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Abstract: The high sequence specificity of minor groove-binding N-methylpyrrole-N-methylimidazole
polyamides have made significant advances in cancer and disease biology, yet there have been few
comprehensive reports on their off-target effects, most likely as a consequence of the lack of available
tools in evaluating genomic binding, an essential aspect that has gone seriously underexplored.
Compared to other N-heterocycles, the off-target effects of these polyamides and their specificity for
the DNA minor groove and primary base pair recognition require the development of new analytical
methods, which are missing in the field today. This review aims to highlight the current progress
in deciphering the off-target effects of these N-heterocyclic molecules and suggests new ways that
next-generating sequencing can be used in addressing off-target effects.

Keywords: N-heterocycles; minor-groove binding; pyrrole-imidazole polyamides; genomics;
chemical biology

1. Introduction

N-methylpyrrole-N-methylimidazole polyamides (pyrrole-imidazole polyamides, PIPs) possess
the incredible ability to interact and bind the DNA minor groove with programmable specificities
exceeding distamycin (Figure 1a), the molecule that sparks the inspiration behind this field.
These heterocycles bind and are able to differentiate their respective nucleosides to single hydrogen-bond
precisions (Figure 1b, [1]) and are typically generated by solid-phase [2] or, at times, solution-phase
synthesis [3]; the production of PIPs can be readily scaled up to milligram scales for a variety
of different biological applications. Recent studies on PIP have been investing on the possible
applications in silencing “undruggable” biological targets that are difficult to inhibit at the protein
level. Those so-called undruggable targets present challenges of drug sensitivity and resistance
because of their intracellular localization and numerous associations with other proteins and co-factors
in macromolecular complexes [4]. In contrast, upon minor-groove binding, these polyamides will
effectively silence their respective marks by disrupting transcription, bypassing issues associated with
the usual approach of inhibition via the binding pocket or surface access. This unique biochemical
feature makes PIPs especially attractive as a medium of mitigating the virulence of oncological targets,
a number of which have arisen as a consequence of tens to millions of genetic and chromosomal
aberrations harbored within the cancer genome [5,6].

Currently, a significant portion of research in PIPs is centralized on lead developments; this relocates
the focus squarely onto the exploration of possible targets in diseases and biological systems. There is
significant focus on the chemistry and the effects of chemical modifications on these polyketides in
terms of improving their pharmacokinetic parameters, such as the tuning of lipophilicity and motif
recognition. While most of these results have been promising, an area severely underinvestigated is
the possibility of off-target bindings and their potential implications. These off-target-binding events
lead to the rise of adverse effects as other genes are transcriptionally impacted, subsequently triggering
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changes to other biological processes which may be totally unrelated to the target of interest [7]. It is
but a certain mathematical possibility that all PIPs currently in development will bind multiple targets
as a consequence of their mode of motif recognition. Suppose the probability that a particular k-mer
occupies a particular genomic location is (4k)−1; accounting for DNA being double-stranded, we can
reasonably posit that the expected number of k-mer repeats in the human genome is approximately
2N2/4k, with N being roughly three billion. For the expectation to fall close to 0, a back-of-the-envelope
calculation would reveal that, at a minimum, we need to achieve a base recognition rate beyond
32 to 36 bases. With siRNAs, which tend to be 20–25-bases-long, the expectation that there is only
one binding site is a mathematical impossibility; PIPs and their usual span of recognition being 5 to
10 nucleotides are also out of the range of uniqueness. While efforts to lengthen PIP recognition by
tandem conjugation have succeeded [8,9], with the molecular size, it very quickly reaches near the
ceiling of the nuclear diffusion limit of ~10 nm for macromolecules [10,11].

This “unfortunate” aspect of being unable to reach uniqueness, however, does not discount the
usefulness of PIPs. Even with CRISPR/Cas9 systems, there is nonetheless a need to extend guide
RNAs beyond the same limit of uniqueness, not to mention the myriad of undesired effects such as
exon-skipping and truncated expressions [12] or recent controversies on using such a genome-editing
tool on human subjects. These concerns squarely place PIPs back into the focus as therapeutic
alternatives for various diseases, but along the same vein, one cannot simply disregard the likelihood
of off-target binding and the resulting consequence of these binding events. Unlike other nitrogen
heterocycles that find their way onto the list of 59% of approved drugs in the United States [13] or
DNA-binding drugs such as cisplatin, doxorubicin or cryptolepine [14], PIPs inherently “bundle”
programmability, with the benefit of having fewer off-target sites by the virtue of their lengthened motif
recognition; yet, those other molecules see extensive research in their adverse indications, while the
field for PIPs is paradoxically barren. Why are there so few willing to venture down this path?
This review aims to discuss the feasibility of PIPs as pharmaceutical leads, outline some of the current
challenges in the evaluation of off-target binding in these molecules and comment on the possible
future directions in exploring off-target binding.

