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Multivariate genomic 
and transcriptomic determinants 
of imaging‑derived personalized 
therapeutic needs in Parkinson’s 
disease
Christophe Lenglos1,2,3, Sue‑Jin Lin1,2,3, Yashar Zeighami1,2,3, Tobias R. Baumeister1,2,3, 
Felix Carbonell4 & Yasser Iturria‑Medina1,2,3*

Due to the marked interpersonal neuropathologic and clinical heterogeneity of Parkinson’s disease 
(PD), current interventions are not personalized and fail to benefit all patients. Furthermore, 
we continue to lack well-established methods and clinical tests to tailor interventions at the 
individual level in PD. Here, we identify the genetic determinants of individual-tailored treatment 
needs derived from longitudinal multimodal neuroimaging data in 294 PD patients (PPMI data). 
Advanced multivariate statistical analysis revealed that both genomic and blood transcriptomic data 
significantly explain (P < 0.01, FWE-corrected) the interindividual variability in therapeutic needs 
associated with dopaminergic, functional, and structural brain reorganization. We confirmed a high 
overlap between the identified highly predictive molecular pathways and determinants of levodopa 
clinical responsiveness, including well-known (Wnt signaling, angiogenesis, dopaminergic activity) 
and recently discovered (immune markers, gonadotropin-releasing hormone receptor) pathways/
components. In addition, the observed strong correspondence between the identified genomic and 
baseline-transcriptomic determinants of treatment needs/response supports the genome’s active 
role at the time of patient evaluation (i.e., beyond individual genetic predispositions at birth). This 
study paves the way for effectively combining genomic, transcriptomic and neuroimaging data for 
implementing successful individually tailored interventions in PD and extending our pathogenetic 
understanding of this multifactorial and heterogeneous disorder.

Parkinson’s disease (PD) is a complex disorder with abnormalities including synucleinopathy (misfolded alpha-
synuclein aggregates), dopaminergic neuronal loss, brain functional dysregulation and structural atrophy1. Due 
to the marked interpersonal variability/heterogeneity and multifactorial nature of PD and related disorders, 
numerous treatments targeting only one of these biological components have failed to achieve significant clini-
cal benefits at the population level1,2. To succeed, interventions may instead focus on individual therapeutic 
needs and combinations of treatments targeting multiple components, as proposed by the personalized medicine 
approach3–7. Unfortunately, we currently do not have well-established methods or clinical tests to tailor interven-
tions at the personalized level across several biological factors in PD. This gap relates to critical methodological 
limitations, such as the requirement for an understanding of the causal disease mechanisms and the inability to 
predict an individual’s brain response to different therapeutic interventions.

Motivated by the lack of a clear understanding of PD’s intrinsic complexity and heterogeneous response 
to treatment, recent approaches have adopted a multifactorial perspective2,3. Neuroimaging data and/or novel 
machine learning techniques have provided promising results for predicting individual responsiveness to 
levodopa4, deep brain stimulation (DBS5) and stem cell transplant6. These independently proposed approaches, 
however, have focused on identifying unique predictive signatures for each specific treatment. While the 
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identified biomarkers provide information about the potential individual response to a given therapeutic strat-
egy, they fail to clarify whether other alternative treatments require similar (or not) patient conditions. With 
this in view, detecting portable and generalizable predictors of personalized therapeutic needs will significantly 
improve clinical decisions with regards to not only one but also multiple potential treatment strategies. For 
instance, in the Alzheimer’s disease (AD) context, a personalized therapeutic intervention fingerprint (pTIF) 
has been recently proposed7. pTIF constitutes a simplified individual patient profile of the quantitative biologi-
cal factor modifications needed to control disease evolution. It assumes that the patients may need different 
treatments, depending not only on their brain’s unifactorial alterations/biomarkers (e.g., dopamine alteration 
or not, atrophy or not) but also on their individual multifactorial brain dynamics: how the different biological 
factors interact and how they could respond (at the individual level) to potential clinical perturbations7. Based 
on spatiotemporal analysis of multimodal imaging data (i.e., positron emission tomography (PET), magnetic 
resonance imaging (MRI), single photon emission computed tomography (SPECT)), pTIF values are a set of 
multivariate metrics that reflect the biological reformation required to stop the pathologic progression or revert 
the condition to normality. The results in late-onset AD support the notion that pTIF allows the categorization 
of patients into distinctive therapeutic-based subtypes, with patients in the same pTIF subtype presenting a 
distinctive pattern of molecular alterations7.

On the other hand, detecting genes with the capacity to modify response to treatment will significantly 
improve clinical interventions by identifying subjects that can benefit from therapy and those at an increased 
risk of harm8–10. Pharmacogenetics aims to identify patients at higher genetically determined risk of drug adverse 
effects or ineffective medication to modify dosage or switch to an alternative therapy11. Numerous susceptibility 
loci have been reported in terms of both levodopa treatment efficacy and adverse responses, and most of the 
identified genes are related to the dopaminergic pathway12. However, recent genetic examinations of treatment 
responses in PD patients have almost exclusively been predicated on univariate analyses13. Based on traditional 
genome-wide association studies (GWAS) that identify single risk-related single-nucleotide polymorphisms 
(SNPs) or loci, these approaches fail to analyze multiple clinical traits/aspects at the same time and, importantly, 
are unable by definition to discover clusters of functionally related genes and pathways13. Furthermore, the field 
has uniformly focused on a single treatment option (levodopa), while the molecular basis of individual predis-
position to other potential therapeutic strategies remains unexplored.

