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ABSTRACT Many proteobacteria utilize acyl-homoserine lactone quorum-sensing
signals. At low population densities, cells produce a basal level of signal, and when
sufficient signal has accumulated in the surrounding environment, it binds to its re-
ceptor, and quorum-sensing-dependent genes can be activated. A common charac-
teristic of acyl-homoserine lactone quorum sensing is that signal production is posi-
tively autoregulated. We have examined the role of positive signal autoregulation in
Pseudomonas aeruginosa. We compared population responses and individual cell re-
sponses in populations of wild-type P. aeruginosa to responses in a strain with the
signal synthase gene controlled by an arabinose-inducible promoter so that signal
was produced at a constant rate per cell regardless of cell population density. At
a population level, responses of the wild type and the engineered strain were in-
distinguishable, but the responses of individual cells in a population of the wild
type showed greater synchrony than the responses of the engineered strain. Al-
though sufficient signal is required to activate expression of quorum-sensing-
regulated genes, it is not sufficient for activation of certain genes, the late
genes, and their expression is delayed until other conditions are met. We found
that late gene responses were reduced in the engineered strain. We conclude
that positive signal autoregulation is not a required element in acyl-homoserine
lactone quorum sensing, but it functions to enhance synchrony of the responses
of individuals in a population. Synchrony might be advantageous in some situa-
tions, whereas a less coordinated quorum-sensing response might allow bet
hedging and be advantageous in other situations.

IMPORTANCE There are many quorum-sensing systems that involve a transcrip-
tional activator, which responds to an acyl-homoserine lactone signal. In all of the
examples studied, the gene coding for signal production is positively autoregulated
by the signal, and it has even been described as essential for a quorum-sensing re-
sponse. We have used the opportunistic pathogen Pseudomonas aeruginosa as a
model to show that positive autoregulation is not required for a robust quorum-
sensing response. We also show that positive autoregulation of signal production
enhances the synchrony of the response. This information enhances our general un-
derstanding of the biological significance of how acyl-homoserine lactone quorum-
sensing circuits are arranged.
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Quorum sensing (QS) allows bacterial cells to monitor population density, related-
ness, and diffusivity (1–6). QS systems have been shown to control cooperative

bacterial behaviors, and virulence of a number of pathogens is attenuated by mutations
in QS genes (7–13). We are interested in acyl-homoserine lactone (AHL)-mediated QS.
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The basic mechanism of AHL QS was first described for the luminescent marine
bacterium Vibrio fischeri and was originally termed autoinduction (14). Autoinduction
serves to activate the luminescence (lux) genes at sufficiently high V. fischeri densities.
The autoinduction response requires two regulatory genes, luxI, which codes for an AHL
synthase, and luxR, which codes for an AHL-dependent transcriptional activator (15).
Each cell in the population constitutively produces basal levels of the AHL signal, which
is freely permeable through cell membranes (16, 17). When the AHL reaches a sufficient
concentration in the local environment, cells can activate expression of the lux genes,
including luxI (18–20).

We have focused on related QS circuits in the pathogenic species Pseudomonas
aeruginosa. This bacterium has two LuxI-LuxR-like genetic control circuits, LasI-LasR and
RhlI-RhlR. Together these circuits activate hundreds of genes in P. aeruginosa (11, 21).
Like the V. fischeri circuit, the P. aeruginosa lasI and rhlI genes are positively autoregu-
lated by their cognate AHLs and LuxR homologs (22, 23). Positive autoregulation is a
common characteristic of AHL-LuxR-type activator circuits (24). We are interested in
exploring the costs and benefits of this QS-positive autoregulatory loop.

The original term for V. fischeri QS was autoinduction, and the autoinduction of
luminescence was described prior to our understanding that luxI itself is positively
autoregulated (14). Perhaps because of the similarity of the terms autoinduction and
autoregulation, it is not uncommon to read that positive autoregulation of autoinducer
synthesis is an essential element in QS (7, 25–27). We sought to use our model P.
aeruginosa to test the essentiality hypothesis with LasR and LasI. We demonstrate that
populations of P. aeruginosa engineered to produce the AHL signal at a steady rate
regardless of cell population density show autoinduction responses similar to popula-
tions of cells with the wild-type (WT) positively autoregulated lasI gene. Analysis of
individual cells in populations revealed that positive lasI autoregulation leads to more
synchrony in the responses of individuals in the population.

