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Abstract
Neuro-oncology largely consists of malignancies of the brain and central nervous system including both primary 
as well as metastatic tumors. Currently, a significant clinical challenge in neuro-oncology is to tailor therapies for 
patients based on a priori knowledge of their survival outcome or treatment response to conventional or experi-
mental therapies. Radiomics or the quantitative extraction of subvisual data from conventional radiographic im-
aging has recently emerged as a powerful data-driven approach to offer insights into clinically relevant questions 
related to diagnosis, prediction, prognosis, as well as assessing treatment response. Furthermore, radiogenomic 
approaches provide a mechanism to establish statistical correlations of radiomic features with point mutations 
and next-generation sequencing data to further leverage the potential of routine MRI scans to serve as “virtual 
biopsy” maps. In this review, we provide an introduction to radiomic and radiogenomic approaches in neuro-
oncology, including a brief description of the workflow involving preprocessing, tumor segmentation, and ex-
traction of “hand-crafted” features from the segmented region of interest, as well as identifying radiogenomic 
associations that could ultimately lead to the development of reliable prognostic and predictive models in neuro-
oncology applications. Lastly, we discuss the promise of radiomics and radiogenomic approaches in personalizing 
treatment decisions in neuro-oncology, as well as the challenges with clinical adoption, which will rely heavily on 
their demonstrated resilience to nonstandardization in imaging protocols across sites and scanners, as well as in 
their ability to demonstrate reproducibility across large multi-institutional cohorts.

Key Points

1.  Radiomics has recently emerged as a powerful data-driven approach that can offer 
insights into clinically relevant questions related to diagnosis, prediction, prognosis, as 
well as assessing treatment response.

2.  Using radiomics and radiogenomic approaches to personalize treatment decisions in 
neuro-oncology will rely heavily on resilience to nonstandardization in imaging protocols 
across sites and scanners, as well as in their ability to demonstrate reproducibility across 
large multi-institutional cohorts.

The field of neuro-oncology encompasses primary and meta-
static malignant tumors of the central nervous system (CNS) 
including the brain and spinal cord. While the incidence 
of brain tumors is rare (lifetime likelihood of less than 1%), 
their mortality and morbidity rate is unusually high. In 2020, 
around 23 890 cases of malignant brain tumors and 18 020 
brain cancer-related deaths are estimated in adults across the 
globe.1,2 Among the malignant tumors, brainstem gliomas, 
glioblastomas (GBMs), and anaplastic astrocytomas have the 

worst outcome.3,4 While the survival rate for patients with a 
malignant brain or CNS tumor is poor with only 36% living 
beyond 5 years following diagnosis, it is particularly abysmal 
in GBM patients (age group of 55–64  years) who have a 
5-year survival of 6%. Unfortunately, at this time, there are 
no widely recommended tests to screen for brain and spinal 
cord tumors.

Diagnosis, and treatment response assessment, in neuro-
oncology is currently investigated using multi-parametric 
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magnetic resonance imaging (MRI) such as T1-weighted 
imaging both before (T1w) and after administration of 
gadolinium-based contrast agent (Gd-T1w), T2-weighted 
imaging (T2w), and T2w-Fluid attenuation recovery (FLAIR) 
sequences. For instance, Response Assessment in Neuro-
Oncology group (RANO criteria) utilizes the increase/
decrease in the product of perpendicular diameter on 
routine MRI to identify patient’s response to treatment. 
On routine multi-parametric scans, Gd-T1w MRI is useful 
for elucidating a brain tumor, with large portions of the 
tumor region (or the entire tumor) typically enhancing in 
comparison to the brain parenchyma. Meanwhile, T2w 
and T2w-FLAIR MRI scans are often used to identify het-
erogeneously enhancing tumors like gliomas especially 
GBMs which often have peri-tumoral edema or inflam-
mation, in order to differentiate these regions from the 
enhancing tumor.

