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Abstract

The olfactory system removes correlations in natural odors using a network of inhibitory

neurons in the olfactory bulb. It has been proposed that this network integrates the response

from all olfactory receptors and inhibits them equally. However, how such global inhibition

influences the neural representations of odors is unclear. Here, we study a simple statistical

model of the processing in the olfactory bulb, which leads to concentration-invariant, sparse

representations of the odor composition. We show that the inhibition strength can be tuned

to obtain sparse representations that are still useful to discriminate odors that vary in relative

concentration, size, and composition. The model reveals two generic consequences of

global inhibition: (i) odors with many molecular species are more difficult to discriminate and

(ii) receptor arrays with heterogeneous sensitivities perform badly. Comparing these predic-

tions to experiments will help us to understand the role of global inhibition in shaping normal-

ized odor representations in the olfactory bulb.

Introduction

Sensory systems encode information efficiently by removing redundancies present in natural

stimuli [1, 2]. In natural images, for instance, neighboring regions are likely of similar bright-

ness and the image can thus be characterized by the regions of brightness changes [3]. This

structure is exploited by ganglion cells in the retina that respond to brightness gradients by

receiving excitatory input from photo receptors in one location and inhibitory input from the

surrounding [4]. This typical center-surround inhibition results in neural patterns that repre-

sent natural images efficiently [5]. Similarly, such local inhibition helps separating sound fre-

quencies in the ear and locations touched on the skin [6]. Vision, hearing, and touch have in

common that their stimulus spaces have a metric for which typical correlations in natural sti-

muli are local. Consequently, local inhibition can be used to remove these correlations and

reduce the high-dimensional input to a lower-dimensional representation.

The olfactory stimulus space is also high-dimensional, since odors are comprised of many

molecules at different concentrations. Moreover, the concentrations are also often correlated,

e.g., because the molecules originate from the same source. However, these correlations are
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not represented by neighboring neurons in the olfactory system, since there is no obvious sim-

ilarity metric for molecules that could be used to achieve such an arrangement [7]. Because the

olfactory space lacks such a metric, local inhibition cannot be used to remove correlations to

form an efficient representation [8–10]. Consequently, the experimentally discovered inhibi-

tion in the olfactory system [11] likely affects neurons irrespective of their location. Such global

inhibition could for instance normalize the activities by their sum, which has been observed

experimentally [12, 13]. This normalization cannot reduce the correlation structure of odors,

but it could help separating the odor composition (what is present?) from the odor intensity

(how much is there?) [14, 15]. This separation is useful, since the composition identifies an

odor source, while the intensity information is necessary for finding or avoiding it. However,

how global inhibition shapes such a bipartite representation of natural odors is little

understood.

In this paper, we study a simple model of the olfactory system that resembles its first pro-

cessing layers, which transform the odor representation successively [16, 17], see Fig 1. Our

model connects previous results from simulations of the neural circuits [18–23] to system-

level descriptions of the olfactory system [24–27]. To arrive at a general model of olfaction that

applies to insects and mammals, we chose a simplified description, which focuses on global

inhibition, as described in the next section. This global inhibition leads to normalization,

which separates the odor composition from its intensity and encodes it in a sparse representa-

tion. The inhibition strength controls the trade-off between the sparsity and the transmitted

information, which influences how well this code can be used to discriminate odors in typical

olfactory tasks. The model reveals two generic consequences of global inhibition: (i) odors

comprised of many different molecules exhibit sparser representations and should thus be

more difficult to distinguish and (ii) overly sensitive receptors could dominate the sparse

responses and arrays with heterogeneous receptors should thus perform poorly.

1 Simple Model of the Olfactory System

Odors are blends of odorant molecules that are ligands of the olfactory receptors. We describe

an odor by a vector c ¼ ðc1; c2; . . . ; cNL
Þ that specifies the concentrations ci of all NL detectable

ligands (ci� 0). Generally, only a small subset of the NL * 105 ligands are present in natural

odors, so most of the ci will typically be zero. The ligands in an odor are detected by olfactory

receptor neurons, which reside in the nose in mammals and in the antenna in insects [28].

