of the hole
radius in the braided plate due to its directional material behavior. The radial and circumferential
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stresses’ contour shows the stress variation around the plate hole. The hoop stress is oriented on the
hole radius, but the concentration point is not exactly in the middle of the hole radius; the variation
of the curve is like the top (at the left side point A’), down (middle point), and top (right side point
A) around the hole radius, as shown in Figure 10. The radial stress varies from zero to maximum
from the hole radius to the edge point. First, the values increase linearly and then curve and are
finally constant until the edge. All theories have a similar trend for each thickness to calculate the
radial stress. In addition, FSDT and HSDT are as accurate as the elasticity theory; the error difference
is only 1.6 percent for each thickness aspect. For circumferential stress, FSDT and HSDT obtain
the same results as the elasticity theory for thin and moderately thick plates, but for thick plates,
FSDT and HSDT obtain 1.5 and 0.4 percent errors, respectively, compared to the elasticity theory,
which is minimal. So, to calculate the radial and circumferential stress, it is good practice to choose
FSDT because of less computation and modeling time. Thus, if there is consideration other than
transverse shear stress (such as circumferential, radial stresses, and other plane stresses in primary
consideration), then FSDT can be considered to save time and cost, but consideration of the transverse
shear stress HSDT is needed.

Radial and circumferential (hoop) stresses’ contours are presented in Figure 11 to show stress
variation for a braided plate through the elasticity theory to represent the exactness of results. The
contour values show that stress is zero and maximum at ninety degrees of load direction for radial
and circumferential stresses, respectively, as per the theoretical formation of stress distribution in a
rectangular/square plate with a hole under tensile load. In addition, radial stresses are increasing
away from the hole, and circumferential stresses are highest around the hole, verifying the analysis
process. Therefore, the contour value and representation of stress can be taken as a reference for
predesigning braided polymer plates with a hole. So, while designing with open-hole situations,
such as fasteners or bolts for a 3D braided polymer plate, the stress situations presented could be
considered for prestressing the area.
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Additionally, computation time should be known for material conditions, approximately
2–3 times higher in the braided plate case than isotropic/orthotropic calculations, with 64 GB ram
and 3.2 GHz processor. Likewise, computation time should be known for all theories; for FSDT, HSDT,
and elasticity theory, this is 10 min, 25 min, and 3–4 h, with 64 GB ram and 3.2 Ghz processor. So,
one can choose the analysis theory wisely according to the interest of the calculation and model. As
braiding yarns are formed cyclically, and the repeating part is chosen according to the manufacturing
process, the uniformity of location is maintained in the analysis. Additionally, the braiding angle
is not varied in the current analyses because the lower braiding angle has higher stiffness than the
higher braiding angle. So, the consideration of variation in the braiding angle, boundary, and load
conditions will be performed in the future.

Moreover, the SCF variations with width to hole diameter ratio are also examined for a braided
plate, as shown in Figure 12. First, the SCF is decreased continuously in a curve form, from
3.84 to 1.85 for 1.32 to 6.05 width to hole diameter (w/d); then, the value of SCF is approximately
constant (1.77) until 8.7 w/d, then linearly decreasing a little from 1.77 to 1.69 for 8.7 to 10 w/d ratio.
According to SCF behavior for the braided plate for w/d, the formulation is performed for future
design correspondence, shown in Equation (29). The current trend is validated by the literature,
which illustrates the SCFs variation for an orthotropic plate with a hole [30].

Braided_PolymerSCF
(w

d
)

= 5.82232− 1.93314 ∗ (w/d) + 0.35496 ∗
(w

d
)2 − 0.02916 ∗ (w/d)3 + 8.79125E− 4

∗
(w

d
)4

+ 8.39971E− 7 ∗ (w/d)5
(29)
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Thus, the current design study will provide the pre-estimation of designing the braided polymer
plate with a hole due to bolt, fastener, or other conditions.