RESULTS
Pseudomonas aeruginosa PAO-SC6 produces 3OC12-HSL constitutively in LB-

MOPS with 0.5% L-arabinose. The LasI-LasR circuit in P. aeruginosa produces and
responds to the autoinducer 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL). In
the WT strain PAO1, lasI is positively autoregulated. Strain PAO-SC6 has a deletion of
the native lasI and an arabinose-inducible lasI inserted at the neutral att site on the
chromosome. We first needed to measure 3OC12-HSL during growth of strain PAO-SC6
to determine whether it was produced at a constant level per cell. We also needed to
determine whether cultures of PAO-SC6 and PAO1 reached a threshold autoinducer
concentration at about the same time during growth. Growth of the two strains with
or without L-arabinose was indistinguishable (Fig. 1A). Figure 1B shows concentrations
of the autoinducer in culture fluid over the growth curve. There was a steep increase
in autoinducer concentration in the WT cultures over a period between about 5 and 6 h
followed by a plateau in autoinducer concentration as cells entered stationary phase.
The WT autoinducer synthesis was not affected by L-arabinose. Strain PAO-SC6 did not
make detectable levels of autoinducer in the absence of L-arabinose. In the presence of
L-arabinose, the increase in autoinducer concentration paralleled the increase in cell
mass, as expected if autoinducer synthesis per cell remained constant throughout
growth. To further analyze the data shown in Fig. 1B, we calculated the rates of
autoinducer synthesis over time between time points in the WT and the PAO-SC6
cultures [the difference in autoinducer concentration]/[the difference in cell density
(OD600) � the difference in time between two time points] (Fig. 1C). In the WT PAO1,
there was a sharp increase in the rate of synthesis between 5 and 6 h, and in strain
PAO-SC6, the derived rate remained unchanged during logarithmic growth. These
experiments confirm the positive autoregulation of signal production in the WT and the
constitutive signal production in strain PAO-SC6.

For strain PAO-SC6, there is a small accumulation of autoinducer between 3 and 4 h
of growth, whereas autoinducer concentrations in WT cultures remain low during this
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time period. Later in growth, the peak autoinducer concentration for the WT PAO1 is
up to 10 times that of strain PAO-SC6 grown in the presence of L-arabinose (Fig. 1B). To
probe the importance of these differences in autoinducer levels and to explore the
sharpness of the QS threshold, we performed an autoinducer titration experiment. We
used a QS-responsive reporter pBS351, which contains a plasI-gfp (plasI being the
promoter for the lasI gene) transcriptional fusion, and measured the autoinducer
concentration required to saturate the reporter response in a lasI-deficient strain
(PAO-SC5). We chose the lasI promoter because lasI is among the earliest QS-
dependent genes to respond to 3OC12-HSL (11). The minimum concentration at which
we could detect a response was about 10 nM, and the response was saturated by about
100 to 200 nM 3OC12-HSL (Fig. 1D). The maximal signal concentration in PAO1 cultures
reached about 10 times this saturating concentration; PAO1 makes significantly more
autoinducer than necessary for a full response. This overproduction of autoinducer is a
demonstrable cost to positive 3OC12-HSL autoregulation.

Autoinduction in the absence of positive lasI autoregulation. To further study
the role of positive autoregulation of QS signal production, we monitored green
fluorescence protein (GFP) fluorescence along the growth curve of PAO1 and PAO-SC6
populations carrying pBS351 and growing in LB-MOPS broth with or without
L-arabinose (Fig. 2). There was a sharp increase in GFP fluorescence in the WT with or
without L-arabinose and in strain PAO-SC6 with L-arabinose. The control, PAO-SC6
without L-arabinose, showed a very modest increase in fluorescence as population
numbers increased over the growth curve. There may have been small differences in
the responses of WT and PAO-SC6 in the first several hours of growth that were beyond
the limits of our detection. Regardless, it is clear that autoinduction of plasI-gfp
occurred in strain PAO-SC6 and that the response was quite similar to the response in
the WT.