Prompted by the imperative for identifying effective individually tailored treatments in PD, we extensively 
investigated the genetic and multifactorial brain basis of different treatment needs and responsiveness in this 
disorder. First, we aimed to discover the causal genetic determinants of personalized treatment needs derived 
from multimodal neuroimaging data, reflective of the brain’s complex reorganization process and potential 
response to different treatments7. Subsequently, to assess the portability of the identified treatment needs and 
their genetic determinants, we aimed to clarify whether similar molecular mechanisms would modulate clinical 
outcomes to levodopa. By concurrently analyzing several imaging features or clinical variables as interrelated 
genome-dependent factors, novel multivariate statistical analyses identified causal genetic effects on treatment 
requirements and observed responsiveness in PD in the presence of potentially pleiotropic and correlated genes. 
A strong molecular-based overlap between brain imaging-estimated multifactorial therapeutic needs and clini-
cal response to levodopa was found, having in common highly predictive molecular pathways. Shared genetic-
neuroimaging and genetic-clinical functional pathways included well-known PD-associated molecular functions 
(e.g., angiogenesis, modulation of dopaminergic cell activity) and more recently proposed PD mechanisms (e.g., 
gonadotropin-releasing hormone receptor, immune markers). Furthermore, a complementary analysis with 
blood gene expression (GE) confirmed the active role of the identified genomic-based molecular pathways at 
the time of patient evaluation. In addition to extending the pathogenetic understanding of this complex disease 
from a multivariate integrative perspective, our findings support the crucial need for extending the combined 
interrogation of genomic and neuroimaging data in pursuit of effective individually tailored treatments in PD.

Results
Multimodal longitudinal neuroimaging data, genetic (DNA, RNA), baseline clinical evaluations, demographics 
and/or medication data were collected for 294 PD patients (see Fig. S1 for flowchart of participants selection 
and analysis). Three modalities of multimodal imaging were longitudinally assessed: structural T1-MRI (for 
quantifying gray matter density), functional-MRI at rest (for functional integrity) and/or DatSCAN SPECT (for 
dopaminergic neuronal loss). Recently, we proposed a neuroimaging-derived personalized fingerprinting (pTIF) 
method for predicting individual therapeutic needs based on the quantification of the brain’s multifactorial 
reorganization (see Fig. 1; “Material and methods”, “Imaging-derived individual therapeutic needs estimation”). 
Here, we used this approach7 to estimate the therapeutic needs in PD subjects and subsequently determine their 
associated genetic determinants. For the 294 PD patients, 7 unique elements of global pTIFs were obtained 
based on the individual longitudinal dopaminergic, functional, and structural imaging-inferred measurements 
and their combinations. Note that the number 7 of pTIF elements corresponds to all possible single-target or 
combinatorial interventions focused on the three biological factors quantified by the used imaging modalities. 
Specifically, these 7 numerical values reflect the required whole-brain reformations for targeting dopaminergic 
integrity (DOP), functional activity at rest (FUNC), gray matter (GM), and the combinations GM-FUNC, GM-
DOP, FUNC-DOP, and GM-FUNC-DOP (see Fig. 1, and “Material and methods”).

Genetics included genome-wide genotyping of 76,247 SNPs and abundance levels for 34,038 gene transcripts. 
Longitudinal clinical evaluations (available for 216 patients) consisted of the Movement Disorder Society-Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) motor part (4 main subscores and a total score; see Fig. 2; 
“Material and methods”).
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Genomic modulators of imaging‑derived individual therapeutic needs in PD.  First, we aimed 
to identify potential causal genotyping determinants of the imaging-derive individual therapeutic needs in PD 
patients (Fig. 2, Aim 1). To statistically consider the high dimensionality and autocorrelation of the genomic 
data, we used a data-driven multivariate cross-correlation analysis in combination with randomized permu-
tation and bootstrapping tests (“Material and methods”, “Multivariate statistical analyses”). Multiple potential 
confounders in the pTIF estimations were included (i.e., age, sex, educational level, handedness, baseline MDS-
UPDRS motor score and levodopa equivalent daily dose [LEDD]). By concurrently analyzing changes in several 
imaging-derived variables (7 global pTIFs), this multivariate analysis searched for large clusters of functionally 
related SNPs that were statistically associated with the imaging outputs in the presence of potentially pleiotropic 
and correlated genes. In practice, the applied singular value decomposition (SVD) method focused on identify-
ing the specific set of gene variants maximally related to therapeutic needs while controlling for covariates. This 
SVD14 generalizes both principal component analysis (PCA)15 and partial least squares (PLS)16.