Figure 1. Cont.
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Figure 1. Schematics of pyrrole-imidazole polyamides and DNA binding. (a) Structure of distamycin
A. (b) Illustrative model of hydrogen-bonding interactions between pyrrole-imidazole polyamides
(PIPs) and the DNA minor groove; circles with dots represent lone pairs of purines and pyrimidines;
circles containing an H represent the additional hydrogen on G; putative hydrogen bonds are indicated
with dotted lines. Reprinted with permission from [1],© 2001 American Chemical Society. (c) Local
conformation modeling of N-methylpyrroles (Py, top) and N-methylimidazoles (Im, bottom) in PIP
backbones. Bond angles x-y-z and 1-y-2 are indicated directly below. Reprinted with permission
from [15], © 2011 American Chemical Society. (d) Example of various binding models’ PIP-DNA
minor-groove complexes: linear antiparallel, hairpin and linear extended antiparallel. Red and blue
circles represent imidazole and pyrrole rings, respectively; green triangles, diamonds, curved green
lines and +) represent glycine, β-alanine, γ-aminobutyric acid and the N,N-dimethylaminopropylamide
(Dp) capping, respectively. Reprinted from [16],© 1996, with permission from Elsevier.

2. Biological Applications of PIPs

Pyrrole-imidazole polyamides (PIPs) themselves occupy a corner of naturally inspired antibiotic
mimetics; these N-heterocycles consist of a backbone of N-methylpyrrole and N-methylimidazole
subunits (Figure 1c) assembled together by amide bonds [15] and are able to interact with the DNA
minor groove in various structural conformations (Figure 1d), with the hairpin [16] configuration being
one of the most commonly adopted. Despite the simplicity behind its chemistry, the amide bonds
in PIP backbones permit the conjugation of a variety of different reactive moieties that diversify the
structure and functionalities of PIPs. Their innate ability to bind the DNA minor groove allows them to
be used to repress gene transcription via triggering RNA polymerase II inhibition [17], without having
to resort to unstable or complex experimental procedures such RNAi or CRISPR/Cas. As such, by
binding the minor groove, one can avoid the messiness of conventional small molecular inhibitors
that work on protein surfaces. PIPs have been used in a variety of biological applications; in 2005,
Beerman and colleagues successfully demonstrated the ability to cause DNA damage by conjugating
1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz(e)indole (CBI), an alkylating agent, to disrupt and
inhibit SV40 DNA replication [18]; conjugation of other functional groups have also led to the rise of
additional functionalities for PIPs, such as artificial nucleases [19], gene switches [20], transcriptional
regulators via histone acetyltransferase activators [21] and imaging probes [22] upon the conjugation of
fluorescent moieties (Figure 2a) or radioisotopes [23]. Even without those modifications, PIPs are still
able to retain their high specificity, unlike mainstream DNA-damaging agents such as cisplatin [17].

The relative ease and robustness of synthesis, as well as the capability to conjugate functional
groups by the same amide chemistry, is perhaps the most important feature that has brought PIPs
to the forefront of chemical biology. The ability to target select regions of the genome and exert
specific actions such as transcriptional disruption, epigenetic reprogramming or the recruitment of
transcriptional elements has led to the development of a number of unique and interesting biological
applications for PIPs, especially in the areas of cancer and disease biology. This also theoretically
simplifies and increases the throughput of the design process. PIPs have their ways in the inhibition
of oncological targets such as MMP [24], constitutively active KRAS [25], a frequent driver gene in
cancers such as colorectal, lung and pancreatic cancers, as well as members of the RUNX transcription
factor family [26]. Notably, the PIP-targeting G12D/V mutation in KRAS effectively restrained tumor
growth in a mouse xenograft model (Figure 2b). PIPs have also shown effectiveness in targeting
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genetic aberrations other than single-base mutations, such as the case with copy-amplified MYCN [27],
an aberration in neuroblastoma, where appreciable DNA damage and induced apoptosis were
observable in MYCN-amplified neuroblastoma mouse models. There have also been reports of PIPs
suppressing transcription factors central to hypoxic gene expressions relevant in neovascularization
and cancer metastasis [28], as well as demonstrating antiproliferative activity in prostate cancer
cells via the modulation of the androgen receptor [29,30] in ways different from other drugs such
as camptothecin, doxorubicin or etoposide [31]. Some of the other examples include the ability to
interfere with TNF-α-inducible transcriptome [32] and the triggering of inflammatory necrotic cell
death in cancer cells via calreticulin, ATP and HMGB1 signaling [33]. Beyond cell-level and mouse
model experiments, preclinical trials in marmosets also show promising success of a PIP targeting the
human TGF-β1 promoter in reducing scarring [34].
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Figure 2. Biological applications of PIPs. (a) Example of in-situ cell imaging using a fluorescein
isothiocyanate (FITC)-conjugated PIP; reproduced from [22],© 2018 with permission from Elsevier.
(b) The coupling of 1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz(e)indole (CBI), an alkylating agent,
to a PIP-targeting KRAS G12D/V mutation is able to reduce the size of tumors in human colorectal cancer
LS180/SW480 xenograft mouse models; images shown here are representative of multiple specimens,
with DMSO (left) as a control; reused from [25] by the author,© 2015 Springer Nature Limited.