Each of these neurons expresses receptors of one of NR genetically defined types, where

NR� 50 for flies [16], NR� 300 for humans [29], and NR� 1000 for mice [30]. The excitation

Fig 1. Schematic picture of our model describing the signal processing in the olfactory bulb. An odor

comprised of many ligands excites the olfactory receptors and the signals from all receptors of the same type

are accumulated in respective glomeruli. Associated projections neurons receive excitatory input from a

single glomerulus and are subject to global inhibition, mediated by a network of local neurons. The activity of

the projection neurons form a sparse, concentration-invariant odor representation.

doi:10.1371/journal.pone.0166456.g001
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of all receptor neurons of the same type is accumulated in associated glomeruli [31], whose

excitation pattern forms the first odor representation, see Fig 1. Here, the large number of

ligands and their possible mixtures are represented by a combinatorial code, where each ligand

typically excites multiple receptor types [32]. It has been shown experimentally that the excita-

tion en of the glomerulus associated with receptor type n can be approximated by a linear func-

tion of the ligand concentrations c [33, 34],

en ¼
XNL

i¼1

Snici ; ð1Þ

where Sni denotes the sensitivity of glomerulus n to ligand i. We here consider a statistical

description of combinatorial coding by studying random sensitivity matrices with entries

drawn independently from a log-normal distribution. This distribution is parameterized by

the mean sensitivity �S and the standard deviation λ of the underlying normal distribution.

This choice is motivated by experimental measurements, which also suggest that λ� 1 for flies

and humans [27]. The random sensing implied by these sensitivities has been discussed in

terms of compressed sensing [35, 36] and we showed previously that it typically decorrelates

stimuli, thus leading to near-optimal odor representations on the level of glomeruli [27].

In contrast to our previous model, we here consider the odor representation encoded by

projection neurons (mitral and tufted cells in mammals), which constitute the next layer after

the glomeruli, see Fig 1. Projection neurons typically receive excitatory input from a single glo-

merulus [37] and inhibitory input from many local neurons (granule cells in mammals),

which are connected to other projection neurons and glomeruli [15, 31]. The activity an of the

projection neurons associated with receptor type n is a sigmoidal function of ligand concentra-

tions, e.g., due to saturation of the receptors [38, 39]. Additionally, all signals are subject to

noise, both from stochastic ligand-receptor interactions and from internal processing [40],

which limits the number of distinguishable output activities. We capture both effects by

considering the simple case where only two activities an can be distinguished. Here, the projec-

tion neurons are active when their excitatory input, the respective excitation en, exceeds a

threshold γ,

an ¼
0 en � g

1 en > g :
ð2Þ

(

Generally, γ could depend on the type n, but we here consider a simple mean-field model,

where all types exhibit the same threshold. Nevertheless, this threshold could still depend on

global variables. Experimental data [12, 13, 34, 41–45] and modeling of the local neurons [15,

22] suggest that the total excitation of all glomeruli inhibits all projection neurons. To capture

this we postulate that the threshold γ is a function of the total excitation, where we for simplic-

ity consider a linear dependence,

g ¼
a

NR

XNR

n¼1

en : ð3Þ

Here, α is a parameter that controls the inhibition strength. In general, γ could be a non-linear

function of the excitations, but the functional form cannot be inferred from current experi-

mental data and we thus here consider the simple linear case to study how an adaptive thresh-

old influences the odor representations.

Taken together, our model of the olfactory system comprises NR communication channels,

each consisting of receptors, a glomerulus, and projection neurons, which interact via global
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inhibition, see Fig 1. The Eqs (1)–(3) describe how this system maps an odor c to an activity

pattern a ¼ ða1; a2; . . . ; aNR
Þ. The amount of information that can be learned about c by

observing a is quantified by the mutual information I, which reads

I ¼ �
X

a

PðaÞ log 2PðaÞ : ð4Þ

Here, the probability P(a) of observing output a is given by P(a) =
R

P(a|c)Penv(c) dc. The con-

ditional probability P(a|c) of observing a given c describes the processing in the olfactory sys-

tem and follows from theEqs (1)–(3). In contrast, Penv(c) denotes the probability of

encountering an odor c, which depends on the environment. Consequently, the information I
is not only a function of the sensitivity matrix Sni and the inhibition strength α, but also of the

environment in which the receptors are used [27].

Natural odor statistics are hard to measure [46] and we thus cannot infer the distribution

Penv(c) from experimental data. Instead, we consider a broad class of distributions parameter-

ized by a few parameters. For simplicity, we only consider uncorrelated odors, where the con-

centrations ci of ligands are independent. We denote by pi the probability that ligand i is part

of an odor. If this is the case, the associated ci is drawn from a log-normal distribution with

mean μi and standard deviation σi. This choice allows us to independently adjust the mean

mixture size s = ∑i pi, the mean of the total concentration ctot = ∑i ci, and the concentration var-

iations
si
mi

. Averaged over all odors, ci then has mean hcii = pi μi and variance

var ðciÞ ¼ ðpi � p2
i Þm

2
i þ pis

2
i . Note that typical odors can have hundreds of different ligands

[46], but this is still well below NL * 105 and we thus have 1 ≪ s≪NL.