We observed (Fig. 3) that the genetic variants shared a high covariance with the global pTIF elements, with 
the first significant principal component (PC1) of the genomic data explaining up to 76.70% of the pTIF popula-
tion variance (P = 0.001, familywise error (FWE)-corrected; cross-validated added explained variance of 36%). 
Additionally, to ensure that race and Levodopa medication during fMRI did not bias these results, we repeated 
the analysis with patients with only white ancestry and on off-medication during fMRI acquisition, respectively. 
In both cases (Fig. S4), a strong similarity/consistency with the whole-population results were observed, confirm-
ing our findings’ stability across different races and potential medication effects.

Next, we proceeded to identify the most statistically relevant genetic variants contributing to the pTIF pre-
diction (see bootstrapping analysis in “Material and methods”, “Multivariate statistical analyses”). Of the 76,247 

Figure 1.   Workflow for multifactorial therapeutic intervention fingerprinting in PD. (A) Longitudinal 
imaging for dopamine SPECT, functional MRI at rest and/or structural MRI. (B) A network-based approach7 
allows individual characterization of intra-brain synergistic biological interactions and multifactorial 
spreading mechanisms through anatomical connections. Inverting the model’s fundamental equation allows 
estimation of the changes required to produce a desired clinical effect (i.e., conducing the patient’s brain from 
the current neurodegenerative state towards a healthier clinical condition). (C) Dissimilar pTIF patterns 
for three participants with the same diagnosis. For each patient, the pTIF is defined as the set of biological 
changes required, estimating how clinically effective it would be to target each analyzed biological process. 
In this example, note that Patient 1 would be more benefitted by a dopamine-based therapeutic intervention 
(e.g., Levodopa treatment), while for Patient 2 it would be more effective a functional intervention (e.g. Deep 
brain stimulation or Transcranial magnetic stimulation), suggesting the identification of specific single-target 
therapies that may benefit these patients. However, Patient 3 may not be clinically benefitted by any of these 
three single-target interventions, suggesting that combinatorial (and not single-target) treatments would be 
more appropriate in this case. For visual simplicity, in this figure only single-target interventions are represented, 
but for three neuroimaging modalities the pTIF includes 7 global values, corresponding to each modality and 
their combinations (see “Material and methods”, “Imaging-derived individual therapeutic needs estimation”). 
(D) Genomic and Transcriptomic data is collected for identifying the genetic basis of the estimated treatment 
needs in PD.
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Figure 2.   Schematics for determining causal genetic determinants of individual therapeutic needs and 
treatment response in PD. Two main analyses are performed: PLS-SVD on genetic data vs imaging-based 
individual therapeutic needs and genetic data vs clinical changes. [UPDRS = the Unified Parkinson’s Disease 
Rating Scale part III (ON medication), LEDD = levodopa equivalent daily dose].

Figure 3.   Multivariate cross-correlation results between genotyping and imaging-derived therapeutic needs. 
(A) Explained covariance of pTIF by genotyping for each principal component. (B) Distribution of explained 
covariance across randomized permutations for the first significant principal component (PC1). This was 
used to calculate the cross-validated added explained variance (the added value was defined as the difference 
between the original pTIF-genomics shared variance with the mean value of the randomized distribution). (C) 
Contribution of pTIF features in PC1. (D) Explained covariance of levodopa-induced UPDRS changes (levo-
UPDRS) by genotyping for the obtained principal components. (E) Distribution of explained covariance across 
permutations for PC1. (F) Contribution of levo-UPDRS features in PC1.
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SNPs, only 5207 SNPs (associated with 4029 unique genes) significantly contributed to the covariance with the 
pTIF (Fig. 4A). The Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification system 
(Mi et al., 2013) was subsequently used to identify the associated molecular pathways (see “Material and meth-
ods”, Genetic data). Notably, this analysis revealed 123 significant molecular pathways (Fig. 4B; Table S2) that 
were highly sensitive for the detection of biological processes commonly associated with neuropathological and 
motor deterioration mechanisms in PD. Among these, we noticed the presence of several signaling pathways: 
Wnt, serotonin, histamine, acetylcholine, oxytocin, thyrotropin, adrenaline and glutamate (Fig. 4B; Table S2). 
Other functional pathways relevant for PD included angiogenesis (linked to the formation of new blood ves-
sels), fibroblast growth factor (FGF; among multiple functions, FGF has been shown to facilitate the formation 
of functional dopaminergic neurons17) and gonadotropin-releasing hormone receptor (GnRH; recently reported 
as a modulator of dopaminergic cell activity18). These results highlight the importance of other molecular mecha-
nisms distinct from the classical dopaminergic system and are more clearly related to PD physiopathology and 
potential treatment response.

Complementarily, we also noticed (Fig. 4B; Table S2) the presence of PD and dopaminergic receptor sign-
aling pathways coexisting with the presence of AD and Huntington’s disease pathways (e.g., presenilin- and 
actin-related molecular pathways, respectively). This specific finding supports the importance of studying com-
mon pathogenetic mechanisms shared by multiple overlapping neurodegenerative conditions19. Finally, we 
repeated all the analyses while adjusting for potential confounding effects due to the intake of antidiabetics, 
anti-inflammatory and statins drugs, which may modify PD risk and associated biomarkers20–23. All the results 
were highly similar to the described above. These included strong genomic and transcriptomic predictive asso-
ciations with the imaging-derived treatment needs and observed Levodopa effects, and almost identical sets of 
relevant molecular pathways (Fig. S5).