FIG 1 Production of 3OC12-HSL in P. aeruginosa PAO1 and PAO-SC6 and sensitivity of P. aeruginosa to
3OC12-HSL. (A) Growth curves of strains PAO1 and PAO-SC6. (B) 3OC12-HSL levels during growth (inset
shows an expanded view of hours 3 to 7). (C) Calculated rates of 3OC12-HSL production in PAO1 and
PAO-SC6 culture fluid. The symbol key in panel A shows strain PAO1 (O1) with or without 0.5%
L-arabinose (ara), and PAO-SC6 (SC6) with (�) and without (�) L-arabinose for panels A to C. Strain
PAO-SC6 without L-arabinose does not produce detectable levels of 3OC12-HSL and has been omitted
from panels B and C. Cultures were grown in 75 ml of LB-MOPS broth with L-arabinose added as
indicated. (D) Percent maximum fluorescence for the ΔlasI strain PAO-SC5 with pBS351 with 3OC12-HSL
added at the indicated concentrations. Cells were grown in 160-ml medium without signal. At 3 h, 15-ml
volumes were transferred to 125-ml baffled flasks containing 3OC12-HSL to give the desired final
concentration of this autoinducer. Relative fluorescence units were measured at 6 h of growth. Error bars
show the standard errors of the means (SEM) from three independent experiments.
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We next wanted to test the effects of higher or lower basal rates of autoinducer
production on activation of the lasI promoter. We did this by varying the concentration
of L-arabinose in the growth medium (Fig. 3A and B). With 1% L-arabinose, autoinduc-
tion commenced somewhat earlier than it did with 0.5% L-arabinose, and at 0.2%
L-arabinose, autoinduction was somewhat delayed. This shows that the basal activity of
LasI affects the onset of autoinduction and that the signal is the trigger for activation
of lasI.

Autoinduction of late QS-controlled promoters in the absence of positive lasI
autoregulation. Sufficient P. aeruginosa LasR QS signal is required but not sufficient for
activation of many genes in the LasR regulon (11, 28). The so-called late genes show an
induction delay in the WT compared to early genes like lasI, presumably because their
expression depends on additional regulatory inputs. We reasoned that late genes in
particular should respond similarly in the WT and PAO-SC6 strains. Because of their
delay in expression until late versus mid-logarithmic growth phase, sufficient autoin-
ducer should have accumulated in the culture fluid of either bacterial strain to saturate
LasR. Results with two late gene promoter-gfp fusions, pflp-gfp and pPA2939-gfp (pflp
and pPA2939 being the promoters for the flp and PA2939 genes, respectively) are
shown in Fig. 3C-F. Whereas plasI-gfp induction in the WT commences at about 5 to 6 h
of growth, pflp-gfp induction commences between 6 and 7 h and pPA2939-gfp induc-
tion commences after 7 h. The first time point at which GFP was detected for either flp
or PA2939 was not advanced by increasing the L-arabinose concentration from 0.5% to
1%, and it was not delayed by decreasing the L-arabinose concentration from 0.5% to
0.2%, although the intensity of GFP fluorescence does appear to depend on L-arabinose
concentration for these later genes. In agreement with our previous publications (11,
28), autoinducer concentration is not the trigger for activation of these two genes.

Positive autoregulation of signal production tightly synchronizes the re-
sponses of individual cells in a population. To examine the autoinduction of plasI-gfp
more closely, we monitored the responses of individual cells in populations by using
flow cytometry (Fig. 4). For the WT PAO1, very few cells showed induced levels of GFP
until about 5.5 h in culture when a small fraction of cells were expressing plasI-gfp.
Thirty minutes later at 6 h, almost all of the cells were expressing plasI-gfp; the
autoinduction response was tightly synchronized. In contrast, about 20% of PAO-SC6
cells showed partial GFP induction as early as 3.5 h in culture. The peak of induction
occurred somewhere between 5.5 and 6 h, and at 6 h, the cell fluorescence levels of the
WT and PAO-SC6 strains were similar (Fig. 4A). For a control, we also measured
single-cell GFP induction in populations of the WT and PAO-SC6 to which we added
3OC12-HSL (final concentration, 1 �M) at 3.5 h postinoculation (Fig. 4B). In this

FIG 2 Positive 3OC12-HSL autoregulation is not necessary to induce a LasR-controlled promoter. Relative
fluorescence units for strain PAO1 (O1) with or without 0.5% L-arabinose (ara) or strain PAO-SC6 (SC6)
with or without ara. Both strains contained the plasI-gfp reporter. Cells were grown in 75 ml of LB-MOPS
broth as described in Materials and Methods.
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experiment, both the WT and PAO-SC6 responses were tightly synchronized. Thus, the
relaxed synchronization during autoinduction in PAO-SC6 cannot be attributed to
factors unrelated to signal accumulation. We conclude that the autoinduction response
in PAO-SC6 was less tightly synchronized than the response in the WT.