4. Conclusions
Small geometric changes in plates result in sharp differences in mechanical characteristics; a

hole in a plate is a topic of research to analyze its effect because this kind of structure is commonly
used in many places, such as aero, automobiles, marine, etc. Many researchers have reported the
effects of factors such as length, diameter, isotropic, and laminates, etc., but this has not yet been
conducted for braided polymer plates. Additionally, the combined effect of calculation theories for
different thickness aspect ratios have not been studied. The selection of stress calculation theories is
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an important criterion for particular thickness conditions. This paper investigates the mechanical
behavior of a braided polymer composite plate to know the design aspects by considering shear
deformation theories for variable thicknesses. In addition, current research predicts the SCF formula-
tion with respect to the w/d ratio of a braided polymer plate. First, multiscale modeling is conducted
to calculate mechanical stiffness and then applied to analyze the macro part. The analysis model is
set up, and the process is performed and verified at every stage. Shear deformation theory’s effects
are examined on circumferential, radial, and transverse shear stress with SCF under the variable
thickness of the braided plate. Some important findings are:

• Hoop stress variation is like a Z curve shape around the central circular hole.
• The SCF is varied like a concave curve, decreasing while increasing plate width to hole diameter

ratio (w/d).
• FSDT calculates 37, 56, and 70 percent less maximum transverse shear stress than HSDT and

elasticity theory for thin, moderately thick, and thick plates for a braided polymer plate. Thus,
FSDT cannot calculate accurate transverse stress, but HSDT (Reissner–Mindlin) is as accurate as
the elasticity theory.

• The change in theory does not affect the circumferential stress, radial stress, and SCF. However,
HSDT has higher accuracy than FSDT because FSDT has an approximate 3 percent error from
elasticity theory to calculate SCF, but HSDT has an approximate 0.5 percent error. Additionally,
the error difference is not significant and can be under a considerable limit. Therefore, after
knowing the time and modeling cost of HSDT and elasticity theory, which is 3–4 and 15–20 times
higher than FSDT, if transverse shear stress is not under consideration, FSDT is suggested;
otherwise, HSDT is required.

• The formulation of SCF of a braided polymer plate showing less curve variation means less
stress concentration than the equivalent isotropic/orthotropic plate with a center hole.

Overall, this research covers the design analysis of a braided polymer plate with a hole for indus-
trial and research applications. In the future, it needs to perform versatile models and analyses with
different boundary, braiding, load, and analysis theories conditions to cover multipurpose behavior
in one place for braided polymer plates with center and arbitrary holes for establishing a versatile
design environment. This research will be helpful for researchers working in the same domain.
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E Longitudinal modulus
G Shear modulus
υ Poisson ratio
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ness. It indicates that HSDT predicts similar results to the elasticity theory, as elasticity 
theory is the generalized 3D theory, so HSDT (Reissner–Mindlin) can predict accurate 
transverse shear stress variation, but FSDT is significantly different from the elasticity the-
ory, so it cannot be considered for accurate transverse shear stress distribution. When the 
plate’s aspect ratio (L/t) is increased, the results’ difference of FSDT from HSDT and elas-
ticity theory is increased. In addition, even transverse stress is significantly lower for thin 
plates, but HSDT is needed for accurate calculation because, although the plate is thin, the 
results’ difference is 35 percent, which is significantly high. It can also be seen in the trans-
verse shear stress versus the load graph in Figure 8, which shows the variation of trans-
verse stress with a change in load. The plot’s consideration point (across thickness A-A’) 
is at zero angle along the loading direction. The results indicate that when the load is 
increased, the transverse shear stress decreases; also, the decrease slope is the same for the 
analysis theories, but FSDT values are significantly lower than HSDT and the elasticity 
theory. Figure 9 shows the shape function with the normalized thickness coordinates at 
the center hole radius section; it indicates the sensitivity of calculations of analytical theo-
ries. It is foundthat the shape function of FSDT is a tilted linear line across the thickness, 
and HSDT curve behavior is the same as elasticity when calculating the behavior along 
with thickness for a braided polymer plate. The trend of the obtained results is verified by 
the existing literature. The transverse shear stress to load is checked to ensure that the 
trend of current results is the same as in the literature [31]. As the analysis findings for a 
polymer braided plate with center hole are conducted for the first time, only the analysis 
process and results trends are verified. 