3. Off-Target Effects and “The Road Not Taken”

Despite the stellar performance of PIPs in biological applications, this class of molecules has
yet to see commercial success as leads in drug discovery. In theory, one can systematically design,
synthesize and test a larger number of PIPs with relative ease, possibly even over compounds derived
from combinatorial chemistry. With their specificity and unique ability to penetrate nucleus and target
DNA compared to conventional broad-spectrum chemotherapy agents that are cytotoxic compounds
with a large number of adverse indications, it is not unrealistic to expect the presence of multiple PIPs
in clinical trials or, perhaps, even on the market today. There, however, seems to be little movement
for PIPs in pharmaceutical chemistry. Furthermore, there have been few reports dedicated to the
discussion of off-target effects, one of the most important factors in drug discovery; nearly 50% of the
attritions during the United States Food and Drug Administration Phase II clinical trials are due to the
occurrence of toxic side effects [35]. Understandably, most would prefer to steer conversations away
from topics that could quickly turn to discount their own work, leading to tremendous undergrowth
down this seldom-traversed route. Unfortunately, this remains a critical area of discussion, especially
during lead discovery and optimization. Performing research in this area, however, is neither exactly
pleasant nor encouraging. What, then, are off-target effects, and why do researchers not elect to
investigate this path less traveled?
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3.1. Defining and Evaluating “Off-Target” Effects

In the most general sense, binding to any genomic location other than a polyamide’s intended
site can be considered off-target, and in the human genome, it is a mathematical certainty that PIPs
will have off-target effects. This is not a problem strictly related to PIPs, however; even revolutionary
genome-editing systems like CRISPR/Cas are affected by this phenomenon; a recently discovered
artifact in CRISPR/Cas, for even, is that genomic deletions induced by CRISPR may lead to unintended
exon skipping and the production of aberrant proteins [12]. To attenuate these undesirable effects
requires that we first understand what those effects are; unfortunately, our current knowledge in the
subject matter is practically nonexistent. If we could understand these off targets, we could then
design new PIP candidates that try not to target these genomic regions or make chemical modifications
that alter the affinity of PIP-DNA ligand interactions. Similarly, by understanding these off targets,
we may be able to reposition PIPs for other applications in a manner not unlike others have done in
pharmaceutical chemistry, such as Zidovudine [36] or Viagra® [37].

Currently, evaluating off-target effects primarily involves the use of various biochemical and biophysical
assays (see examples in Table 1) to compare PIP binding with full-match and mismatch nucleotides.
By understanding the differences in recognition affinity, we can deduce to some extent the likelihood of
a PIP’s cross-reactivity with unintended regions of the genome, along with valuable biological insights
on the mode of action of PIPs in vivo, such as the possible dependence on chromatin structure and
histone modifications on DNA accessibility [38] to help characterize the properties of a candidate PIP.
These assays typically provide us with some measures of quantitative differentiation, e.g., equilibrium
association/dissociation rates (Figure 3a) via surface plasmon resonance (SPR) or preferential binding rates
via digital polymerase chain reactions [39]. For instance, structural flexibilities near the termini of the
polyamide backbone will substantially alter the association and dissociation rate constants to shift the
binding affinity of the PIP towards mismatched DNA [40,41]. Qualitatively, gel-shift electrophoresis can
also provide a preliminary and inexpensive assessment of the relative affinity of PIP-DNA ligands. Circular
dichroism experiments (Figure 3b) can also elucidate additional biophysical insights, such as the influence
on DNA binding as the minor groove becomes narrowed due to changes in ionic strength that ultimately
restricts groove size and alters the electrostatic repulsion of the negatively charged phosphate groups [42]; in
some cases, circular dichroism may also be used to determine whether particular functional groups have
successfully been delivered or activated [43] to the proximity of target DNA.

Table 1. Common biophysical assays used to assess pyrrole-imidazole polyamide (PIP)-DNA binding
in situations where one DNA sequence interacts to multiple PIPs or vice versa. “Response factor”
describes the primary type of measurement collected for evaluating PIP-binding specificity in relation
to off-target binding.

Assay Purpose Response Factor Frequency of Use 1

Melting
temperature

Comparison of PIP-dsDNA
complex stabilities ∆Tm +++

Gel-shift
electrophoresis

Detection of whether a candidate PIP
interacts with DNA containing

a target-binding motif or otherwise
Changes in gel mobility +++

Digital PCR
Comparison of the relative presence of

PIP-DNA complexes by affinity enrichment,
e.g., streptavidin-biotin interactions

Fold enrichment of
PIP-DNA species +

Surface
plasmon resonance

Evaluation of adsorption and desorption
rates to determine the kinetics of PIP-DNA