We note that there may be variations in lasI expression from the araBAD
promoter (paraBAD) in strain PAO-SC6. However, AHLs can diffuse out of and into
cells (16, 29). We do not expect the reduction in synchrony in strain PAO-SC6 to
result from differences in lasI expression between cells. We also measured the response
of the plasI-gfp reporter to subsaturating levels of 3OC12-HSL in the ΔlasI mutant
PAO-SC5 and found that low levels of 3OC12-HSL early in growth also induce hetero-
geneous expression of this reporter within a population (Fig. 4C). Thus, the slow
accumulation of 3OC12-HSL that we observed in PAO-SC6 populations (Fig. 1B) should
be sufficient to produce the population heterogeneity we observed.

Analysis of a late gene response in the WT and PAO-SC6 strains by flow
cytometry. We hypothesized that late gene induction is tightly synchronized in both
the WT and PAO-SC6 strains. This hypothesis is based on our findings that activation of
late genes is delayed until after autoinducer concentrations in culture fluid have
surpassed those required to saturate the plasI-gfp response (Fig. 1D and 3). To test this

FIG 3 Multiple LasR-responsive promoters can be activated in the absence of positive 3OC12-HSL
autoregulation. Activation of the promoters for lasI (A), flp (C), or PA2939 (E) in strains PAO1 and PAO-SC6.
Panels B, D, and F show data from panels A, C, and E, respectively, in greater detail at the time of reporter
induction. Cells were grown in 3-ml volumes as described in Materials and Methods.
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idea, we examined the responses of pPA2939-gfp in the WT and in PAO-SC6 by flow
cytometry (Fig. 5). With the WT or PAO-SC6 strain, GFP was uninduced at 6 h; at 6.5 h,
there was a small but detectable increase in fluorescence, and by 7 h, there was some
autoinduction of the reporter in most cells. This comports with our hypothesis that
autoinduction of a late gene will be tightly synchronized regardless of whether lasI is
positively autoregulated or not; however, the situation is complicated. Although cells
show autoinduction, pPA2939-gfp is not as strongly activated in PAO-SC6 cells as it is
in WT cells at 7 and 7.5 h. By 10 h, the PAO-SC6 cells are almost as fluorescent as WT
(Fig. 5A). For a control, we added 1 �M 3OC12-HSL to cultures after 3.5 h. This
autoinducer concentration is roughly equivalent to that in WT cultures after 6 h of
growth and exceeds that in 6-h PAO-SC6 cultures by about 2 log units (Fig. 1B). In this
control experiment, GFP induction in PAO-SC6 cells is equivalent to that in WT (Fig. 5B).
Thus, the increased time for PAO-SC6 cells to fully activate the pPA2939-gfp reporter
can be attributed to the linear kinetics of autoinducer production by cells of this strain.

One simple explanation for the synchronized but slow induction of pPA2939-gfp in
strain PAO-SC6 is that higher levels of autoinducer are required to achieve maximal

FIG 4 Positive 3OC12-HSL autoregulation synchronizes plasI-gfp expression. GFP expression in single
cells was measured as described in Materials and Methods. All panels show cell counts with respect to
GFP fluorescence. (A) Strains PAO1 (01) and PAO-SC6 (SC6) with the plasI-gfp reporter with or without
0.5% L-arabinose (ara). (B) As in panel A except 1 �M 3OC12-HSL (signal [sig]) was added at 3.5 h.
PAO-SC6 without signal or L-arabinose was included as a negative control. (C) The P. aeruginosa ΔlasI
mutant with the plasI-gfp reporter grown with added 3OC12-HSL (final concentrations are in nanomolar)
at 3 h. Cells exposed to subsaturating levels of 3OC12-HSL show diminished synchrony of the response.
Cells were grown in 15 ml of LB-MOPS broth as described in Materials and Methods.
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induction; however, there are also other explanations. One way that we tested the idea
that full activation of the PA2939 promoter requires high levels of autoinducer in
comparison to activation of lasI was to add various amounts of 3OC12-HSL to popu-
lations of the �lasI mutant PAO-SC5 containing the pPA2939-gfp reporter plasmid and
then monitor GFP fluorescence over time (Fig. 5C). In fact, maximum fluorescence per
cell required high concentrations of autoinducer in the range of 500 to 1,000 nM.