In addition to qualitative/semiquantitative assess-
ment of these imaging modalities by trained neuro-
radiologists, radiologic imaging also harbors massive 
amounts of interpretable quantitative information which 
may not be appreciable via visual inspection or 2-di-
mensional assessment of a single measure (ie, tumor 
diameter).5 Recent advances in the high-throughput 
computational techniques and rapid algorithm devel-
opments have facilitated the extraction of meaningful 
information from radiologic imaging via “Radiomics.” 
Radiomics is defined as the extraction of “hand-crafted” 
features from routine radiological scans (X-rays, CT, 
MRI, and PET) that quantitatively capture the textural 
and morphological characteristics of a given tumor. 
For instance, radiomics attempts to comprehensively 
characterize the pixel-wise tumor characteristics in-
cluding (1) semantic or qualitative features that include 
radiologist-derived assessments of the tumor including 
spiculations, size of the tumor along several axes, (2) 
shape-based features that quantitatively measure reg-
ular or irregular tumor boundary changes based on their 
3D topology,6 (3) intratumoral heterogeneity measures 
including gray-level features, which investigate pixel-
level textural differences to characterize how heteroge-
neous a tumor is,7,8 as well as (4) deformation features 
that capture the impact of tumor-related mass effect in 
the tumor micro-environment.9 These various radiomics-
based approaches have been widely employed across 
multiple cancers including brain,10–14 lung,15–18 colo-
rectal,19–21 breast,22–24 and prostate25,26 among others for 
diagnosis, prognosis, treatment response prediction, as 
well as measuring early treatment effects. Specifically, in 
the context of neuro-oncology, these approaches have 
shown tremendous promise in the development of non-
invasive radiomic prognostic and predictive markers, as 
well as for distinguishing treatment effects from tumor 
recurrence, using routine MRI scans.10,27–29

In addition to advances in multi-parametric imaging, 
next-generation sequencing technology, which allows 
for the high-throughput sequencing of multiple genes, 
has been a significant propeller of tailoring personalized 
treatments in neuro-oncology.30,31 Recent investigative 
studies have identified several driver mutations and chro-
mosomal anomalies as specific targets for personalizing 
treatment and improving prognosis32,33 in neuro-oncology. 

A  few of these driver mutations have been reported to 
have prognostic (eg, isocitrate dehydrogenase [IDH], 
O6-methylguanine-DNA methyltransferase [MGMT] pro-
moter methylation, and epidermal growth factor receptor 
[EGFR]) and predictive (eg, MGMT) implications in GBM 
tumors.34,35 However, molecular profiling involves tissue 
extraction often from stereotactic/needle biopsies that are 
inherently prone to sampling bias based on the site of bi-
opsy and thus may not capture the spatial heterogeneity 
extant within the tumor (specifically in highly heteroge-
neous tumors such as GBM).36

Interestingly, the field of “radiogenomics” has pro-
vided a mechanism for establishing statistical associ-
ations of tumoral radiomic features with the underlying 
genetic profile of the tumor, including point mutations, 
signaling, and pathways of biological significance. By 
providing an imaging phenotype for the tumor corre-
sponding to a particular genotype, radiogenomics may 
allow for circumventing the challenges with biopsy sam-
pling. For example, radiogenomic approaches have been 
used to create “virtual-biopsy” maps to predict specific 
prognostic point mutations as well as chromosomal al-
terations37 based on the 2016 update on the WHO clas-
sification of diffuse gliomas in neuro-oncology.13,38,39 
Identifying such radiogenomics associations may im-
prove our understanding of how the changes in biolog-
ical processes at the molecular level affect changes at a 
radiologic scale40 and may ultimately aid in personalizing 
treatment decisions.

Overview of Radiomic and 
Radiogenomics Pipeline

One of the primary advantages of developing and 
implementing a radiomic/radiogenomics pipeline is that, 
ideally, by leveraging routine MRI scans, the analysis does 
not significantly disrupt the existing clinical workflow. 
A typical pipeline of a radiomic/radiogenomics-based ap-
proach consists of the conversion of radiographic images 
into mineable data and involves the following steps: (1) 
image acquisition and registration, (2) segmentation of 
region of interest, (3) preprocessing, (4) feature extrac-
tion, (5) feature selection and building machine learning 
models for predictive and prognostic applications, and 
lastly (6) radiogenomic associations to either predict a 
genotype or identify the biological processes that drive 
the tumor biology. Figure 1 shows the complete radiomic/
radiogenomics pipeline.