2 Results

2.1 Global inhibition leads to concentration-invariant, sparse

representations

Our model has the interesting property that the odor representation a does not change when

the odor c or the sensitivities Sni are scaled by a positive factor. This is because both the excita-

tions en and the threshold γ are linear in c and Sni, see Eqs (1) and (3), and the activities an only

depend on the ratio en/γ, see Eq (2). In fact, these equations can be interpreted as normaliza-

tion of the excitations by the total excitation followed by thresholding with the constant thresh-

old α/NR. Since the representation a does not depend on ctot, it only encodes relative ligand

concentrations, i.e., the odor composition. This property is called concentration invariance

and corresponds to the everyday experiences that odors smell the same over many orders of

magnitude in concentration [23, 47, 48]. Indeed, experiments suggest that the activity of pro-

jection neurons is concentration-invariant [49, 50] and exhibits more uniform distances

between odors [38, 50], indicating that they encode the odor composition efficiently.

To understand how odor compositions are encoded in our model, we start with numerical

simulations of Eqs (1)–(3) as described in section A of the S1 Appendix. Fig 2A shows the exci-

tations en corresponding to an arbitrary odor. Here, the excitation threshold is 1.4 times the

mean excitation, and only three channels are active (orange bars). The corresponding histo-

gram in Fig 2B shows that the number of active channels is typically small for this inhibition

strength when odors are presented with statistics Penv(c). Moreover, the magnitude of the Pear-

son correlation coefficient between two channels is typically only 1%, see section A of the S1

Appendix. This weak correlation is expected for the uncorrelated odors and random sensitivity

matrices that we consider here and explains why the histogram in Fig 2B is close to a binomial
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distribution. The odor representations are thus mainly characterized by the mean channel

activity hani.

The mean channel activity hani depends on the inhibition strength α, the sensitivities Sni,

and the odor statistics Penv(c). To discuss these dependences, we next introduce an approxima-

tion based on a statistical description of the associated excitation en. Here, we define the nor-

malized concentrations ĉi ¼ ci=ctot and normalized excitations ên ¼ en=ðctot
�SÞ, since an is

independent of ctot and �S. The statistics of ĉi can be estimated in the typical case where odors

are comprised of many ligands, see section B of the S1 Appendix. In the particular case where

the ligands are identically distributed the mean is hĉii ¼ NL
� 1 and the variance reads

var ðĉiÞ � ð1 � pþ s2m� 2Þ=ðpNL
2Þ. Generally, ĉi varies more if the underlying ci has higher

coefficient of variation σi/μi or if the mixture contains fewer ligands. The normalized

excitation ên is defined such that its mean is 1 and the associated variance can be written as a

product of the external contribution Vext ¼
P

ihĉ
2
i i due to odors and the internal contribution

Vint = var(Sni)hSnii
−2 due to sensitivities, see section B of the S1 Appendix. In the simple case of

identically distributed ligands, we have

var ðênÞ ¼ VextVint Vext �
1

s
1þ

s2

m2

� �

Vint ¼ el2

� 1 ; ð5Þ

for 1 ≪ s≪ NL, see section B of the S1 Appendix. The normalized excitations thus vary more if

odors contain fewer ligands, concentrations fluctuate stronger, or sensitivities are distributed

more broadly. Finally, the mean channel activity hani is given by the probability that the excita-

tion en exceeds the threshold γ, see Eq (2). This is equal to the probability that the normalized

excitation ên exceeds the normalized threshold ĝ ¼ g=ð�SctotÞ. Replacing ĝ by its expectation

value hĝi ¼ a and using log-normally distributed en, we obtain

hani �
1

2
erfc

zþ ln a

2z
1
2

 !

with z ¼
1

2
ln 1þ VextVintð Þ ; ð6Þ

see section C of the S1 Appendix. Fig 2C shows that this is a good approximation of the

numerical results, which have been obtained from ensemble averages of Eq (2). Note that hani

is independent of the dimensions NL and NR of the stimulus and the representation space,

both in the approximation given in Eq (6) and for the numerical simulations, see Fig A in S1

Appendix. This is because we consider the simple case of uncorrelated odors and uncorrelated

sensitivities.

Fig 2. Global inhibition with thresholding leads to sparse odor representations a. (A) Excitations en for an

arbitrary odor. Active channels (orange) have an excitation above the threshold (red line, inhibition strength α = 1.4).