DISCUSSION

Positive autoregulation of autoinducer synthesis is a characteristic of AHL QS
systems governed by LuxR family transcriptional activators, and it is common to many
peptide signaling autoinduction systems in Gram-positive species (24, 30, 31). Positive
signal autoregulation is not, however, a universal feature of all quorum-sensing

FIG 5 Positive lasI autoregulation facilitates maximal pPA2939-gfp expression. GFP expression in single
cells was measured by flow cytometry. (A) Strains PAO1 (01) and PAO-SC6 (SC6) with the pPA2939-gfp
reporter grown with or without 0.5% L-arabinose (ara). (B) When 1 �M 3OC12-HSL (signal [sig]) was
added at 3.5 h, gfp expression was not advanced, but the levels of fluorescence of strains PAO1 and
PAO-SC6 at 7 h were similar. Strain SC6 with ara and without sig or ara were included as controls. (C)
3OC12-HSL was added to cultures of the ΔlasI mutant PAO-SC5 with the pPA2939-gfp reporter at 3.5 h.
The 3OC12-HSL signal was added at the indicated final concentrations in nanomolar. Cells were grown
in 15 ml of LB-MOPS as described in Materials and Methods.
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systems. There are a few examples of AHL QS systems where the LuxR family, AHL-
responsive transcription factor is a repressor rather than an activator, and in these
systems, the cognate luxI homolog is not positively autoregulated (32–35). For example,
in Pantoea stewartii, the LuxR homolog EsaR binds to target DNA in the absence of its
cognate AHL and blocks transcription. At sufficient AHL concentrations, EsaR is released
from the target DNA (33). Because of the commonality of positive autoregulation of
signal synthesis by LuxR-type transcriptional activators, and perhaps because the terms
autoinduction and autoregulation can be confused, positive autoregulation has been
described as an essential part of autoinduction by these transcriptional activators. Our
experiments with P. aeruginosa demonstrate that this is not the case (Fig. 1 and 2). We
hope that this work will help to disentangle autoinduction from autoregulation and
also contribute to our understanding of how QS signaling information is “encoded” in
positively autoregulated systems (36). Perhaps measurements made in this work will
also help to hone future models of QS signaling networks.

If positive autoregulation of AHL signal synthesis is not a required element of the
autoinduction response, then why is it a common characteristic of the LuxR-activated
circuits? At the population level, positive autoregulation of signal production would be
expected to result in a threshold QS response versus a graded response for constitutive
signal production. This has been shown computationally and in the lux QS circuit of
V. fischeri (37). We observed similar threshold versus graded responses when measuring
the accumulation of autoinducer in strains PAO1 and PAO-SC6, respectively (Fig. 1B).
Interestingly, we do not observe a clear difference in population-level induction of
plasI-gfp expression between strains PAO1 and PAO-SC6 (Fig. 2). This difference from
that observed previously in V. fischeri (37) could be due to many factors, not least of
which are the growth and measurement conditions used. We measured GFP expression
in logarithmic phase cultures, as opposed to periodically-diluted steady-state cultures
at specific cell densities (37). The rapid accumulation of both cells and autoinducer in
our experiments may have masked the differences observed in experiments with
steady-state cultures. Additionally, the stability of the GFP used (stable version versus
the short-half-life version) or differences in the affinity of the LuxR homolog to its
respective promoter-gfp reporter could contribute to the differences between our
population-level fluorescence measurements and those of Haseltine and Arnold (37). At
the single-cell level, however, we too find that the positively autoregulated QS system
produces a more synchronized threshold-like activation pattern compared to the more
graded activation pattern observed in bacterial groups without positive signal auto-
regulation (Fig. 4).