Image Acquisition, Tumor Segmentation, and 
Preprocessing

Preprocessing is a key step prior to radiomic feature 
extraction and involves multi-protocol registration to 
account for patient movement during image acqui-
sition, as well as accounting for image variations in 
MRI scans across different manufacturers and multiple 
participating sites. Next, the region of interest is iden-
tified and segmented, either manually or automatically. 



iv5Beig et al. Introduction to radiomics and radiogenomics
N

eu
ro-O

n
colog

y 
A

d
van

ces

On Gd-T1w images, necrosis is relatively represented 
as hypo-intense regions that are commonly located in 
the central region of the tumor and occasionally have 
a ring enhancement. Similarly, hyper-intense T2w-
FLAIR signals correlate with greater interstitial leakage 
and low cellular density, reflecting edema. Therefore, 
T2w and T2w-FLAIR scans are typically used to identify 

edema and necrosis and enhancing tumor is delineated 
based on Gd-T1w MRI. The “tumor habitat” consisting 
of the 3 segmented tumor subcompartments, necrotic 
core, enhancing, and peri-tumoral edema, can then 
be interrogated by extracting radiomic features from 
each of the tumor subcompartments across different 
MRI protocols. Figure  2 illustrates the tumor habitat 
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Figure 1. Overall workflow of radiomic and radiogenomic pipeline.
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core (as marked in green) and enhancing tumor (as marked in blue) can be identified on post-contrast T1w MRI scans. Similarly, the peri-tumoral 
edema (as marked in yellow) can be identified on the T2w/T2w-FLAIR MRI scans.
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in GBM as delineated by an expert radiologist using 
routine MRI protocols. Currently, manual segmenta-
tions are considered the gold standard for radiomic 
analysis as they ensure high accuracy. However, there 
exist several automated segmentation approaches 
using deep learning (DL) architectures including U-Net, 
Conv-Net, Transfer Learning, and Deep Hourglass ap-
proaches as well as semiautomatic seeding-based 
algorithms that have gained popularity.41–43 These au-
tomated tools have shown promise in annotating the 
tumor subcompartments including enhancement, 
nonenhancement, necrosis, as well as peri-tumoral 
edema from the immediate periphery of the tumor.

Further preprocessing techniques such as skull stripping 
and intensity standardization are executed to account for 
varying magnetic strengths, and slice thicknesses in the 
curated dataset.44–47 Intensity standardization algorithms 
are implemented across multi-parametric MRI protocols 
to correct for intensity nonstandardness, which refers to 
the issue of MRI “intensity drift” across different imaging 
acquisitions. The intensity nonstandardness results in 
MRI intensities lacking tissue-specific numeric meaning 
within the same MRI protocol, for the same body region, 
or for images of the same patient obtained on the same 
scanner. Therefore, it is important that the radiomic 
pipelines in neuro-oncology implement the necessary 
preprocessing techniques to ensure consistency in the 
dataset and reproducibility of results.48

Radiomic Feature Extraction

Following preprocessing and lesion segmentation, quantita-
tive features are extracted for radiomic analysis, via algorithms 
that capture tumor heterogeneity across local pixel neighbor-
hoods within a given radiologic image. Common radiomic fea-
tures are currently divided into the following classes: semantic, 
shape, texture/gradient-based, deformation, and wavelet. 
Figure 3 illustrates an example of a few radiomic features ex-
tracted from the multi-parametric MRI scans from across the 
GBM tumor habitat. The specifics of different feature families 
are discussed in the subsequent subsections.

“Hand-crafted” radiomic descriptors

Semantic features—In a large National Cancer Institute’s 
The Cancer Genomic Atlas (TCGA)-based effort, brain 
tumors (GBMs) were examined by experienced neuro-
radiologists to define “semantic” features that capture the 
visual phenotypic characterization of the tumors. These 
unique semantic features were based on the 4 commonly 
analyzed tumor subcompartments (nonenhanced tumor, 
enhancing tumor, necrosis, and edema) and included fea-
tures such as location of the lesion, morphology, major 
axis length, minor axis length margin, and lesion vicinity. 
This comprehensively characterized feature set by ex-
pert radiologists is now known as Visually AcceSAble 
Rembrandt Images (VASARI) features.49 Multiple studies 
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have demonstrated that prognostic imaging attributes, 
such as percent of necrosis and edema, can be correl-
ated with VASARI features (ρ = 0.67 [P < .001] and ρ = 0.41 
[P < .001]) in GBM tumors.50,51 Another study found a sig-
nificant correlation between overall survival (OS) in GBMs 
and VASARI features. These studies have established that 
VASARI features (such as degree of contrast enhancement 
as well as the length of the major axis of the lesion) may 
provide additional prognostic value on top of standard 
clinical variables (such as Karnofsky Performance Score 
[KPS]).52 Several radiogenomic-based studies have sim-
ilarly demonstrated that genetic expression or RNA 
sequencing of GBMs may be correlated with the VASARI 
features.53–55 For instance, Diehn et al.55 have presented an 
extensive study that seemed to suggest that GBM tumor 
contrast enhancement may be associated with activation 
of specific hypoxia gene expression.