The right axis indicates the normalized excitation ê^n ¼ enNR=
P

mem. (B) Histogram of the number of active channels

compared to a binomial distribution (black line) with the same mean for α = 1.4. (C) Mean channel activity hani as a

function of α. The approximation given by Eq (6) (solid line) is compared to numerical simulations (symbols, standard

error of the mean smaller than symbol size). The gray dotted line indicates a single expected active channel in

humans, hani ¼
1

300
. (A–C) Additional model parameters are NR = 32, NL = 256, pi = 0.1, μi = σi = 1, and λ = 1.

doi:10.1371/journal.pone.0166456.g002
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The mean activity hani can also be interpreted as the mean fraction of channels that are acti-

vated by an odor, such that small hani corresponds to sparse odor representations. Fig 2C

shows that in our model this is the case for large inhibition strength α, where hani*e−ν with

ν� (ln α)2/(4z), see section C of the S1 Appendix. Since sparse representations are thought to

be efficient for further processing in the brain [14, 51] the inhibition strength α could be

tuned, e.g., on evolutionary time scales, to achieve an activity hani that is optimal for process-

ing the odor representation downstream. If the optimal value of hani is the same across ani-

mals, our theory predicts that inhibition is stronger in systems with more receptor types.

However, this simple argument is not sufficient, since hani also depends on the variations in

the natural odor statistics and the receptor sensitivities, which determine Vext and Vint, respec-

tively. In particular, the width λ of the sensitivity distribution could also be under evolutionary

control. However, experimental data suggests that both flies and humans exhibit λ� 1 [27].

Additionally, we show in Fig B of S1 Appendix that much smaller or larger values lead to

extremely sparse representations, such that we will only consider λ = 1 in the following. In this

case, the inhibition strength α controls the sparsity of the odor representation in our simple

model of the olfactory system.

2.2 Sparse coding transmits useful information

One problem with sparse representations is that they cannot encode as many odors as dense

representations. There is thus a maximal sparsity at which typical olfactory tasks can still be

performed. In general, the performance of the olfactory system can be quantified by the trans-

mitted information I, which is defined in Eq (4). If we for simplicity neglect the small correla-

tions between channels, I can be approximated as [27]

I � �
XNR

n¼1

hani log 2hani þ ð1 � haniÞ log 2ð1 � haniÞ½ � : ð7Þ

A maximum of NR bits is transmitted when half the channels are active on average, hani ¼
1

2
.

In our model, this is the case for weak inhibition, α� 1, see Fig 2C. For significant inhibition,

α> 1, few channels are typically active and the transmitted information is smaller, see also Fig

C in S1 Appendix. In the limit hani�1, the information is approximately given by

I � 1

ln 2 NRhani � ð1 � ln haniÞ, which implies that even if only 10% of the channels are active

on average, the information I is still almost half of the maximal value of NR bits. However,

large information I does not automatically indicate a good receptor array, since only accessible

information that can be used to solve a given task matters [52, 53].

To test whether sparse representations are sufficient to solve typical olfactory tasks, we next

study how well odors can be discriminated in our model. As a proxy for the discriminability,

we calculate the Hamming distance d between the odor representations, which is given by the

number of channels with different activity. In the simple case of unrelated odors, which have

no ligands in common, the expected distance hdi is approximately given by the total number

of active channels in both representations. Consequently, unrelated odors can be distinguished

even if their representations are very sparse. However, realistic tasks typically require distin-

guishing similar odors. We thus next study the discriminability of odors that vary in the rela-

tive concentrations of their ligands, their size, and their composition.

We start by determining the maximal dilution
cb
ct

at which a target odor at concentration

ct can still be detected in a background of concentration cb. We calculate the expected differ-

ence hdi between the associated representations from the probability that a given channel

changes its activity when the target is added, see section D of the S1 Appendix. Since this
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probability is the same for all channels, hdi is proportional to the number NR of channels. For

the simple case where both the target and the background are a single ligand, Fig 3A shows

that hdi decreases for smaller target concentrations and is qualitatively the same for all inhibi-

tion strengths α. For large dilutions
cb
ct

, hdi is inversely proportional to the dilution, hdi / NR
ct
cb

.

Since the addition of the target can only be detected reliably if hdi>2, which corresponds to a

situation where one channel becomes inactive and another one active, our model predicts that

doubling the number NR of channels also doubles the concentration sensitivity. Fig 3A thus

implies that mice (NR� 1000) should be able to detect the addition of a target even if it is

almost a hundred times more dilute than the background, which is close to the threshold that

has been found experimentally [54]. Conversely, flies (NR� 50) should fail for very small dilu-

tion factors.