and relative binding strength

Kinetic rate (e.g., ka or kd)
and equilibrium

constants (e.g., KD)
++

Circular dichroism

Monitoring of changes in DNA
conformation structure upon PIP binding to

discern differences in strength of the
interaction with the minor groove

Changes in spectrometric
signals within

certain wavelengths
+

1 Relative frequency an assay is used to discern differences in PIP-DNA interactions; “+++” is the most common,
followed by “++” and “+”.
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Piecing together these molecular level clues about how PIPs behave, we may be able to derive
a crude understanding of how these biochemical details will influence off-target binding; indeed,
undoubtedly, changes in the local PIP-DNA ligand conformation will weaken this interaction and
perchance destabilize nearby transcription elements, subsequently disrupting the transcription,
although we may not be able to decipher what sort of phenotypic changes these can lead to. Nonetheless,
one can safely posit that epigenetic changes are intimately linked to the rise of off-target effects. This is
well-corroborated with the fact that small conformational distortions are sufficient to retard RNA
polymerase II [17] and potentially displace histones [44]. Evidence also suggests that lipophilicity of
a PIP is associated in tumor-directed delivery in situ [22], albeit there may be some dependence on the
type and origin of tumors [45]. We can thus potentially expand our synthetic repertoire to introduce
novel modifications to the existing PIP design toolbox to incorporate these improvements, but there
are still caveats to take note of, not to mention again that these assays may only have provided us with
qualitative results. For instance, further increasing a PIP’s lipophilicity may increase its propensity to
aggregate, reducing its biocompatibility and restricting its ability for tissue penetration. Despite reports
that the aggregation propensity of PIPs should not contribute to biological activity and may not be
a critical concern in pharmacokinetic analyses [46] and conflicting reports suggesting possible liver
toxicity with certain hairpin modifications [47] in mouse models at a dose of ~10 mg/kg, one needs to
be aware that there are still limits to the amount of chemical modifications to apply to PIPs, and other
resolutions need to be attempted to address this complex problem.

Figure 3. Cont.
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Figure 3. Analyzing off-target effects of PIPs with biophysical assays and expression profiling.
(a) Illustrative use of surface plasmon resonance to compare relative binding specificities of PIPs to
DNA containing a particular motif. Evaluation of the polyamides (“Target PIP” and “Mismatch PIP”)
rely on differences in the association-dissociation kinetics; equilibrium constants can be estimated
based on the trajectories in the sensorgram to elucidate further details about how a particular design
variation will affect binding and the extent of binding to mismatched sequences; reproduced from [48],
© 2015 (license terms CC BY-NC-ND). (b) Illustrative use of circular dichroism to determine the relative
difference in PIP-DNA interactions via the monitoring of local conformational changes in the minor
groove. The presence of features such as isoelliptic points in the DNA-absorbing wavelength region
(230–300 nm) and induced signals near 355 nm indicate a favorable interaction. Comparison of spectra
of different PIP candidates allow comparative assessments to be made. Adapted with permission
from [42],© 2015 American Chemical Society. (c) A proposed method of determining the candidate of
off-target genes using expression profiling and the binding site (modified from [49],© 2019 (license
terms CC BY); the method utilizes pathway information to reduce the dimensionality of expression
arrays to estimate off-target effects at the pathway level (illustrated in the example as P0, . . . , P3).
These metrics could then be used to compute overall changes that may be deconvoluted later on to
identify potential off targets (“Off-target+” in orange) from genes that were somehow impacted as
a consequence of other on-target and off-target genes in the pathway (“Undiscernible” in blue).

Aside from a PIP’s biophysical properties, arguably the most critical aspect in understanding what
off-target effects are is the frequency and likelihood of genomic-binding events. Whereas, with protein-level
inhibitors, one may be able to piece together structural information and interactions with other proteins
to infer drug indications [50]. We can estimate a PIP’s binding sites by searching for its recognition motif
in a sequence file, but to understand the frequency (and likelihood), more fine-grained approaches are
required. A likely choice in this case is expression microarrays, for one can easily evaluate simultaneously
changes in an entire genome with a single chip. However, changes in the expression profile may tell us
what unexpected genes are up- or downregulated as a consequence of PIP administration, but they provide
only a stochastic snapshot of the dynamic profile and cannot infer what actual mechanisms lead to the rise
of these regulatory changes. Since chemical stimuli trigger environmental or oxidative stress homeostasis,
those changes we observed may simply be a nonspecific response to having been perturbed by the mere
event of PIP diffusion, complicating our understanding of the question we wish to address; how does one
formulate a solution to such a question, then? A recent proposal is to reformulate the question to convolute
the expression change of individual genes into units of pathways [49] as a mean of reducing the dimensions
of analytical complexity (Figure 3c); as the problem is simplified, this clarifies the null hypothesis to evaluate
and compare pathways that we expect to be modified compared to other pathways that are ordinarily
unaffected. This analysis, however, still makes two underlying assumptions that remain to be verified: first,
PIP-binding sites in regions that do not affect a gene’s expression probably have no effect; second, binding to
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those other sites is equally likely, such that all genes affect the outcomes equally. To evaluate whether those
two assumptions are applicable, we will need the power of next-generation sequencing at our disposal.