Shape-based features—Irregular and aggressive tumor 
infiltration may prompt surface and shape changes in the 
tumor and peri-tumoral regions. A larger surface-area-to-
volume ratio, for example, has been found to be indicative 
of a more spiculated tumor, with more malignant poten-
tial in comparison to a round mass with a smaller ratio.56 
Driven by this intuition, shape features may be informative 
of tumor malignancy. These features are broadly classified 
into 2 categories—local and global features. Local surface 
features capture characteristics such as curvature that 
identifies flat areas of surface from highly curved ones, 
sharpness that measures how sharp the curvature is, with 
highly curved masses exhibiting sharper curvatures, as 
well as shape index that characterizes the shape topology 
of the tumor.15 Whereas some of the global shape features 
include the major and minor axis, and elongation (ratio 
between major and minor axes of the region of interest). 
Several studies have shown that shape-based features of 
the tumor subcompartments in GBMs may be used to pre-
dict OS.8,57–60 Gevaert et al.51 have shown that high irregu-
larity of enhancing lesion shape (ie, degree of spiculation) 
was associated with a lower OS. In a radiogenomic setting, 
Itakura et  al.61 have reported that shape-driven features 
can classify GBMs into 3 distinct clusters, where each 
cluster is mapped to a unique set of molecular signaling 
pathways and differential probabilities of survival. For 
instance, they reported that cluster 2 (characterized by 
spherical tumors with regular edges and small volumes) 
was associated with downregulation of VEGFR signaling 
pathway. Apart from this, shape features have also been 
shown to be better in evaluating treatment response. 
Ismail et al.6 have demonstrated that 2 local features (total 
curvature of the enhancing lesion and curvedness of the 
T2w/T2w-FLAIR hyper-intense peri-tumoral edema) may 
be able to differentiate between pseudo-progression and 
tumor progression in GBMs.

Texture/gradient-based features—The most commonly 
used texture features include (1) gray-level co-occurrence 
matrix (GLCM) or Haralick features that capture the varia-
tions in gray-level image characteristics via second-order 
intensity statistics (eg, entropy, inverse differential mo-
ment [IDM], angular second moment, contrast, and differ-
ential entropy).62 Haralick features potentially capture the 

structural heterogeneity within the region of interest. For 
instance, IDM is a reflection of the presence or absence 
of uniformity and hence is a measure of local regions of 
homogeneity. (2) Gray-level run length matrix (GLRLM), 
which in comparison with GLCM features, investigates the 
pixel runs instead of pairs of pixels. A pixel run includes 
the number of pixels of a specific gray value that are in a 
right direction, in the right sequence. While the rows of the 
matrix still represent gray levels, the columns represent 
run lengths. (3) Laws features that define various texture 
parameters including spot, edge, ripple, and level sur-
faces present within the tumor63 and (4) Co-occurrence of 
Local Anisotropic Gradient Orientations (CoLlAGe), which 
captures local anisotropic differences that exist in micro-
structures by measuring entropy (a mathematical con-
struct to measure disorder) of co-occurrences of pixel/
voxel-level gradient orientations computed within a local 
neighborhood.64

Haralick features have been used extensively in the con-
text of neuro-oncology to predict survival.7,12 Kickingereder 
et al.65 have shown that Haralick features extracted from 
the T2w-FLAIR MRI sequences can predict survival and 
stratify patients with newly diagnosed GBM. In 2 inde-
pendent studies, it has been demonstrated that GLRLM 
features, extracted from multi-parametric MRI scans, are 
also prognostic of OS in GBMs.66,67 GLRLM features ex-
tracted from 18F-FDG-PET have also shown to distinguish 
primary CNS lymphoma from GBMs.68 In a cohort of 42 
patients, CoLlAGe has been shown to differentiate radia-
tion necrosis, a benign yet confounding effect of radiation 
treatment, from recurrent tumors, with an accuracy of 
83.79% in primary cases, and 88.52% in metastatic brain 
tumors.64,69