We next study odors comprised of many ligands, since typical odors are blends [46]. For

simplicity, we consider the detection of a single target ligand in a background mixture of vary-

ing size s when the target ligand and the ligands in the background have equal concentration,

such that the target dilution is s. Fig 3B shows that the qualitative dependence of hdi on the

dilution is similar to the single ligand case in panel A, but the maximal dilution for detecting

the target is different. For instance, the model predicts that mice cannot identify the addition

of the target ligand to a background consisting of more than ten ligands, while the maximal

dilution was almost one hundred in the case of single background ligands. Consequently, the

discrimination performance seems to drop significantly when larger mixtures are considered.

This qualitatively agrees with experiments where humans are not able to identify all ligands in

mixtures of more than three ligands [55, 56] and they fail to detect the presence or absence of

ligands in mixtures of more then 15 ligands [57].

Even if humans cannot identify individual ligands in complex odors, they might still be able

to distinguish two such odors. To study this, we next compare the representations of two

odors that each contain s ligands, sharing sB of them, for the simple case where all ligands have

the same concentration. Fig 3C shows that the distance hdi between the two odors decreases

with larger sB, i.e., more similar odors are more difficult to discriminate. However, sB only has

a strong effect if more than about 80% of the ligands are shared between odors. Conversely,

the inhibition strength α and the mixture size s significantly influence hdi for all values of sB.

This agrees with the results shown in Fig 3B, where hdi exhibits a similar dependence on α and

s. While it is expected that the performance decreases with large inhibition strength α since

fewer channels are active, the strong dependence on the size s is surprising.

Fig 3. Sparse coding is sufficient to distinguish odors with different relative ligand concentrations, mixture

size, and composition. (A) Mean distance hdi between the representations of a background ligand at concentration

cb and an odor with an additional target ligand at concentration ct as a function of the dilution cb/ct for various inhibition

strengths α. (B) Distance hdi resulting from adding a ligand to an odor comprised of s ligands as a function of s for

various α. (C) Distance hdi between the representations of two odors with s ligands, sharing sB of them, as a function

of the similarity sB/s for few ligands (s = 8, solid lines) and many ligands (s = 16, dashed lines). The colors indicate the

same α as in the other panels. (A–C) The gray dotted lines indicate the threshold hdi = 2 for NR = 50, 300, 1000

(corresponding to flies, humans, and mice; top to bottom). The width of the sensitivity distribution is λ = 1.

doi:10.1371/journal.pone.0166456.g003
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2.3 Larger mixtures have sparser representations

Why are mixtures of many ligands more difficult to discriminate in our model? Since correla-

tions between channels seem to be negligible, the most likely explanation is that larger mix-

tures activate fewer channels. To test this hypothesis, we determine the activity hani in the

simple case where all ligands in an odor have the same concentration. Because of the normali-

zation, the value of this concentration does not matter and hani only depends on the inhibition

strength α and the mixture size s. In the limit of large mixtures (s� 1), the approximation

given in Eq (6) yields hani*e−βs with β* (ln α)2, see section C of the S1 Appendix. In this

case, the activity hani thus decreases exponentially with s and this decrease is stronger for larger

α. Consequently, larger mixtures activate fewer channels and it is thus less likely that a small

change in such odors alters the activation pattern a.

Larger mixtures activate fewer channels because the respective excitations en have a smaller

variability. For an odor with s ligands of equal concentration, en is proportional to the sum of s
sensitivities Sni, see Eq (1). Consequently, en can be considered as a random variable whose

mean heni and variance var(en) scale with s. The activity hani is given by the fraction of excita-

tions that exceed the threshold γ, which also scales with s. This fraction typically scales with the

coefficient of variation var ðenÞ
1
2heni

� 1
, which is proportional to s� 1

2 and is thus smaller for

larger mixtures. Larger mixtures thus activate fewer channels because there are fewer excita-

tions that are much larger than the mean, see Fig 4A. This is a direct consequence of the

assumption that the excitation threshold γ scales with the mean excitation and this result does

not depend on other details of the model. Conversely, the dependence of hani on the inhibition

strength α is model specific, since it follows from the shape of the tail of the excitation distribu-

tion. In particular, the influence of the mixture size on hani is insignificant for weak inhibition,

α� 1, because approximately half the channels are activated irrespective of the variance var

(en).