We uncovered two consequences of positive signal autoregulation when we exam-
ined the responses of individual P. aeruginosa cells in populations undergoing autoin-
duction of LasR-dependent-promoter-controlled gfp reporters. First, for a so-called early
QS-responsive gene (activation of early genes can be advanced by inclusion of auto-
inducer in the growth medium; the autoinducer is the trigger for gene activation), lasI,
positive autoregulation enhanced synchronization of the response (Fig. 4). Second,
so-called late genes, for which autoinducer is required but not sufficient for activation
(the autoinducer is not the trigger for activation) are synchronized tightly, but cells
show a relatively slow response in the absence of positive autoregulation (Fig. 3 and 5).
Improved synchronization seems intuitive: when signal is positively autoregulated, the
length of time that the population is exposed to intermediate autoinducer concentra-
tions (above the threshold for activation but below the saturating level) is short.
Intrinsic heterogeneity among cells would be overridden by the quickly saturating
signal concentrations. Delaying or preventing saturation of a signaling system by
removing one or more regulatory inputs has been shown to also increase heteroge-
neity in V. harveyi QS, indicating that rapid saturation of signaling systems may be a
general mechanism to synchronize QS populations (38). We did not anticipate the late
gene response, as signal levels are quite high by the time late gene expression
commences. We do not know the mechanistic basis for this slow cellular increase in late
gene expression, but there are several possible explanations. For example, it may have
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to do with LasR-binding affinities and competition with early QS-dependent genes for
LasR.

We note that positive autoregulatory loops are not unique to QS systems. Experi-
mentation and modeling show that such autoregulatory loops can reduce noise, create
a bistable state, and decrease cost (39–43). With AHL-responsive LuxR family transcrip-
tional activators, positive autoregulation of signal production can affect stability in
populations. There should be hysteresis with the cell density required to achieve a
threshold level of autoinducer being much higher than the density required to deac-
tivate the system. We have not addressed this possibility experimentally.

It is of interest to determine whether responses of quorum-sensing-dependent
genes governed by repressors like that of Pantoea stewartii for example (33) show
tight synchrony in their response. We also note that the autoinducer-2 activation of
Vibrio harveyi luminescence, which does not involve a LuxR homolog, shows
bistability (44). Bistability is thought of as a bet-hedging strategy that can facilitate
success in an environment where conditions are variable. A more tightly synchro-
nized response, which is perhaps further committed by positive autoregulation of
autoinducer synthesis might be particularly well suited to situations where unin-
duced individuals are at risk from extrinsic or intrinsic factors or where cooperation
is essential for success.

MATERIALS AND METHODS
Bacterial strains, plasmids, and culture conditions. The Pseudomonas aeruginosa and Escherichia

coli strains used are listed in Table 1. Bacteria were grown in Luria-Bertani (LB) broth (10 g tryptone, 5
g yeast extract, 5 g NaCl per liter) with 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) (pH 7.0)
(LB-MOPS broth) or on LB-MOPS agar (LB-MOPS broth plus 1.5% agar) and supplemented as noted.
Antibiotics were used for plasmid maintenance of selection at the following concentrations as appro-
priate: for E. coli, 100 �g/ml ampicillin (Ap), 10 �g/ml gentamicin (Gm), and 10 �g/ml tetracycline (Tc);
for P. aeruginosa, 100 �g/ml Gm, 100 �g/ml Tc, 150 �g/ml carbenicillin (Cb). Where indicated L-arabinose
(final concentration of 0.5% unless otherwise indicated) or the QS signal 3OC12-HSL at the indicated
concentration was added to the growth medium. The QS signal was dissolved in ethyl acetate, and the
solution was dried on the bottom of the culture vessel prior to the addition of cultures. Bacteria were
grown in 3-ml volumes in 18-mm tubes, 15-ml volumes in 125-ml baffled flasks, or 75-ml volumes in
500-ml baffled flasks as noted and grown at 37°C with shaking (250 rpm). Starter cultures of P. aeruginosa
were from single colonies obtained by streaking from a frozen stock.

Strain and plasmid construction. We used Qiagen kits for routine DNA purification. QIAprep spin
miniprep kits were used for plasmid preparation, and QIAquick PCR purification kits and QIAquick
gel extraction kits were used for PCR product purification and gel extraction, respectively. A
chromosomal deletion of lasI (PAO-SC5) was constructed by introducing pEXG2-ΔlasI, which includes
DNA homologous to the flanking regions of lasI, into strain PAO1 by standard protocols (45, 46). To
construct a strain with a chromosomal copy of an arabinose-inducible lasI gene, we first assembled

TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid Description or relevant genotype Reference or source

Strains
P. aeruginosa PAO1 Wild-type prototroph 56
P. aeruginosa PAO-SC5 lasI deletion mutant of PAO1 This study
P. aeruginosa PAO-SC6 PAO1 ΔlasI paraBAD-lasI This study
E. coli DH5� E. coli cloning vehicle Invitrogen
E. coli S17-1 thi pro hsdR recA RP4-2 (Tet::Mu) (Km::Tn7) 57