Deformation-based features—Deformation features seek 
to measure the extent of tissue deformation in the brain pa-
renchyma (ie, brain around tumor [BAT]) due to the mass 
effect in brain tumors. MRI scans are nonrigidly registered 
to equivalent healthy, age-matched, and/or gender-matched 
imaging atlases. Then, the resulting deformation field (rep-
resented as a displacement vector at every voxel location) 
is obtained through a combination of forward as well as 
inverse mapping between the patient’s 3D volume and the 
reference atlas. The per-voxel deformation measurements 
from the BAT region are then used as radiomic features for 
analysis. Prasanna et  al.70 hypothesized that larger varia-
tions in deformation within functional areas of the contra-
lateral hemisphere are likely related to decreased survival 
in GBMs. They demonstrated that decreased OS was found 
to be associated with increased deformation in areas of 
language comprehension, visual perception, cognitive, 
and motor-control functions, particularly in the memory 
areas in the left hemisphere. In another study, they also 
showed that combining textural-based radiomic features 
with deformation values may result in improved prediction 
of survival in GBMs, for identifying short-term survivors 
(OS <240 days) from long-term survivors (OS >540 days).9 
In a radiogenomic setting, Iyer et  al.71 have shown that 
deformation-based radiomic features can also be used to 
differentiate the molecular subtypes of medulloblastomas 
(Sonic Hedgehog [SHH], Wingless [WNT], Group 3, Group 4) 
in pediatric brain tumors.
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Wavelet-based features—Wavelet features utilize different 
wavelengths, amplitudes, and frequencies to recognize 
textural attributes across a wide range of scales within the 
image. For instance, Gabor wavelet features are the steer-
able class of gradients that attempts to match localized fre-
quency characteristics.72 A Gabor filter can be defined as the 
modulation of a complex sinusoid by a Gaussian function. 
Each descriptor quantifies response to a given Gabor filter at 
a specific frequency (f = 0, 4, or 16) and orientation (µ = 45°, 
90°, 135°, 180°) and attempts to capture the prominent di-
rection in which intensity changes occur. Tixier et al.73 have 
reported that GBM patients with large negative skewness 
of Gabor wavelets had a significantly longer median OS of 
22.7 months (P = .004). In another study, a wavelet scattering-
based noise robust radiomic method was implemented to 
predict the gliomas grade in brain tumors.74

Feature Selection and Building Prognostic and 
Predictive Models

Building radiomic-based machine learning classifiers in-
volves reducing the high-dimensional radiomic feature 
set by selecting the most discriminative features using a 
feature selection scheme, in order to reduce the curse of 
dimensionality.75 Feature selection can either be using 
univariate or multivariate statistical models. Univariate 
methods (also known as filter methods) only depend on 
feature association, while ignoring redundancy, whereas 
multivariate methods (wrapper methods) inspect inter-
actions within different features and account for both as-
sociation and redundancy. Fisher score, Chi-squared test, 
and Wilcoxon are the most common filter methods that are 
used for feature selection.16 Wrapper models are computa-
tionally expensive as their objective is to find a subset of 
features that result in the best performing model. Notable 
examples for wrapper methods include forward feature se-
lection, backward feature elimination, exhaustive feature 
selection (greedy algorithm), or bidirectional search.16,76

After identifying a subset of features following feature se-
lection, machine learning models are developed by categor-
izing and classifying various datasets according to defined 
labels (ie, GBM vs low-grade glioma [LGG], poor survival vs 
improved survival, radiation effects vs tumor recurrence). 
Generally, classifiers can be divided into supervised and 
unsupervised approaches. While supervised methods uti-
lize a predefined set of known labels to identify features that 
best represent the outcomes of interest on the radiologic 
images, an unsupervised approach (such as clustering) can 
be employed when the target labels are unknown. A range 
of classifiers including random forest, support vector ma-
chines (SVMs), and generalized linear models have been 
used for diagnosis and treatment response evaluation appli-
cations.6,12,76 For instance, previous studies have used SVM 
classifier to predict the histopathological grade (LGGs vs 
GBMs) of a given primary brain tumor using MRI scans.76–78 
Research groups have employed least absolute shrinkage 
and selection operator (LASSO) logistic regression and SVM 
models79,80 to differentiate pseudo-progression from early 
tumor progression in GBM patients. Prasanna et  al.7 have 
shown that radiomic features extracted from the peri-tumoral 
edema on multi-parametric MRI were able to distinguish 

short-term survivors (OS <7 months) and long-term survivors 
(OS >18  months) in 65 GBMs studies. Recently, DL-based 
architectures such as convolutional neural networks and 
auto-encoders have also been used to extract features from 
the radiologic imaging data.27,81 While DL is capable of appre-
hending more abstract and higher-dimensional relationships 
between imaging features and the clinical end point, these 
approaches are still largely considered black-box.82