Common genetic determinants of estimated treatment needs and observed levodopa 
effects.  Next, we aimed to explore the practical applicability of the identified molecular determinants of 
imaging-estimated therapeutic needs (Fig. 2, Aim 2). For this, we assumed that if the identified pTIF-predictive 
genetic components are accurately predictive of real personalized treatment requirements, then the individual 
clinical response to a specific clinical therapy (levodopa) should be significantly explained by similar molecular 
mechanisms. With this aim, we proceeded to characterize the causal relationship between the genetic data and 
longitudinal clinical effects in PD subjects under levodopa medication. For consistency, we used the same data-
driven multivariate cross-correlation analysis as for the imaging-derived features and the genetic variants (i.e., 
SVD with randomized permutations).

Longitudinal levodopa-induced clinical effects (levo-UPDRS) were estimated for 216 PD patients using four 
main subscores and the total score from the MDS-UPDRS motor part (see Fig. 2, Aim 2, and “Material and 
methods”). Several potential confounders in treatment response assessment (measured as longitudinal slopes in 
UPDRS) were included as covariates (i.e., age, sex, educational level, handedness, baseline MDS-UPDRS score 
and LEDD; see “Material and methods”, Clinical evaluations and treatment effects). Similarly, for the imaging-
derived data, we observed (Fig. 3D, E) that the first significant PC of the genomic information can explain up to 
53.52% of the population variance in levo-UPDRS (P = 0.001, FWE-corrected; cross-validated added explained 
covariance: 21%). In addition, a bootstrapping analysis (see “Material and methods”, “Multivariate statistical 
analyses”) showed that all considered levo-UPDRS features were significantly predicted by the genetic data (i.e., 
confidence intervals did not contain zero, Fig. S3). Among the clinical outcome features, the total UPDRS score 
and the bradykinesia subscore were the most accurately predicted (Fig. 3F).

Once this expected causal genetic link with levodopa-induced clinical changes was confirmed12, we proceeded 
to clarify whether similar predictive molecular mechanisms/pathways were common to the imaging-derived 
treatment needs and the observed clinical effects. For each case, the obtained SVD loadings (or weights) were 
interrogated to detect which SNPs (and associated genes) in the original high-dimensional space (i.e., 76,247 
SNPs) contributed the most to maximize the prediction of pTIF or levo-UPDRS (see bootstrapping analysis 
in “Material and methods”, “Multivariate statistical analyses”). From the 76,247 SNPs, 4053 SNPs (associated 
with 3168 unique genes) contributed significantly to the prediction of levo-UPDRS. Among these genes, 1028 
(i.e., 33%) were common with those identified as significant predictors of imaging-derived therapeutic needs 
(previous subsection). In addition, we found several genes whose mutations have been previously identified via 
GWAS as relevant PD risks (e.g., SNCA, LRRK2, GBA and VPS13C)24. Gene ontology analysis using PANTHER 
(Mi et al., 2013) identified 115 unique functional pathways related to levo-UPDRS prediction by genotyping 
(Fig. 4B, Table S2). Notably, 105 (i.e. 91%) of these pathways were common to those predicting imaging-derived 
personalized therapeutic needs (Fig. 4B, Table S2).

Blood gene expression predictors of estimated treatment needs and clinical outcomes.  The 
genome contains the basic code for cell activity, but multiple mechanisms (e.g., epigenetic effects) may cause 
specific genes/pathways to be deactivated25. Finally, to filter out such cases from our previous findings, we aimed 
to detect whether the identified genome-based pathways (associated with individual treatment needs and treat-
ment response in PD) were still active at the patients’ baseline evaluation. For this, blood GE was analyzed in 
terms of the capacity to predict both the neuroimaging-based fingerprints (N = 294) and the observed levodopa-
induced clinical effects (N = 216). For statistical/methodological consistency, we used the same multivariate 
cross-correlation analysis, investigating the covariance between the baseline GE (34,038 transcripts) and pTIF 
or levo-UPDRS.

In line with our previous genomic-based results, we observed that baseline GE strongly predicted the pTIF 
variables, with a common explained variance of 53.21% (P = 0.001, FWE-corrected; cross-validated added 
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Figure 4.   Genetic locus and molecular pathways determining neuroimaging-derived therapeutic needs in PD. 
(A) The circular plot shows the number of identified significant SNPs in each chromosome. The chromosome-
chromosome links represent statistical similarity (correlation patterns) in modulation of the pTIF elements. (B) 
Top molecular pathways associated with the identified SNPs and transcripts predicting the pTIF elements and 
the clinical outcomes. Notice the high overlapping between the genomic and transcriptomic-based molecular 
predictors (see Table S2 for all the identified pathways and abbreviations used).
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explained covariance: 26.07%; Fig. 5B). A bootstrapping analysis revealed that all the pTIF features were signifi-
cantly predicted (Fig. S2C), with features based on GM and the combination of imaging modalities being the 
most predictable, followed by single imaging modalities (Fig. 5C). In addition, the first GE principal component 
explained up to 64.61% of the population variance in levo-UPDRS (P = 0.002, FWE-corrected; cross-validated 
added explained covariance: 29.89%; Fig. 5D, E). Among the clinical outcome variables, the most comprehen-
sive score was again the most important to covariance contribution, followed by bradykinesia and axial main 
subscores (Fig. 5F).