3.2. Application of Next-Generation Sequencing in Evaluating PIP Off-Target Effects

Next-generation sequencing (NGS) methods provide a conduit to probe a PIP’s genomic
interactions and, subsequently, address the question of off-target binding. When coupled with
expression-profiling results, sequencing analysis of PIP binding can provide insights into the interaction
of these minor groove-binding heterocycles in the genomic space via binding-site information and
nearby epigenetic changes. There are currently two major directions of using NGS to address these
questions: Bind-n-Seq, which primarily aims to resolve motif recognition, and Chem-seq, which utilizes
affinity enrichment to capture information on genomic-binding sites.

3.2.1. Bind-n-Seq: Inferences on Binding Motifs

Bind-n-Seq is, as its name implies, is a sequencing method that involves the hybridization of
a molecular target with DNA to form ligands and the subsequent sequencing of said ligands [51].
This method utilizes a library of barcoded synthetic and typically randomized oligonucleotides to
interact with the molecular target in question. Upon affinity capture and hybridization, unbound
nucleotides are removed by washing, pooled and sequenced (Figure 4a). Binding preferences in the
form of motif logos or position-weight matrices are calculated based on the relative abundance of
bound DNA. Bind-n-Seq studies are high in throughput and have become prevalent in PIP studies,
as the resultant logos provide quantitative data between the relative affinity of a full-match motif
compared to its mismatch counterparts. These sorts of experiments do not require a large number of
reagents and allow simultaneous cross-comparisons of multiple biotinylated PIPs due to the adaptation
of oligonucleotide barcoding; Dervan et al., for instance, were able to perform comparisons of eight
PIPs with a single run of Bind-n-Seq [52]. This technique can also infer additional binding details out
of the purview of biophysical assays; for example, the relative preference for binding orientations
(for instance, see Figure 4b for the same study of polyamides targeting the 5′-CGCG-3′ sequence as
the means of inhibiting CpG methylation). Bind-n-Seq is also compatible with PIPs functionalized
with alkylating agents such as CBI that form covalent linkages with DNA via the adenine in the 3′

terminus of its recognition motif [53]; this makes the method a more preferable choice at times over
SPR, as CBI-conjugated polyamides will react irreversibly with the immobilized oligonucleotide targets
and prevent dissociation from the sensor chip.

Variations of Bind-n-Seq include Bind-n-Seq-MR, which incorporates reference sequences in
an attempt to differentiate the binding preferences of N-methylpyrroles to As and Ts [54]. Another
proposal in characterizing genomic-binding sites of PI polyamides is the method known as cognate
site identifier, or CSI [55]. CSI (Figure 4c) uses motif-finding algorithms to generate a positional map,
from motif similarity scores, of all possible PIP-binding sites available in the sequence landscape
defined by probe information on a microarray, then infers binding preference with a microarray data.
CSI is arguably a variation of Bind-n-Seq and generates motif preferences, which one can indirect
infer-binding information from reads gathered from a whole-genome sequencing experiment, with the
caveat that the actual peak-calling process is still dependent on the choice of peak callers, and this motif
information is merely used for annotation. While PIPs have experimentally demonstrated superior
differentiating capabilities between full-match and mismatch motifs, an annotation-based approach
such as Homer [56] is not sufficiently reliable for characterizing binding sites. With most PIPs being
relatively short in base recognition, there may be upwards of a million hypothetical sites for typical
design permutations, and one cannot fully exclude the possibility of coincidental motif overlapping,
especially in polyamides designed to target oncogenes in cancer cell lines, in which the mutation profile
of the specimen being sequenced can contain large variations from the reference genome. The presence
of sequencing artifacts and the level of background noise may also reduce the accuracy of peak callers,
subsequently affecting the final annotation results. Nevertheless, while Bind-n-Seq and its variations
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are highly capable in inferring the binding specificities of PIPs, their reliance on synthetic nucleotide
libraries limits the scope of the coverage landscape; to overcome this issue, Bind-n-Seq needs to be
complemented by chromatin or whole-genome sequencing methods that will allow a PIP’s actual
in vivo binding locations to be thoroughly probed.
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Figure 4. Mechanics of using Bind-n-Seq to elucidate the sequence specificity of PIPs. (a) Schematics
of Bind-n-Seq, beginning with a random oligonucleotide library to create a possible sequence space
for downstream analysis. (b) The ability to extract intricate details about PIP-binding modes with
Bind-n-Seq; example shown here is the different in binding orientation. Reprinted with permission
from [52], © 2014 American Chemical Society. (c) Cognate site identifier, or CSI, as a variation of
a similar theme to identify binding motifs; motif enrichment results can then be transformed into
position weight matrices (PWM) or presented as motif logo maps. Reproduced from [55], © 2010
National Academy of Sciences.
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3.2.2. PIP Co-Sequencing Methods: Generating a Lemma for Possible Genomic Effects