Survival Analysis

In most of the survival-based (ie, prognostic) radiomic/
radiogenomic studies, Cox proportional hazards model are 
used, where the event of disease diagnosis is chosen as the 
time of origin. The commonly used end points for survival 
analysis are either OS (time from disease diagnosis to death 
due to the cancer in question) or time duration from a given 
treatment to response or outcome (progression-free sur-
vival [PFS]).83 In a Cox proportional hazard regression model, 
hazard rate (HR) quantifies the effect of individual feature on 
survival and measures the risk of failure (ie, the risk or proba-
bility of suffering the event of interest), given that the patient 
has survived up to a specific time. Risk parameters yielding 
negative regression coefficients (ie, low feature values correl-
ated with long-term survival) produce a HR between 0 and 1; 
features yielding positive regression coefficients (ie, low fea-
ture values correlated with short-term survival) produce a HR 
between 1 and infinity.40,84,85

Kaplan–Meier (KM) curves, a nonparametric survival anal-
ysis method, have also been well accepted for evaluation 
of the “time-to-event” data.86 KM curves evaluate the prob-
ability of survival over time (dependent variable), under 
different conditions (independent variable), where the hori-
zontal axis represents the time and the vertical axis shows 
the probability of survival. After the KM curves have been 
plotted, the log-rank test is used to compare the 2 curves 
(high risk vs low risk). The log-rank test calculates the chi-
square (χ 2) for each event time across all groups and sums 
up the results. χ 2 from the log-rank test concludes whether 2 
curves from the groups are statistically different.87

Radiogenomic Studies

Multiple radiomic features have been shown, via 
radiogenomic analysis, to capture genomic alterations 
within tumor DNA, on routine MRI scans. These radiomic 
features are shown to identify the presence of specific 
mutations that have implications in the management and 
outcome of neuro-oncology patients.54,88,89 For instance, 
several groups have demonstrated that the IDH mutations 
in diffuse gliomas may be predicted via radiomic signa-
tures on pretreatment MRI (Figure 4).32,38,90,91 In a recent 
study, Shboul et  al.92 have demonstrated that radiomic 
features can discriminate IDH mutation from IDH wild type 
in LGG with an AUC of 0.84. They presented that higher 
values of the size ratio between the enhancing tumor and 
the necrosis, and higher values of the vertical orientation 
of edema major axis were significantly associated (ANOVA 
test, P value < .005) with IDH wild-type status. Similarly, 
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radiogenomic models have also been developed to pre-
dict other imaging biomarkers for MGMT,13,33,73 EGFR,93 
TERT,94,95 PTEN,96 and ATRX97 mutations in neuro-oncology.

Furthermore, radiogenomic analysis could be leveraged 
to elucidate the underlying biological basis of the prognostic 
radiomic features, by identifying signaling pathways that 
drive tumor biology between the radiomics-driven survival 
groups.40,98,99 These radiogenomic approaches first identify 
the prognostic radiomic features that can identify low-risk 
from high-risk groups based on patient outcome (OS or PFS). 
Next, bioinformatics tools such as Gene Ontology (GO)100,101 
and single-sample gene set enrichment analysis (ssGSEA)102 
are employed to detect associated downstream signaling 
pathways of biological significance across the low-risk 
and the high-risk categories. For a predefined set of genes, 
ssGSEA captures the significantly enriched or depleted bi-
ological processes and calculates an enrichment score for 
every patient in the cohort. GO is a knowledge base of the 
functions of genes and thus forms a foundation for computa-
tional analysis of large-scale molecular biology and genetics 
experiments. GO also highlights the most overrepresented 
genes and finds the systematic linkages between those 
genes and biological processes.