From the 34,038 gene transcripts, we identified 5944 and 3071 related genes that contributed significantly 
to the covariance with pTIF and levo-UPDRS, respectively. Among these genes, 41 were common to clinical 
outcomes and imaging-derived features. Next, the PANTHER classification system was used to identify the 
significant gene-associated molecular pathways. We observed a high overlap between the most important GE-
based molecular pathways explaining pTIF and clinical outcomes (82% of the gene pathways contributed to 
levo-UPDRS covariance). Importantly, these GE-based pathways also highly overlapped (90% and 86% for pTIF 
and levo-UPDRS, respectively) with those based on genotypic information (Fig. 4B).

The finding of these common pathways across the main four experiments (genotyping-pTIF, genotyping-
clinical, GE-pTIF and GE-clinical) evidenced the consistent gene-mediated relationship between the brain’s 
multifactorial reorganization and the clinical response to treatments in PD. Furthermore, the fact that the ana-
lyzed genetic variants and transcripts can similarly predict both imaging-derived therapeutic needs (i.e., pTIF 
variables) and observed treatment-induced clinical effects supports the crucial need to extend the genome’s 
further interrogation for identifying effective individually tailored treatments in PD and related disorders.

Discussion
In this study, we defined an integrative analytic perspective to investigate the genetic and multifactorial brain basis 
of treatment needs and responsiveness in PD. To assess individual treatment needs, we used a novel tool consist-
ing of imaging-based brain fingerprinting, which focuses on characterizing the brain’s complex reorganization 
and potential response to different therapeutic conditions7. Next, we evaluated the portability of the identified 
treatment needs and their causal genetic determinants by testing whether similar molecular mechanisms modu-
lated clinical outcomes to levodopa. Importantly, an advanced multivariate statistical technique (bootstrapped 
SVD with permutation tests) allowed us to concurrently analyze several imaging features or clinical variables as 
interrelated genome-dependent factors in the presence of potentially pleiotropic and correlated genes. Our results 
evidenced a strong molecular-based overlap between neuroimaging-estimated multifactorial therapeutic needs 
and clinical response to levodopa. These results highlight the critical importance of simultaneously interrogating 

Figure 5.   Multivariate cross-correlation results between GE, imaging-derived therapeutic needs and levodopa-
induced clinical effects. (A) Explained covariance of pTIF by GE for the obtained principal components. (B) 
Distribution of explained covariance across randomized permutations for PC1. (C) Contribution of pTIF 
features in PC1. (D) Explained covariance of levo-UPDRS by GE for the principal components. (E) Distribution 
of explained covariance across permutations for PC1. (F) Contribution of levo-UPDRS features in PC1.
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genomic, transcriptomic and neuroimaging data for identifying effective individually tailored treatments in PD, 
as well as for extending the pathogenetic understanding of this heterogeneous disease.

In this decade, the identification of distinctive disease subtypes in PD has become a primary research topic, 
mainly motivated by the purpose of selecting subtype-specific treatments and maximizing therapeutic effects26. 
For this purpose, clinical, imaging, genetic mutation, peripheral biomarker and neuropathological data have 
been considered, often using a unifactorial perspective27. A traditional procedure is to cluster patients according 
to their similarity at a given time point/age or based on a unique type of information (e.g., clinical, imaging or 
genetic). Novel attempts are moving towards including several biomarkers and time points for patient clustering 
via advanced machine learning techniques28. We aimed to extend such analyses in multiple directions. First, by 
considering that the patients may need different treatments depending not only on their brain’s multifactorial 
alterations (e.g., dopaminergic neuronal loss, functional dysregulation, atrophy) but also on how the different 
biological factors interact and how they could respond (at the individual level) to different clinical interventions7. 
This has provided a simplified individual patient profile of the quantitative biological factor modifications needed 
to control disease evolution (here referred to as pTIF). Second, by decomposing this personalized profile in 
terms of its causal genetic determinants, we went beyond an estimate of the patient-specific therapeutic needs 
to obtain a molecular roadmap of the genetic predisposition underlying interindividual treatment differences 
in the `same’ disease.

Our analysis showed that the genomic data can significantly explain (P < 0.01, FWE-corrected; Fig. 3A, D) the 
population variability in the imaging-derived pTIF and levo-UPDRS, respectively. Similar results were obtained 
when using blood GE as a predictor (Fig. 5), confirming the active role of the identified genomic-based molecu-
lar pathways at the time of patient evaluation (Figs. 3, 5). In both cases (i.e., using DNA or RNA), the relatively 
lower prediction accuracy obtained for clinical evaluations may be attributed to the superior sensitivity of the 
defined neuroimaging metrics compared to the UPDRS. By definition, the multimodal imaging fingerprint 
comprised a higher number of features (351 regions for each imaging modality) than the UPDRS motor part. 
Clinical outcome measurements such as UPDRS scores also suffer from a substantial amount of within-subject 
variability29, which could be due to measurement error and short-term drug effects. Lastly, we confirmed that 
clinical outcomes were driven by levodopa-like medication effect. In fact, we replicated our multivariate analysis 
with absolute levodopa response (aLR) which assessed the difference between UPDRS motor scores after vs before 
drug administration30. The first components explained about 46% and 54% of covariance with genotyping and 
GE, respectively (P = 0.001 and P = 0.004, FWE-corrected; Fig. S3 and S2E, F).