In the case of the effect on SCF, it is found that the maximum SCF is the same for 
similar theories and different thicknesses. Additionally, SCF varies with different theories, 
but the difference is minimal. For example, HSDT calculates as accurately as elasticity, but 
FSDT calculates about 3 percent less than the elasticity theory, as shown in Table 2. All 
three theories calculate the same maximum SCF for thin, moderately thick, and thick 

Longitudinal and shear stress
ε, and γ Longitudinal and shear strain
S Compliance matrix
C Stiffness matrix
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ξ Reinforcing efficiency
η Stress partitioning factor
u0

i Linear displacement field in the periodic composites
t Thickness of plate
w Width of plate
F Applied force
σr Radial
σθ Circumferential
σrθ Radial–circumferential
K Young’s modulus
d Shear modulus

Polymers 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

and thick plates (aspect ratio 0.1). The analysis process is verified with the available liter-
ature data and then extended for cases of braided plates. Stress calculations are presented 
for analysis theories under variable thickness. It shows how the combined effect affects 
the stress distribution. Table 2 illustrates transverse stress and SCFs distribution for a 
braided polymer plate. 

Table 2. Transverse shear stress and SCF for a braided polymer material. 

Analysis Conditions 
(Plate Thickness_Analysis Theory) 

Maximum Transverse Shear Stress 
(MPa) Stress Concentration Factor 

(Maximum) (ꞇrz) 
(0,w/2,0) 

(ꞇθz) 
(l/2,0,0) 

Thin plate 
(aspect ratio 

0.008) 

FSDT 13.61 3.78 2.53 
HSDT (Reissner–Mindlin theory) 21.50 5.90 2.60 

Elasticity theory  21.74 6.06 2.61 
Moderate thick 

plate (aspect 
ratio 0.04) 

FSDT 5.63 2.06 2.53 
HSDT (Reissner–Mindlin theory) 12.78 4.50 2.60 

Elasticity theory  12.82 4.75 2.61 

Thick plate 
(aspect ratio 0.1) 

FSDT 3.14 0.95 2.53 
HSDT (Reissner–Mindlin theory) 10.56 3.08 2.60 

Elasticity theory  9.30 3.1 2.61 

Maximum transverse shear stress, calculated by FSDT, is 37, 56, and 70 percent less 
than HSDT and elasticity theory for thin, moderate thick, and thick plates, respectively. 
The results show that transverse stress depends on the analysis theories for variable thick-
ness. It indicates that HSDT predicts similar results to the elasticity theory, as elasticity 
theory is the generalized 3D theory, so HSDT (Reissner–Mindlin) can predict accurate 
transverse shear stress variation, but FSDT is significantly different from the elasticity the-
ory, so it cannot be considered for accurate transverse shear stress distribution. When the 
plate’s aspect ratio (L/t) is increased, the results’ difference of FSDT from HSDT and elas-
ticity theory is increased. In addition, even transverse stress is significantly lower for thin 
plates, but HSDT is needed for accurate calculation because, although the plate is thin, the 
results’ difference is 35 percent, which is significantly high. It can also be seen in the trans-
verse shear stress versus the load graph in Figure 8, which shows the variation of trans-
verse stress with a change in load. The plot’s consideration point (across thickness A-A’) 
is at zero angle along the loading direction. The results indicate that when the load is 
increased, the transverse shear stress decreases; also, the decrease slope is the same for the 
analysis theories, but FSDT values are significantly lower than HSDT and the elasticity 
theory. Figure 9 shows the shape function with the normalized thickness coordinates at 
the center hole radius section; it indicates the sensitivity of calculations of analytical theo-
ries. It is foundthat the shape function of FSDT is a tilted linear line across the thickness, 
and HSDT curve behavior is the same as elasticity when calculating the behavior along 
with thickness for a braided polymer plate. The trend of the obtained results is verified by 
the existing literature. The transverse shear stress to load is checked to ensure that the 
trend of current results is the same as in the literature [31]. As the analysis findings for a 
polymer braided plate with center hole are conducted for the first time, only the analysis 
process and results trends are verified. 

In the case of the effect on SCF, it is found that the maximum SCF is the same for 
similar theories and different thicknesses. Additionally, SCF varies with different theories, 
but the difference is minimal. For example, HSDT calculates as accurately as elasticity, but 
FSDT calculates about 3 percent less than the elasticity theory, as shown in Table 2. All 
three theories calculate the same maximum SCF for thin, moderately thick, and thick 

rz, and σθz Transverse shear stress in cylindrical coordiantes
ψx, and ψy Rotations of the cross-section about the x and y axes
θx, and θy Angles of the rotation for xz and yz plane