Using a radiogenomic approach, Liu et  al.11 demon-
strated that PFS in LGG may be noninvasively predicted 
using radiomic features from T2w MRI scans, and then by 
using GO analysis, revealed that their identified prognostic 
radiomic features were associated with biology processes 
of programmed cell death and cell proliferation. Another 
radiogenomic study developed and independently evalu-
ated a LASSO-based Radiomic Risk Score (RRS), using 
radiomic features from the tumor habitat, to stratify 203 
GBM patients into low-risk and high-risk groups based on 
PFS. The RRS consisted of a total of 25 radiomic features 

including textural features belonging to Laws energy and 
Gabor wavelet families, and shape features from the peri-
tumoral edema region, on Gd-T1w MRI. The study then 
identified significant radiogenomic correlations (P < .05) 
between the prognostic radiomic features with molec-
ular signaling pathways, such as cell differentiation, cell 
adhesion, and angiogenesis, using GO and ssGSEA.40 
Thus, by establishing multi-scale associations of radiomic 
phenotypes with corresponding transcriptomic data, 
radiogenomics approaches may allow for an improved un-
derstanding of the underlying disease biology as well as 
potentially aid in build patient-centric treatment plans.

DL-Based Approaches

 Unlike traditional radiomic-based approaches that rely on 
accurate segmentation and selection of hand-crafted en-
gineered features, DL methods are domain-agnostic. Most 
DL approaches do not require labor-intensive segmenta-
tions and have the ability to capture complex hidden visual 
representations of radiologic data.82,103–105 Convolutional 
neural networks (CNNs) are the most common DL models 
used in medical image analysis.106 A  CNN has an input 
layer, an output layer, and the parallel computations are 
performed within multiple hidden layers, which include 
convolutional and pooling layers. Convolutional layers 
are the building blocks of CNNs from which features are 
extracted from the input layer (to which small patches of 
image data are fed). Pooling layers transfer the maximum 
or average convolved values and consequently reduce 
the size of the features extracted. Repeated mathematical 
operations of convolution and pooling result in altered 
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Figure 4. Isocitrate dehydrogenase (IDH) is an independent prognostic factor in gliomas, with mutated IDH1 and IDH2 having improved prognosis 
compared to gliomas with wild-type IDH. Gradient and intensity statistics texture features within edema in our preliminary work were found to dis-
criminate IDH1 mutation versus wild-type gliomas on n = 78 studies.90
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representations of the imaging data and capture several 
features including (but not limited to) edge detection, color 
variations, sharpening, blurring, and focusing. During the 
training phase, guided by a loss function (which estimates 
the difference between the labels and predictions), the 
CNN determines the weights of these convolution filters in 
recognizing subtle visual signatures hidden in images.

In the context of brain tumors, Lao et al.81 developed a 
DL-based radiomics model using Gd-T1, T2w, T2w-FLAIR 
MRI protocols and clinical data (age and KPS) from 112 
GBM patients and obtained a C-index of 0.71 in predicting 
OS. In a recent study, Bae et al.107 demonstrated that a deep 
neural nets can distinguish GBMs from metastasis with an 
accuracy of 0.95 (95% CI, 0.92–0.99). In another study by 
Han et al.,108 a bi-directional recurrent CNN on 260 TCGA-
GBM patients was developed to obtain an accuracy of 62% 
in predicting MGMT gene status on an independent test 
data using multi-parametric MRI.

Limitations

While highly promising, a key challenge in enabling clin-
ical utility of radiomic/radiogenomic approaches is to 
demonstrate their generalizability to variations in image 
acquisition protocols across scanners and sites. Sources 
of variations in MRI acquisition often include differences in 
image contrast, voxel resolutions, slice thicknesses, image 
reconstruction methods, magnetic field strengths, echo 
times, and repetition times. This issue of reproducibility 
of radiomic features has become even more pertinent in 
retrospective studies that involve publicly available reposi-
tories such as TCGA-GBM and Ivy GAP, where image scans 
are pooled-in from different institutions.

Several efforts are currently underway to fill these tech-
nical gaps, including attempting to standardize the image 
acquisition, preprocessing, segmentation guidelines, 
and radiomic features extraction pipelines across mul-
tiple sites.109 Most recently, the image biomarker stand-
ardization initiative has provided best-practice guidelines 
for standardizing feature extraction pipelines from MRI 