This qualitative explanation illustrates that depending on the variability of the excitations

different odors can have representations with very different sparsities. Indeed, we find that the

sparsity changes over several orders of magnitude as a function of the mixture size s in our

model, see Fig 4B. Moreover, the concentration variability s

m
of the individual ligands also has a

strong effect on the sparsity, see Fig 4C. This is because larger s

m
implies larger variations in the

excitations, such that more channels exceed the threshold and become active. In fact, this

dependence of hani on s and s

m
is also qualitatively captured by the analytical approximation

Fig 4. Larger mixtures activate fewer channels. (A) Comparison of the excitations en for odors with few ligands

(mixture size s = 8, upper panels) and many ligands (s = 64, lower panels) at α = 1.3. en for a single odor (left panels)

and histograms for all odors (right panels) are shown. Larger mixtures exhibit fewer active channels (dark blue), for

which the excitations are above threshold (red line). (B) Numerically determined hani as a function of s for various

inhibition strengths α at small (σ/μ = 1, solid lines) and large concentration variability (σ/μ = 10, dashed lines) at

NL = 104. (C) Numerically determined hani as a function of σ/μ for various α. (A–C) Additional model parameters are

NR = 32, NL = 256, pi = 0.1, μi = σi = 1, and λ = 1. The gray dotted line in B and C indicates a single expected active

channel in humans, hani ¼
1

300
.

doi:10.1371/journal.pone.0166456.g004
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given in Eq (6), which explicitly depends on the odor variability Vext defined in Eq (5). Taken

together, our model shows that the sparsity of the odor representations strongly depend on the

odor statistics Penv(c).

2.4 Effective arrays have similar receptor sensitivities

So far, we considered homogeneous receptor arrays, where all receptor types have the same

average sensitivity. However, receptors vary in their copy numbers [58], which implies differ-

ent average sensitivities, see section E of the S1 Appendix. Additionally, point mutations of a

receptor gene can change this receptor’s sensitivities to almost all ligands [59]. Consequently,

typical receptor arrays might be heterogeneous, where some receptor types have larger mean

sensitivities than others. Such heterogeneous receptor arrays might be sub-optimal, since a

channel with overly sensitive receptors will contribute significantly to the common threshold

γ, suppress the activity of other channels, and could thus limit the coding capacity of the sys-

tem, see Fig 5A.

We study heterogeneous receptor arrays by consider sensitivity matrices Sni ¼ xnSiid
ni , where

ξn denotes the mean sensitivity of receptor type n and Siid
ni is the sensitivity matrix that we dis-

cussed so far, i.e., it is a random matrix where all entries are independently drawn from a log-

normal distribution described by the mean �S and width λ. For this model, the mean excitation

threshold is hgi ¼ a�ShctotixtotNR
� 1 where ξtot = ∑n ξ n. The expected channel activity is approxi-

mately given by

hani � 1 � F
axtot

Nrxn

� �

; ð8Þ

where FðênÞ is the cumulative distribution function of the normalized excitations ên for ξn = 1,

whose mean is hêni ¼ 1 and whose variance is given by Eq (5). Note that hani does not change

if all ξn are multiplied by the same factor. In particular, the expression above reduces to hani �

1 − F(α) and thus Eq (6) if all ξn are equal.

We first discuss the influence of the receptor sensitivities ξn by only varying one type, i.e.,

we change ξ1 while setting ξn = 1 for n� 2. Fig 5B shows that for fixed channel activity hani the

transmitted information I is maximal for a homogeneous receptor array (ξ1 = 1). I is reduced

for smaller ξ1 and for ξ1 = 0 it reaches the value I0 of an array where the first receptor was

removed. Conversely, I can drop well below I0 when ξ1 is increased above 1. In this case, the

Fig 5. Receptors with diverse mean sensitivities make poor arrays. (A) Comparison of the excitations en for

homogeneous (ξ1 = 1, upper panels) and heterogeneous receptors (ξ1 = 2, lower panels). en for the same arbitrary

odor (left panels) and histograms for all odors (right panels) are shown for the first receptor (n = 1, orange) and all

other receptors (n� 2, blue). Dark bars indicate excitations that are above the threshold (red line, inhibition strength

α = 1.3). (B) Information I given by Eq (7) as a function of the sensitivity ξ1 of the first receptor. The channel activity

hani calculated from Eq (8) is set to the given value by adjusting α. I is shown relative to the information I0 of a system

without the first receptor (dotted line). (C) Information I (line, mean; shaded area indicates standard deviation) of log-

normally distributed ξn as a function of the variation var(ξn)hξni
−2 for various hani. (A–C) Remaining parameters are

NR = 32, NL = 256, pi = 0.1, μi = σi = 1, and λ = 1.

doi:10.1371/journal.pone.0166456.g005
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large excitation of the affected channel not only leads to its likely activation, but it also raises

the threshold γ and thereby inhibits other channels, see Fig 5A. In the extreme case of very

large ξ1, this channel will always be active while all other channels are silenced, which implies

I = 0. There is thus a critical value of ξ1 beyond which removing the receptor from the array is

advantageous for the overall performance. Fig 5B shows that increasing the sensitivity of a

receptor by only 40% can make it useless in the context of the whole array if representations

are sparse.