Similarly to what has been done in Alzheimer’s disease31, this study used robust multivariate statistical analy-
ses for identifying large clusters of functionally related genetic determinants. Traditionally, GWAS in PD have 
identified single risk-related SNPs or loci, focusing on a unique phenotypic or clinical trait/aspect at a particu-
lar time and, consequently, have been less practical for discovering clusters of functionally related genes and 
pathways13. By concurrently analyzing several imaging-derived or clinical domains, our multivariate analysis 
searched for large clusters of functionally related SNPs in the presence of potentially pleiotropic and correlated 
genes. The applied SVD method (and its associated permutation test) focused on identifying the specific set of 
gene variants maximally related to the multivariate treatment needs or the response scores while controlling for 
the covariates. Remarkably, most of the identified gene pathways are involved in signal transduction. This is par-
ticularly relevant considering the growing interest in signaling factors to explain PD mechanisms32. While some 
of these pathways (e.g., dopamine receptor signaling) are expected to be strong predictors of PD disease progres-
sion and treatment response, other pathways, such as those related to AD (e.g., presenilin pathway), suggest the 
need to further consider pleiotropy33. As one gene usually affects more than one phenotype, it is reasonable to 
think that biological markers of PD progression and heterogeneity could be affected by genetic pathways that are 
clearly distinct from dopaminergic and other pathways less commonly mentioned in PD research.

Our study also has a number of limitations. Potential pleiotropy is a limiting factor to consider, in particular, 
the exclusive use of brain-focused imaging and motor symptoms. To obtain the most reliable results, we chose to 
select specific structural, functional and molecular brain imaging features, as they are well known to be altered 
based on PD progression34. However, PD-related genes can also modulate nonbrain phenotypes. For instance, 
new evidence suggests the existence of two main PD types: brain-first and body-first35. In the latter case, brain 
imaging would not necessarily be sensitive enough to detect early PD alterations and associated therapeutic 
needs. In addition, the fact that we used a structural connectome from healthy participants data may also decrease 
our ability to capture multimodal brain reorganization in disease, which may subsequently bias the predicted 
treatment needs. Similarly, we chose the UPDRS motor part for its well-established relationship and reliability 
in PD evaluation30,36. However, the selection of only motor outcomes may have prevented us from detecting 
other causal genes associated with the impact of treatment on cognitive decline. Due to the lack of available 
datasets with equivalent multimodal data types to PPMI, cross-validation in an independent PD population 
was not performed. This represents an indispensable future step to corroborate our findings. Finally, levodopa 
and equivalent drugs are only one of the several practiced treatments for PD37,38. Future work may include other 
types of interventions, such as deep brain stimulation and stem cell therapy, to find the best individually tai-
lored therapy according to genomic data and imaging-derived therapeutic needs. In summary, our multivariate 
data-driven analyses allowed the genome-based decomposition of brain imaging-derived therapeutic needs and 
motor clinical outcomes in PD. We also detected novel genes and related molecular pathways with the impact 
of guiding the development of new drug agents. Future studies should include additional information, such as 
whole-body imaging, cognitive treatment outcomes and other treatments, with the ultimate goal of accelerating 
the implementation of precision medicine in PD.
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Material and methods
Data description and processing.  Data used in the preparation of this article were obtained from the 
Parkinson’s Progression Markers Initiative (PPMI) database in July 2019 (www.​ppmi-​info.​org/​access-​datas​
pecim​ens/​downl​oad-​data). For up-to-date information on the study, visit ppmi-info.org. PPMI contained a 
large dataset of subjects from multiple medical centers around the world. At the first visit, all subject received 
diagnostic related to PD disease and demographics were collected. Next, they underwent several visits where 
multimodal imaging, genetics and clinical data were acquired.

PPMI subjects provided written, informed consent to participate and all PPMI study was conducted in accord-
ance with the Declaration of Helsinki and the Good Clinical Practice (GCP) guidelines after approval of the local 
ethics committees of the participating sites39. Authors obtained the permission to use PPMI data for this study.

Study participants.  We used two datasets. The first dataset contained subjects with longitudinal imag-
ing data, while the second dataset contained subjects with longitudinal clinical outcomes. For the first dataset, 
1000 participants were included with at least one imaging dataset. The imaging-derived individual therapeutic 
needs estimation (see “Material and methods”, “Imaging-derived individual therapeutic needs estimation”) was 
estimated for 362 subjects with at least three imaging modalities and three time points that survived the quality 
control. From this sample, we selected 294 subjects diagnosed with PD who had baseline genetic data, clinical 
evaluation, medication data and demographics (see flow chart, Fig. S1). The second dataset was based on 216 
subjects diagnosed with PD who had at least 3 UPDRS ON-dose evaluations, baseline genetic data, medication 
data and demographics. Note that 181 subjects are common between the first and second datasets. Demograph-
ics (sex, race, handedness, age, education), diagnostic groups, baseline UPDRS scores and medication data are 
summarized in Table S1. None of the subjects in the two final datasets were from the PPMI cohort that contains 
people with PD and pathogenic genetic variant(s) in LRRK2, GBA and rare genetic variants.