Plasmids
pJN105L paraBAD-lasR; Gmr 54
pSC11 plasI-lacZ reporter; Apr 55
pEXG2-ΔlasI Gene replacement vector; contains lasI flanking regions to delete codons 31 to

191 of lasI; sacB Gmr

46

pSW196 Mini-CTX2 with paraBAD promoter; Tetr 47
pSW196-RBS-lasI attB integration plasmid with arabinose-inducible lasI; Tetr This study
pFLP2 Expresses Flp recombinase; sacB Apr Cbr 49
pPROBE-GT Promoterless gfp; Gmr 51
pBS351 plasI-gfp: pPROBE-GT with lasI promoter (plasI); Gmr, �282 to �223a 58
pBS383 pflp-gfp: pPROBE-GT with flp promoter (pflp); Gmr, �283 to �100a This study
pBS347 pPA2939-gfp: pPROBE-GT with PA2939 promoter (pPA2939); Gmr, �290 to �223a This study

aThe numbers indicate the coordinates of the P. aeruginosa gene fragments relative to the translational start site of the relevant gene.
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pSW196-RBS-lasI. To make this plasmid, a PCR fragment with engineered NotI sites flanking bp �20
to �612 relative to the lasI translational start was ligated to NotI-digested pSW196 (47) following the
araBAD promoter. This plasmid was built on a mini-CTX2 backbone, which was designed to integrate
into the attB site of P. aeruginosa (47, 48). To construct a P. aeruginosa mutant with a single copy
of lasI controlled by the arabinose promoter, we mated E. coli strain S17-1 carrying pSW196-RBS-lasI
with the ΔlasI P. aeruginosa strain PAO-SC5. We used antibiotic selection to obtain an isolate with
pSW196-RBS-lasI in the attB site. We then introduced pFLP2 and used Flp recombination to remove
the antibiotic resistance cassette from the integrated plasmid (49). Finally, we used sucrose to
counterselect sacB and cure the strain of pFLP2 (50).

To construct the pBS series of LasR-inducible promoter reporter plasmids described in Table 1, we
cloned PCR-generated DNA fragments with SalI and BamHI overhangs into SalI-BamHI-digested
pPROBE-GT (51) by using standard procedures. All plasmid and mutant constructs were confirmed by
DNA sequencing.

Growth curves and population fluorescence measurements. Starter cultures for growth curves
were grown from a single colony inoculated into 3 ml of LB-MOPS broth. When cultures reached an
optical density at 600 nm (OD600) of between 0.05 and 0.2, they were used to start experiments at an
initial OD600 of 0.001. Optical densities were measured by using a Genesys spectrophotometer with a
1-cm-path-length cuvette. Either 3OC12-HSL or L-arabinose or both were included as noted. Relative
fluorescence units (RFUs) (485-nm excitation, 535-nm emission) and OD600 in 20-�l samples in black-
walled transparent-bottom 384-well plates were measured by using a BioTek synergy H1 microplate
reader.

Flow cytometry. We used flow cytometry to measure individual cell responses in populations of
P. aeruginosa. Cells were grown in 15 ml of LB-MOPS broth. The cultures were sampled at the times
indicated, and the cells were pelleted by centrifugation, washed twice in phosphate-buffered saline (PBS)
(pH 7.4), suspended in 2.5% paraformaldehyde in PBS, and fixed at 37°C with shaking for 10 min. The
fixed cells were washed three times in PBS and then stored in PBS at 4°C. Cells were analyzed by using
a BD LSR II flow cytometer and BD FACSDiva software. Cells were gated to exclude debris based on
forward scatter (FSC) and side scatter (SSC). Twenty thousand events were acquired for each sample. GFP
was excited with the blue laser (488 nm), and the emitted light was collected via a 530/30 nm filter. Data
were analyzed using FCS Express 4 software.

Autoinducer bioassays. We used a bioassay to measure 3OC12-HSL as described elsewhere (52, 53).
Briefly, we extracted the QS signal 3OC12-HSL from culture fluid in ethyl acetate acidified with 0.01%
glacial acetic acid and concentrated the autoinducer 10-fold. We used an E. coli bioassay strain containing
lasR and a LasR-inducible promoter fused to lacZ (54, 55) to measure 3OC12-HSL, and we prepared a
standard curve by using synthetic 3OC12-HSL (RTI International) to calculate signal concentrations in
cultures as described elsewhere (53).
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