PIPs indeed have been used in conjunction with typical ChIP-seq applications to probe changes
in the epigenetic landscape, such as the effect of a targeted histone acetyltransferase activator at the
OCT-3/4 loci (Figure 5a, left) [21] or the ability for a polyamide to perturb the promoter region of
KLK3 [30] (Figure 5a, right), although these methods do not directly indicate the location of PIP binding.
Rather, they require local sequencing reads to be either manually inspected or require multiple control
experiments to be performed so a differential gain or loss of features can be observed. In the case
of Han et al., up to four tracks were necessary to elucidate the effect of a histone acetyltransferase
activator-conjugated PIP [21]. These companion ChIP-seq experiments provide implied evidence of
PIPs interacting with genetic regulatory elements near said sites, and the results, while useful, are unable
to corroborate mechanistic hypotheses such as the displacement of histone upon minor-groove binding.
In contrast, the usefulness of these co-sequencing experiments is that they dispense a comprehensive
image of the genome through changes in certain epigenetic features, e.g., H3K27Ac, in the presence of
a PIP. With the loss or gain of local peaks as a proxy for the influence of a PIP, these types of experiments
deliver indirect and limited information on a polyamide’s exact genomic targets; to attain data on
direct interacting targets necessitates the use of a PIP-centered sequencing method.

3.2.3. Chem-seq: Discovery of In Vivo Genomic Binding Sites

Chem-seq is the catch-all terminology of mapping genome-wide interactions and target sites
of small molecules. While the earliest adoption of such a term was perhaps Anders et al. [57],
the terminology has also been extended to PIPs, with several publications exclusively employing
“Chem-seq” to refer to the sequencing of DNA fragments captured by PIP. This method primarily
involves the use of alkylating PIPs functionalized with moieties such as a biotin enrichment tag, typically
at one of the polyamide backbone termini or the hairpin turn, along with an indole-seco-CBI-reactive
group (Figure 5b), to provide anchoring via covalent linkage to the 3′ adenine of the target DNA. Should
the polyamide be biotinylated, then precipitation with avidin resins can facilitate the isolation of these
fragments for sequencing. Several reports have experimentally demonstrated the ability to enrich these
fragments (Figure 5c), and we anticipate Chem-seq to be a versatile platform in the characterization of
off-target effects for PIPs. A parallel variation of Chem-seq is COSMIC-seq [58], which is formulated
upon the use of psoralen-conjugated PIPs for chromatin crosslinking and enrichment sequencing in
conjunction to CSI. This method generates data that infer the location of cognate sites and is primarily
focused on the monitoring and assessing of changes in the chromatin states; this method, however,
is similar to the aforementioned combination of Bind-n-Seq with whole-genome sequencing in that it
also indirectly maps the binding landscape with its motif-based approach.

At its current inception, aside from the need for further experimental optimization, Chem-seq
faces a critical challenge with the subsequent data analysis. Those who encounter sequencing data
have heard or made similar complaints: while data generation is straightforward, post-acquisition
analysis is complicated. This is perhaps one of the reasons why few in the discipline spend significant
effort on Chem-seq experiments: processing genomic data can be unforgiving, especially when the
toolkits are insufficient. Next-generation sequencing data are noisy in nature; for instance, read
duplication, natural or artificial, can potentially account for 30%-70% of the observed sequencing
coverage [59]; additionally, the “blacklist” locations in the human genome typically found to produce
anomalous and unreliable signal artifacts in sequencing experiments [60] span nearly 9% of the
human reference genome (Appendix A), roughly three times the length of protein-coding genes [61].
Unlike proteins, PIP-DNA interactions are restricted to the minor groove; with their short motif
recognition, the three-dimensional binding surfaces of PIP-DNA ligands will be smaller than typical
protein-DNA ligands. Practically, peak callers written for ChIP-seq experiments will not be ideal in
the analysis of Chem-seq data. This includes MACS [62], a popular model-based peak-calling tool
ubiquitously used in ChIP-seq applications. Such a tool assumes that the distribution of peaks through
the genome follows roughly a Poisson distribution process, and after shifting reads on the opposing
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strands, peaks are assumed to follow this distribution and be consequently called; with alkylating
PIPs, the size of the binding site is essentially down to a single base, which exhibits wholly different
binding interactions compared to typical transcription factors. This hypothesis, however, remains to be
verified, since the single-base interaction surface located deep in the minor groove will render structural
validation an exceedingly difficult task. As a matter of fact, even Anders’ original implementation had
to utilize a lower enrichment threshold for Chem-seq, involving biotinylated AT7519, and the report
was accompanied with generally lower magnitudes at the same sites [57], further highlighting the
need for tailored computational tools in Chem-seq post-sequencing analyses.

The above hypothesis is hardly unique; various studies have compared the performance of a number
of peak callers with different algorithmic backends in non-ChIP-seq experiments. Koohy and colleagues,
for instance, found considerable discrepancies with DNase-seq data [63]; additionally, Poisson-based MACS
has also been said to underperform in FAIRE-seq experiments compared to some of the other callers utilizing
negative binomial models [64]. Certainly, while sequencing experiments such as ChIP-seq, DNase-seq
and even Chem-seq generate the same type of short-read tags, differences in sequencer technology and
the chemistry behind the enrichment of nucleotide fragments necessitate that the tools be at a minimum
re-tune in order to achieve optimal performance. The differences in the level of background noise between
different sequencing methods also cannot be ignored; DNase-seq is highly prone to noise and generates
reads that are not strand-specific to have characteristic shifts that are often used to as a marker for positive
peaks. Preliminary assessment of sequencing data suggested some similarities between Chem-seq and
DNase-seq [65], but there have been no systematic studies to verify this to date.