References
1. Minh, N.-H.; Becker, W. Open Circular Hole in a Finite Plate Under Tension Treated by Airy Stress Function Method. In Analysis

of Shells, Plates, and Beams; Springer: Cham, Switzerland, 2020. [CrossRef]
2. Dhimole, V.; Serrao, P.; Cho, C. Review and Suggestion of Failure Theories in Voids Scenario for VARTM Processed Composite

Materials. Polymers 2021, 13, 969. [CrossRef] [PubMed]
3. Rana, A.K.; Paul, S.K.; Dey, P. Stress field in an isotropic elastic solid containing a circular hard or soft inclusion under uniaxial

tensile stress. Mater. Today Proc. 2019, 11, 657–666. [CrossRef]
4. Wu, H.-C.; Mu, B. On stress concentrations for isotropic/orthotropic plates and cylinders with a circular hole. Compos. Part B Eng.

2003, 34, 127–134. [CrossRef]
5. Jain, N.; Mittal, N. Finite element analysis for stress concentration and deflection in isotropic, orthotropic and laminated composite

plates with central circular hole under transverse static loading. Mater. Sci. Eng. A 2008, 498, 115–124. [CrossRef]
6. Mittal, N.D.; Jain, N.K. Effect of fibre orientation on stress concentration factor in a laminate with central circular hole under

transverse static loading. Indian J. Eng. Mater. Sci. 2008, 15, 452–458.
7. Toubal, L.; Karama, M.; Lorrain, B. Stress concentration in a circular hole in composite plate. Compos. Struct. 2005, 68, 31–36.

[CrossRef]
8. Zamanian, H.; Marzban, B.; Bagheri, P.; Gudarzi, M. On Stress Concentration Factor for Randomly Oriented Discontinuous Fiber

Laminas with Circular/Square Hole. J. Sci. Eng. 2013, 3, 7–18.
9. Lekhnitskii, S.G. Anisotropic Plates, 2nd ed.; Gordon and Breach: New York, NY, USA, 1968.
10. Tan, S.C. Finite-Width Correction Factors for Anisotropic Plate Containing a Central Opening. J. Compos. Mater. 1988, 22,

1080–1097. [CrossRef]
11. Hoff, N.J.; Muser, C. Stress Concentration Factors for Cylindrically Orthotropic Plates. J. Compos. Mater. 1982, 16, 313–317.

[CrossRef]
12. Mhallah, M.M.; Bouraoui, C. Determination of Stress Concentration Factor for Orthotropic and Isotropic Materials Using Digital

Image Correlation (DCI). In Multiphysics Modelling and Simulation for Systems Design and Monitoring, Proceedings of the Multiphysics
Modelling and Simulation for Systems Design Conference, MMSSD, Sousse, Tunisia, 17–19 December 2014; Springer International
Publishing: Cham, Switzerland, 2014; Volume 2, pp. 517–530.

13. Wang, W.; Yuan, H.; Li, X.; Shi, P. Stress Concentration and Damage Factor Due to Central Elliptical Hole in Functionally Graded
Panels Subjected to Uniform Tensile Traction. Materials 2019, 12, 422. [CrossRef] [PubMed]

14. Chaleshtari, M.; Jafari, M.; Khoramishad, H.; Craciun, E.-M. Mutual Influence of Geometric Parameters and Mechanical Properties
on Thermal Stresses in Composite Laminated Plates with Rectangular Holes. Mathematics 2021, 9, 311. [CrossRef]

15. Zappino, E.; Filippi, M.; Pagani, A.; Petiti, M.; Carrera, E. Experimental and numerical analysis of 3D printed open-hole plates
reinforced with carbon fibers. Compos. Part C Open Access 2020, 2, 100007. [CrossRef]

16. Feng, W.; Wang, Y.R.; Wei, D.S. Meso-scale modeling of 3-D four-directional braided composites. Hangkong Dongli Xuebao J. Aerosp
Power 2013, 28, 1243–1249.