So far, we only varied the sensitivity of a single receptor. To test how variations in the sensi-

tivities of all receptors affect the information I, we next consider log-normally distributed ξn.

Here, vanishing variance of ξn corresponds to a homogeneous receptor array. Fig 5C shows

that small variations in ξn can strongly reduce the transmitted information I. Since I limits the

discriminative capability of the receptor array, this suggests that receptor arrays with heteroge-

neous sensitivities perform worse.

This simple model shows that the excitation statistics of the different channels determine

the properties of the resulting odor representation. In particular, receptors that have lower

excitations on average might be suppressed often and thus contribute less to the odor informa-

tion. Since the excitation statistics are influenced both by the sensitivities Sni and the odor sta-

tistics Penv(c), this suggests that the sensitivities should be adjusted to the odor statistics. In an

optimal receptor array, the sensitivities are chosen such that all channels have the same proba-

bility to become active.

3 Discussion

We studied a simple model of odor representations, which is based on normalization and a

non-linear gain function. This model separates the odor composition, encoded in the activity

a of the projection neurons, from the odor intensity, which could be encoded by the total exci-

tation etot or the threshold level γ [60]. For significant inhibition the representation a is sparse

and the set of active projection neurons provides a natural odor ‘tag’ that could be used for

identification and memorization in the downstream processing [35].

Sparse representations reduce the coding capacity and transmit less information than dense

ones. However, even if the mean activity is hani = 0.01 and thus 50 times smaller than in maxi-

mally informative arrays with hani = 0.5, the transmitted information I is only reduced by a

factor of 12, see Eq (7). For humans with NR = 300, this yields I� 25 bits, allowing to encode

2I� 107 different odor compositions. Note that the total information Itot also includes infor-

mation Iint about the odor intensity, Itot = I + Iint. Here, Iint� 10 bits would be sufficient to

encode the total concentration over a range of 10 orders of magnitude with a resolution of 5%,

typical for humans [61]. In this case, our model compresses the 300 bits of a maximally infor-

mative representation on the level of glomeruli [27] to only Itot� 35 bits on the level of projec-

tion neurons.

The model discussed here is similar to our previous model, where we discussed representa-

tions on the level of the glomeruli [27]. Both models use a maximum entropy principle to

determine properties of optimal receptor arrays. To achieve this, the receptor sensitivities

must be tailored to the odor statistics in both models. The main difference of the models is the

global inhibition discussed here, which separates the odor composition from its intensity and

thus removes the correlation between the glomeruli excitation and the odor intensity [62].

Consequently, odors can then be discriminated at all concentrations, while this was only possi-

ble in a narrow concentration range in the glomeruli model [27]. The additional normalization

is thus useful to separate odors, even if the projection neurons encode less information than

the respective glomeruli, see Fig C in S1 Appendix. To estimate this information, we consider

Normalized Neural Representations of Complex Odors

PLOS ONE | DOI:10.1371/journal.pone.0166456 November 11, 2016 10 / 16



binary outputs in both models, which corresponds to very noisy channels. However, the glo-

meruli model discusses arrays of noisy receptor, while we here consider perfect receptors

whose signal is first normalized and then subjected to noise. This additional processing

reduces correlations and leads to sparse representations, which might simplify downstream

computations. Consequently, this model is suitable for describing natural olfaction, where the

capacity for the downstream computations is limited, while the glomeruli model is relevant for

artificial olfaction [63], since computers have enough power to handle high-dimensional

signals.

Sparse responses of projection neurons have been observed in experiments [39, 64, 65]. For

instance, in mice 15% of the projection neurons respond to a given single ligand [13], suggest-

ing significant inhibition. However, in locust about two third of the projection neurons

respond to any given odor [66], which implies weak inhibition. It is thus conceivable that

some animals exhibit sparse representations while others have maximally informative ones,

although additional experiments are needed to characterize the representations better. A direct

experiment could test whether the odor percept changes when the weakly responding glomer-

uli are disabled artificially. Additionally, it will be important to study the representations of

mono-molecular odors and mixtures at various concentration to better resemble the natural

odor statistics. For instance, our simple theory predicts that fewer than 15% of the projection

neurons in mice respond when complex mixtures are presented. Indeed, experiments find that

only 3 to 10% of the projection neurons in mice fire for complex urine odors [67]. Conversely,

the statistics of the activity of projection neurons in flies seem to be independent of the stimu-

lus [68].