Alternatives to a Poisson model-based approach include, certainly, the building of a different
model. As with the case of ZINBA [64], negative binomial models may be suitable. However,
considering the use of Bayesian models in computational biology, for instance, Spyrou and colleagues’
proposal [66] that Bayesian hidden Markov models can be used to detect genomic enrichments,
increasing the model complexity that likely will improve the prediction outcome. A direct adaptation of
the proposed Bayesian approach, which still depends on the presence of somewhat symmetric reads on
both forward and reverse strands in situ (as a consequence of the larger protein-DNA-binding surfaces),
will nonetheless require modifications, especially when most of the algorithms were developed with
analyzing Illumina data in mind, not 100bp or longer, as they are today in the age of semiconductor
(Ion Torrent) and long-read (PacBio) sequencers; this inevitably changes the peak distribution in
Chem-seq data, such that extensive retooling is still required. With this kind of effort required, it is
only imaginable that those in the discipline of PIP research will opt not to traverse down this path.

A tentative solution is to validate peak locations by the seemingly naïve assumption that true positive
sites are enriched as the consequence of more affinity enrichment during the experiment, and thus, read
enrichment is correlated. Under this assumption, one should be able to infer PIP-binding sites from their
relative enrichment in the aligned reads. Based on this line of thinking, an approach is to utilize tools such
as diffReps [67] or CRED [68], which, instead of a model-based approach, calculates read enrichments
within differential sliding windows to deduce candidate sites. Existing studies utilizing MACS tended to
underperform compared to enrichment-based methods at a high margin; for instance, we tested MACS on
a CBI-conjugated PIP designed to bind G12D/V mutations of KRAS [65] and found that, on default settings,
the model generated extremely unrealistic numbers of statistically significant candidates; furthermore, using
a set of simulated Ion Torrent reads as the control, MACS also underreported nearly 200 sites compared
to CRED [69]. This is not a criticism of MACS as a peak detection program but more of the point that, as
complexity in sequencing data increases, no longer can we apply the same lieu commun assumptions in
data analysis. With that said, enrichment-based approaches should nonetheless be coupled with secondary
validations such as additional statistical validations over nonbinding sites of the same motif [65]. It is,
however, important to note that, without moving away from motif-based approaches, the performance of
enrichment-based peak calling will not fundamentally improve in Chem-seq applications, since the same
issues continue to persist.
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Figure 5. Sequencing with PIPs. (a) Examples of PIP-assisted ChIP-seq experiments using a CTB, a histone
acetyltransferase activator, conjugated PIP in conjunction with ChIP-seq to detect changes in H3K14Ac activity
in the promoter region of OCT-3/4 (left); another example of coupling dihydrotestosterone (DHT) with a PIP
targeting the androgen receptor gene (AR) to evaluate changes in the genomic occupancy of AR in the promoter
region of KLK3 is provided on the right. NT indicates no treatment. Loss, gain or changes in amplitude of the
local reads (red arrows and box with solid outlines) are then used to infer PIP genomic interference. Reproduced
from [21],© 2015 Wiley (left) and [30],© 2019 Oxford University Press under the license terms of CC BY (right).
(b) Scheme of a possible configuration of biotinylated PIPs for Chem-seq applications. In these situations,
biotin is used as the enrichment tag (solid blue outline), and indole-seco-CBI (solid red outline) is the reactive
alkylating moiety. The polyamide backbone provides a mean for the molecule to recognize and bind the minor
groove of specific genomic DNA sites. Placement of the biotin enrichment tag at the hairpin turn (dotted
purple outline labeled with asterisk) has also been proposed and tested [70]. (c) A representative Chem-seq
workflow utilizing a bifunctionally conjugated PIP (see Figure 4b) to alkylate and enrich genomic-binding sites.
Images for (b,c) were adapted from [65] by the author,© 2019 under the license terms of CC BY.
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4. Perspectives

What, then, will entice PIP researchers to head down this road not traveled? Certainly, the most
direct method of reducing off-target effects with PIPs is to improve its binding affinity to its target,
and approaches aimed at both increasing the recognition motif by conjoining multiple PIPs in tandem
or modifying the base chemistry of the heterocycles will improve a polyamide’s affinity, but as
its size approaches, the nuclear penetration limiting the law of diminishing returns is going to be
well in effect. Alternatively, improvements in elucidating such details from expression profiling
or Chem-seq data analysis by way of improving the computational analysis may perhaps be more
viable. For instance, by leveraging the use of machine-learning methods to “study” Chem-seq peak
characteristics (Figure 6a), the peak-calling process may see improved recognition. While Chem-seq
peaks may exhibit nonuniform read distributions not fully expressible with the use of a single
distribution model, there should nonetheless be key characteristics underlying the read pileup,
and ensemble learning methods such as random forests [71] may be well-suited to recognize these
feature characteristics. These methods “grow” a multitude of bifurcated decision trees that propagate
through the various feature parameters during training, and consensus decisions from these ensemble
of decision trees will generate reliable classification results based on the mode of the ensemble.
Random forests are notably well-resistant to overfitting and, thus, can hypothetically create versatile
predictor models across PIPs with small but generally similar major chemical structures and conjugated
functional moieties.