17. Guo, Q.; Zhang, G.; Li, J. Process parameters design of a three-dimensional and five-directional braided composite joint based on
finite element analysis. Mater. Des. 2013, 46, 291–300. [CrossRef]

18. Garofalo, E.; Russo, G.M.; Di Maio, L.; Incarnato, L. Modelling of mechanical behaviour of polyamide nanocomposite fibres using
a three-phase Halpin-Tsai model. e-Polymers 2009, 9, 670–685. [CrossRef]

19. Liu, G.R.; Quek, S.S. Briefing on Mechanics for Solids and Structures. In The Finite Element Method, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2014; pp. 13–41. [CrossRef]

20. Dhimole, V.K.; Chen, Y.; Serrao, P.; Cho, C. A Design Feasibility Study of a Turbine Blade Disc Interface (Dovetail) Made by
Four-Directional Braided Ceramic Matrix Composite (Sic/Sic). Int. J. Aeronaut. Space Sci. 2021, 23, 66–76. [CrossRef]

21. Xiu, Y. Numerical Analysis of Mechanical Properties of 3D Four-Step Braided Composites. Master’s Thesis, Tianjin Polytechnic,
Tianjin, China, 2001.

http://doi.org/10.1007/978-3-030-47491-1_16
http://doi.org/10.3390/polym13060969
http://www.ncbi.nlm.nih.gov/pubmed/33809952
http://doi.org/10.1016/j.matpr.2019.03.024
http://doi.org/10.1016/S1359-8368(02)00097-5
http://doi.org/10.1016/j.msea.2008.04.078
http://doi.org/10.1016/j.compstruct.2004.02.016
http://doi.org/10.1177/002199838802201105
http://doi.org/10.1177/002199838201600405
http://doi.org/10.3390/ma12030422
http://www.ncbi.nlm.nih.gov/pubmed/30704079
http://doi.org/10.3390/math9040311
http://doi.org/10.1016/j.jcomc.2020.100007
http://doi.org/10.1016/j.matdes.2012.10.025
http://doi.org/10.1515/epoly.2009.9.1.670
http://doi.org/10.1016/b978-0-08-098356-1.00002-3
http://doi.org/10.1007/s42405-021-00421-8


Polymers 2022, 14, 1977 17 of 17

22. Kim, Y.; Park, J. A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications.
Compos. Struct. 2020, 251, 112571. [CrossRef]

23. ABAQUS Documentation 6.14′, Dassault Systèmes, Providence, RI, USA n.d. Available online: http://130.149.89.49:2080/v6.14/
books/usb/default.htm (accessed on 1 February 2022).

24. Wang, Q.; Shao, D.; Qin, B. A simple first-order shear deformation shell theory for vibration analysis of composite laminated
open cylindrical shells with general boundary conditions. Compos. Struct. 2018, 184, 211–232. [CrossRef]

25. Álvarez-Pérez, J.; Peña, F. Mindlin-Reissner Analytical Model with Curvature for Tunnel Ventilation Shafts Analysis. Mathematics
2021, 9, 1096. [CrossRef]

26. Oñate, E. Thick/Thin Plates. Reissner-Mindlin Theory. In Method Linear Statics; Springer: Dordrecht, The Netherlands, 2013;
pp. 291–381. [CrossRef]

27. Murakami, Y. Theory of Elasticity and Stress Concentration; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; ISBN 9781119274063.
28. Pilkey, W.D.; Bi, Z.M.; Pilkey, D.F. Stress Concentration Factors; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1997.
29. Budynas, R.; Nisbett, K. Shigley’s Mechanical Engineering Design, 11th ed.; McGraw-Hill: New York, NY, USA, 2020.
30. Hong, C.S.; Crews, J.H. Stress-Concentration Factors for Finite Orthotropic Laminates with a Circular Hole and Uniaxial Loading; Defense

Technical Information Center: Hampton, VA, USA, 1979.
31. Parida, S.P.; Jena, P.C. Advances of the Shear Deformation Theory for Analyzing the Dynamics of Laminated Composite Plates:

An Overview. Mech. Compos. Mater. 2020, 56, 455–484. [CrossRef]

http://doi.org/10.1016/j.compstruct.2020.112571
http://130.149.89.49:2080/v6.14/books/usb/default.htm
http://130.149.89.49:2080/v6.14/books/usb/default.htm
http://doi.org/10.1016/j.compstruct.2017.09.070
http://doi.org/10.3390/math9101096
http://doi.org/10.1007/978-1-4020-8743-1_6
http://doi.org/10.1007/s11029-020-09896-0

	Introduction 
	Modeling and Analysis 
	Modeling 
	Analysis of Macro Plate 
	Theoretical Formulations 
	Analysis Validation 


	Results and Discussion 
	Conclusions 
	References