Genetic data.  Genome‑wide genotyping.  Single nucleotide polymorphisms (SNPs) genotyping was per-
formed using Illumina NeuroX array on 619 whole-blood extracted DNA samples collected according to the 
PPMI Research Biomarkers Laboratory Manual. The NeuroX array is an Illumina Infinium iSelect HD Cus-
tom Genotyping array containing 267,607 Illumina standard content exonic variants and an additional 24,706 
custom variants designed for neurological disease studies. Of the custom variants, approximately 12,000 are 
designed to study Parkinson’s disease and are applicable to both large population studies of risk factors and to 
investigations of familial disease and known mutations. Quality control of sample handling was determined by 
comparing the subject’s sex reported by Coriell Institute for Medical Research with the genotypic sex estimated 
from X chromosome heterogeneity. From these 267,607 and 24,706 variants, we selected 76,247 variants that 
survive to quality check (i.e. consistency between replicates) and have a non-null variability between subjects. 
We obtained corresponding genes and regulatory regions based on their chromosome position and reference/
alternative bases with Ensembl database (GRCh37 assembly). Only strictly overlapped genes were selected (0 bp 
distance upstream or downstream). For SNPs overlapping regulatory regions, we converted their chromosome 
position with NCBI Genome Remapping service to GRCh38 (https://​www.​ncbi.​nlm.​nih.​gov/​genome/​tools/​
remap) and got the linked genes with the EpiRegio database40. However, some of the SNPs were not linked to 
any gene because they were not overlapping any regulatory region (418 and 339 SNPs among significant SNPs 
from pTIF and levo-UPDRS analyses, respectively) or their overlapped regulatory regions were not linked to any 
gene (78 and 64 SNPs among significant SNPs from pTIF and levo-UPDRS analyses, respectively).

Gene expression.  Whole-transcriptome RNA-seq was performed from 1 ug aliquots of RNA isolated from Pax-
Gene tubes. Data was sequenced at Hudson Alpha’s Genomic Services Lab on an Illumina NovaSeq6000. All 
samples went through rRNA + globin reduction, followed by directional cDNA synthesis using the NEB kit. 
Following second‐strand synthesis, the samples were prepped using the NEB/Kapa (NEBKAP) based library 
prep. BCL’s were converted to using bcltofastq v1.8.4, and FASTQ’s were merged and aligned to Full Reference 
Genome Sequence hs37d5 (GRCh37 assembly) by STAR (v2.4K) on GENCODE v19.

As an interim analysis, quality control steps were conducted, and two types of primary results files were 
created consisting of abundance estimates (Transcripts per Million, TPM) via Salmon. TPMs was selected as 
a normalized abundance estimate for querying 34,038 genes that have a non-null variability between subjects.

Gene classification.  We used PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification 
system to classify genes in pathways that specify the main molecule implicated41.

Clinical evaluations and treatment effects.  For each participant, the third motor part of the Move-
ment Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a revision of the Unified Par-
kinson’s Disease Rating Scale (UPDRS), was evaluated at each visit. In order to make our results meaningful to 
clinicians, we grouped the 33 motor part scores to four main subscores (tremor, bradykinesia, rigidity and axial), 
in addition to the total UPDRS third motor part score, as described in a previous study42.

Next, in order to quantify treatment-induced clinical outcomes changes over time, a linear polynomial across 
the time points of each subject was fitted, taking the slope term/parameter as a direct measure of treatment effects. 
Importantly, in order to consider confounders in treatment outcome assessment, in our singular value decompo-
sition (SVD) multivariate statistical analysis, we adjusted for the patients’ age, sex, education level, handedness, 
baseline MDS-UPDRS motor score and Levodopa Equivalent Daily Dose (LEDD). LEDD was obtained from the 
whole concurrent medication of each patient. Using keyword and matching between medication names and its 

http://www.ppmi-info.org/access-dataspecimens/download-data
http://www.ppmi-info.org/access-dataspecimens/download-data
https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://www.ncbi.nlm.nih.gov/genome/tools/remap
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indications, we extracted dose, unit and frequency for each PD medication. Next, we computed LEDD accord-
ing to previous studies43–48 and information available from FDA or its international counterparts. All data were 
checked for consistency between and within subjects.

Multimodal imaging data acquisition and preprocessing.  We selected 1000 subjects which have at 
least one acquisition of structural MRI (T1), resting state fMRI and/or SPECT imaging data (see flow chart, Fig 
S1).