Random forests see a large number of applications in computational biology, such as classification
and regression problems of detecting evolutionary events [72], identifying DNA-binding proteins [73]
and even predicting drug sensitivity [74]. In biology, where noise is a frequent issue, beyond the typical
application of random forests in epidemiological studies for learning behavioral patterns among cohort
statistics, this particular type of machine learning has also seen a spike in genomic studies [75]. Additionally,
random forests generate deciding factors useful for estimating the relative importance of input parameters
in a very natural way of explaining the observed phenomenon. These metrics, e.g., Gini importance
scores [76], are often directly proportional to how frequent a particular feature is used to make decisions
and can be translated in meaningful ways that directly illuminate the role of a particular biological feature.
When coupled with enrichment-based callers, as mentioned in the previous section, machine-learning
classifiers can be incorporated as a validation tool that is motif-independent.
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Figure 6. The use of machine learning to improve PIP off-target analysis from high-throughput
data. (a) A proposal for using machine-learning methods to improve the site identification process
in Chem-seq post-sequencing analysis. (b) A scheme of incorporating machine learning (ML) in
characterizing genomic binding, as well as expression profiling data, to generate genetic interactions to
elucidate the role of off-target effects for candidate PIPs.
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We may also consider the use of deep learning, such as neural networks, to improve Chem-seq
analysis. Neural networks of multiple layers of decision-making nodes are able to learn features in
a dataset and have been used to infer gene expressions, and similar techniques have been applied
to reduce noise in ChIP-seq data [77]. The ability to predict gene expressions [78], and epigenetic
features such as chromatin structures [79], and enhancer sites [80] theoretically make deep learning
also applicable in identifying peaks in Chem-seq data, considering the presence of high-background
noise and nonuniform read distributions. Just as sequencing data can be thought of as images, they can
be treated as inputs for convolutional neural networks and be processed similarly. For instance, if we
recode sequence information as Boolean matrices of positions and features, we can then use layers
of perception neurons to learn specific characteristics present in the Chem-seq data to predict the
likelihood of a particular alignment being a positive peak.

An inherent problem with neural networks, however, is the cost of computing, especially as the
number of neurons increases and the topology of the networks deepens. This problem is further
exacerbated as model-training libraries increasingly offload the bulk of computations to graphical
processing units (GPU), severely limiting code portability [81] and driving up development costs due
to hardware preference. Another hurdle is the lack of well-constructed existing models that can be
adapted to improve the learning results. “Transfer learning” is a method of deep learning that seeks
to apply pretrained classifier models to a similar constructed problem. Recent advances in artificial
intelligence have led to the explosion of image processing and learning models, such as ImageNet,
Inception, VGG, etc. [82–84], all of which are extremely valuable in medical applications at identifying
the edges of tumor and normal tissues in endoscopy, differentiating physiological features and so
on [85]. These prebuilt models, however, may not be as useful for genomics data, which tend to have
multiple output classifications, as well as large background noise and, subsequently, bias. A model
erring on the side of caution in predicting a marginal peak as noise will tend to have lower false
positives and artificially better performance, and in these situations, these models may not be useful
at all.

As Frost epiphanies in The Road Not Taken [86], “two roads diverged in a wood, and I– I took the
one less traveled by, and that has made all the difference,” at times, the decision of selecting a different
path can change the trajectory of discovery. Minor-groove PIPs have made noticeable strides in the
fields of cancer and disease biology, and their binding specificity and relative ease of administration
have made them promising candidates in drug discovery; however, the mechanism behind their
seeming ability for tumor homing and inhibitory actions remain poorly understood, and despite their
specificity, very few have surfaced in clinical trials. Improvements made in the ability to analyze
massive parallel-sequencing and expression-profiling data, for instance, by incorporating optimized
machine-learning models to denoise Chem-seq data and predictor models for adverse indications
(Figure 6b) can potentially aid researchers in understanding what the possible off-target effects may be
for a new PIP. These efforts will certainly allow PIPs finally to be funneled into the process of lead
development and improve their viability as drug candidates. At this point, unfortunately, few have
elected for this road not taken; given the surprising progress of utilizing synthetic heterocycles as
minor groove-binding PIPs today, there is something bound to be missed on the other path.
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Appendix A

The claim that 9% of the human genome consists of “blacklisted regions” prone to producing
artificially high signals is based on an estimate of the nonoverlapping length (approximately
274,970,000 bp) of all genomic segments annotated by Boyle et al. (version 2, released Nov. 2018) [87]
compared to the length of the hg19 human genome (3,095,677,412 bp, excluding the mitochondrion,
alternative haplotypes and random contigs).
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