scans from different sites and scanners.110 Additionally, 
open-source software platforms such as Cancer Imaging 
Phenomics Toolkit, which is specifically developed for 
neuro-oncology applications111 as well as a more gener-
alized Pyradiomics112 platform, also aim to provide the 
medical community with standardized set of pipeline 
for radiomic feature analysis. Additionally, a few recent 
studies113–115 have explored the issue of repeatability, 
which refers to the variability in radiomic features across 
scans obtained at 2 different times on the same scanner, as 
well as reproducibility, which is defined as the variations 
in radiomic features on account of differences in image 
acquisition across sites and scanners. These repeatability 
and reproducibility radiomic studies have been conducted 
by leveraging test–retest datasets or phantom studies with 
varying imaging acquisition protocols. However, rigorous 
analysis is warranted to improve the generalizability of 
radiomic features, in terms of repeatability, reproducibility 
as well as efficacy, across large multi-site cohorts (prefer-
ably using retrospective clinical trial datasets). Another im-
portant aspect of the radiomic pipeline is the segmentation 
of the tumor habitat. Manual tumor segmentation is not 
only labor intensive, but is also affected by inter-observer 
variability.5,16 While some radiomic studies use automatic 
and semiautomatic methods for segmentation, the ex-
isting segmentation algorithms are not consistent among 
different research groups, and may further have an impact 
on the radiomic analysis as well as downstream prognostic 
and predictive analysis.

Similarly, while the advent of DL networks has opened 
new avenues of research in GBM analysis, it comes with 
its own set of limitations. Unlike the radiomic features that 
often provide at least some degree of interpretability, DL 
features are considered more of a “black-box”.116 These deep 
features are limited in their explanatory capacity with nei-
ther a set of diagnostic rules nor an insight into the results. 
Additionally, DL models are limited by the relative sparsity 
of training samples, which is even more relevant in rare can-
cers such as GBMs, where obtaining very large data cohorts 
may not be feasible. Table 1 briefly contrasts the advantages 
and disadvantages of expert-based, radiomics and DL-based 
approaches in the context of brain tumor characterization.

  
Table 1. Comparison of Radiomics and Deep Learning-Based Approaches

Expert-Based Evaluation Radiomics Deep Learning

Advantages Limitations Advantages Limitations Advantages Limitations

Observation-
driven

Qualitative/
semiquantitative

Hand-
crafted 
engineered 
features

Impacted by variance in 
image acquisition param-
eters introduced across 
sites and scanners

Domain 
agnostic data-
driven

Known as “black-
box” due to limited 
biological interpret-
ability offered the 
deep featuresExperience-

driven
Labor intensive Often dependent on seg-

mentation of the tumor 
habitat

Low computa-
tional costs

Intra- and inter-
observer variability

Hand-
crafted 
engineered 
features

Often used for small retro-
spective data and may not 
be generalizable

Does not re-
quire segmen-
tation of tumor 
habitat

Limited by relative 
sparsity of training 
samples, not always 
suited for applica-
tions with limited 
availability of well-
curated samples

Abundant histor-
ical literature

Poor reproducibility

  



iv11Beig et al. Introduction to radiomics and radiogenomics
N

eu
ro-O

n
colog

y 
A

d
van

ces

Conclusion and Future Scope

Radiomic, radiogenomic, and DL studies have made 
notable progress in the last few years and have dem-
onstrated potential in the field of neuro-oncology, in-
cluding aiding in diagnosis, outcome prediction, as 
well as evaluating response to both conventional and 
experimental treatments.80,89,97 However, for clinical 
deployment of these approaches, a few important con-
siderations need to be accounted for. First, it may be im-
portant to establish causal inference of the radiogenomic 
associations between radiomic features and the under-
lying tumor biology, either through controlled preclin-
ical models or spatially co-localized imaging and -omics 
datasets.117 Second, rigorous repeatability, reproduc-
ibility, and efficacy analysis of these approaches will 
need to be conducted across large multi-site retrospec-
tive cohorts. These large multi-institutional retrospec-
tive studies could then pave the way for prospective 
randomized trials to evaluate the efficacy of radiomic 
and radiogenomic markers in predicting response to 
treatment and guiding treatment decisions. Lastly, for 
translation of radiomic/radiogenomic/DL models as 
decision support in a clinical setting, careful planning 
will be needed in order to integrate the human and 
machine interpretations together and improve diag-
nostic and prognostic reads. Hence, unified efforts from 
all stakeholders including neuro-radiologists, neuro-
oncologists, neuro-surgeons, along with data scientists, 
and machine learning researchers will be required to-
ward development of these models from conception 
to deployment. Such cross-disciplinary collaboration 
will ensure that the tools being developed are tailored 
and aligned to benefit the patient in a variety of clinical 
settings including cancer screening, diagnosis, predic-
tion of prognosis, and evaluating treatment response in 
neuro-oncology.
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