Our theory can also be tested by measuring how well odors can be discriminated. For

instance, psycho-physical experiments have shown that humans have difficulties to distinguish

non-overlapping mixtures of more than *30 intensity-matched components [69]. We can use

this observation to estimate the inhibition strength α at which such mixtures excite few chan-

nels and are thus hardly discriminable in our model. Fig 4 shows that this is the case for α� 2,

where only channels whose excitation exceeds twice the mean would be active. Such strong

inhibition would make it difficult to distinguish mixtures of many ligands, while small mix-

tures are easily distinguishable, similar to the experimental results [69]. Conversely, other

experiments indicate that the mixture size only weakly influences the odor discriminability

[70]. However, theses measurements are still consistent with an inhibition strength close to α
� 2, where only few channels have different activities when comparing two odors, see Fig 3C.

If α would be much smaller, almost all mixtures could be distinguished perfectly, while a much

larger α would make it difficult to distinguish any mixtures. Taken together, psycho-physical

experiments suggest that there is significant inhibition, but there is conflicting evidence on

whether the odor discriminability changes with mixture size.

The coding sparsity given by the mean channel activity hani can be adjusted by changing

the inhibition strength α or the width λ of the receptor sensitivity distribution in our model.

Additionally, hani is a function of the natural odor statistics, i.e., the typical number of ligands

in odors and their concentration distribution. Consequently, α or λmust be adjusted to keep

hani constant if the odor statistics change, e.g., because of seasonal changes or migration to a

different environment. This adjustment could happen on multiple timescales, reaching from

evolutionary adaptations of the receptors to near-instantaneous adjustments of the involved

neurons, and it is likely that the global inhibition is regulated on all levels [16]. In this paper,

we investigated the simple case of constant α and λ, which corresponds to slow regulation, but

it is conceivable that α could be regulated on short time scales. For instance, the threshold

could be lowered for more complex odors to improve their discriminability. Our model
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suggests that such additional mechanisms are necessary to efficiently discriminate odors of all

sizes.

Our model also reveals that it is important to control the properties of the individual com-

munication channels to have useful receptor arrays. For instance, increasing the sensitivity of a

given receptor by 40% can be worse then removing it completely, see Fig 5A. Generally, a

receptor array is only effective if the different channels have similar excitations on average.

This suggests that the sensitivities are tightly controlled and maybe even adjusted to the odor

statistics of the environment. On evolutionary time scales, the sensitivities could be regulated

by point mutations of the receptors that change how ligands bind [59]. On shorter time scales,

the sensitivities could be regulated by changing the receptor copy numbers, see section E of the

S1 Appendix. Since this is observed experimentally [58], we predict that the receptor copy

numbers are adjusted such that the excitations of all glomeruli are similar when averaged over

natural odors. Alternatively, variations in the receptor sensitivities could be balanced by more

complex inhibition mechanism. For instance, experiments show that different projection neu-

rons have different susceptibilities to inhibition [43]. Here, the experimentally observed turn-

over of mitral/granule cells and interneurons [71] could adjust the inhibition mechanism

locally, which could optimize the olfactory system for a given environment [54]. Such adapta-

tion of the inhibition mechanism to the current stimulus statistics and more complex models

where the behavioral state of an animal could influence the olfactory bulb by top-down modu-

lation [16] will be interesting to explorer in the future.

Our simplified model neglects many details of the olfactory system [17]. For instance, we

do not consider the dynamics of inhalation and the odor absorption in the mucus [72, 73].

Instead, we here directly parameterize the ligand distribution at the olfactory receptors, where

we for simplicity neglect correlations between ligands. It would be interesting to extend the

model for more complex stimuli and study how the system decorrelates the input, identifies a

target odor in a background, and separates multiple odors from each other. This likely involves

many steps [48] and cannot be done perfectly with a single normalization step and non-linear

gain function. For instance, it might be important to apply gain functions at the level of recep-

tors and the glomeruli to model finite sensitivity and saturation effects [74]. Additionally, it

has been shown that there is additional cross-talk on the level of receptors [75] and glomeruli

[34, 41], which could support decorrelation. Generally, such cross-talk and the inhibition that

we discussed here will be non-linear [76, 77]. This could for instance be modeled by a divisive

normalization model that has been proposed for olfaction [12]. It is also likely that the inhibi-

tion of the projection neurons is not driven by a single global variable. If glomeruli positioning

carried some meaning [9], local inhibition could help separating similar odors by enhancing

the contrast [78]. The discrimination of similar odors could also be improved if projection

neurons had a larger output range, increasing the information capacity per channel. Addition-

ally, the two classes of projection neurons in mammals (mitral and tufted cells) exhibit differ-

ent inhibition dynamics and might thus act as parallel communication channels [79]. Finally,

we completely neglected the temporal dynamics of the olfactory system, which play an impor-

tant role for the adaptation between sniffs [80] and might also influence odor perception

within a single sniff [81–84].
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