Structural MRI.  Brain structural T1-weighted 3D images were acquired for 890 subjects. For a detailed descrip-
tion of acquisition details, see https://​www.​ppmi-​info.​org/​wp-​conte​nt/​uploa​ds/​2017/​06/​PPMI-​MRI-​Opera​
tions-​Manual-​V7.​pdf. Similarly to previous study49, images underwent non-uniformity correction using the N3 
algorithm. Next, they were segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic 
maps, using SPM12 (www.​fil.​ion.​ucl.​ac.​uk/​spm). Grey matter density segmentations were standardized to MNI 
space50 using the DARTEL tool51. Each map was modulated in order to preserve the total amount of signal/tis-
sue. Visual quality control for aliasing, registration and brain abnormalities removed 19 images resulting in 16 
excluded subjects. Mean grey matter density (GM) values were calculated for 351 regions covering all the brain’s 
grey matter52,53.

Resting fMRI.  Resting-state functional images were obtained for 189 subjects (354 images) using an echo-
planar imaging sequence on a 3.0-T Siemens MRI scanner. Acquisition parameters were: 210 time points, 
repetition time (TR) = 2400 ms, echo time (TE) = 25 ms, flip angle = 80°, number of slices = 40, spatial resolu-
tion = 3.3 × 3.3 × 3.3 mm3 and in plane matrix = 68 × 66. Preprocessing steps included: (1) motion correction, (2) 
slice timing correction, (3) spatial normalization to MNI space50 using the registration parameters obtained for 
the structural T1 image with the nearest acquisition date, and (4) signal filtering to keep only low frequency fluc-
tuations (0.01–0.08 Hz)54. Visual quality control removed 3 images and excluded 1 subject. We carefully identi-
fied subjects that could be on medication (n = 140 subjects). In order to have regional quantitative indicators of 
the brain’s functional integrity, fractional amplitude of low-frequency fluctuation (fALFF)55 was calculated for 
each of the 351 considered brain regions52,53.

DatSCAN SPECT.  Preprocessed DatSCAN SPECT images were obtained for 748 subjects from the PPMI data-
base. The preprocessing included normalization and registration to the MNI space, as described in the whitepa-
pers in the study information56. All the scans went through visual inspection and in case of misregistration, we 
further, registered the subject to the average linear template of the healthy subjects. The healthy template was 
created using averaging and linear registration to the average of SPECT scans which was then registered to the 
MNI template. The combination of registrations was then used to realign the mis-registered scans. All subjects 
were again visually inspected for quality control, and 88 images and 4 subjects were excluded. Finally, for each 
subject and time point, average dopaminergic integrity values were calculated for the 351 considered cortical 
and subcortical brain regions52,53.

Whole‑brain connectivity estimation.  The connectivity matrix was constructed using DSI Studio, based on a 
deterministic fiber tracking algorithm that leverages information in the spin distribution function57. A high 
angular and spatial resolution diffusion-weighted imaging template was previously constructed58 from a total of 
1065 healthy subjects (575 female, average age: 28.74) from the Human Connectome Project. A multishell dif-
fusion scheme was used, with b-values 990, 1985 and 2980 s/mm2. The number of diffusion sampling directions 
were 90, 90, and 90, respectively. The in-plane resolution was 1.25 mm. The slice thickness was 1.25 mm. The 
diffusion data were reconstructed in the MNI space using q-space diffeomorphic reconstruction58 to obtain the 
spin distribution function59. A diffusion sampling length ratio of 2.5 was used, and the output resolution was 
1 mm.

Imaging‑derived individual therapeutic needs estimation.  For each study participant with longitu-
dinal imaging data (N = 362), we aimed to estimate the individual multifactorial brain reformations required for 
stopping her/his brain deterioration over a one-year period (i.e., keeping the subject’s brain properties in a sta-
tionary state). For this, we used the concept of personalized therapeutic fingerprints (pTIFs)7. The pTIF assumes 
that the patients may need different treatments, not only depending on their brain’s unifactorial alterations (e.g., 
dopamine alteration or not, functional dysregulation or not, atrophy or not) but also on their individual multi-
factorial brain dynamics: how the different biological factors interact and how they could respond (at the indi-
vidual level) to potential clinical perturbations7. Based on the spatiotemporal analysis of multimodal imaging 
data (i.e., T1-MRI, fMRI, SPECT), pTIF values are a set of multivariate metrics that reflect the biological refor-
mation required to stop the pathologic progression or revert the condition to normality. Note that when using 
three imaging modalities (T1-MRI, fMRI and dopamine SPECT), the number of all possible single-target or 
combinatorial interventions (up to a maximum of 3 biological factors/modalities) is 7. As a result, we obtained 
7 global pTIF values corresponding to the required whole-brain reformations for targeting gray matter density 
(GM), functional activity at rest (FUNC, quantified as fALFF), dopaminergic integrity (DOP), GM-FUNC, GM-
DOP, FUNC-DOP and GM-FUNC-DOP. Of note, the global pTIF was estimated with the Neuroinformatics for 
Personalized Medicine toolbox (NeuroPM-box60, available at www.​neuro​pm-​lab.​com/​softw​are).

https://www.ppmi-info.org/wp-content/uploads/2017/06/PPMI-MRI-Operations-Manual-V7.pdf
https://www.ppmi-info.org/wp-content/uploads/2017/06/PPMI-MRI-Operations-Manual-V7.pdf
http://www.fil.ion.ucl.ac.uk/spm
http://www.neuropm-lab.com/software
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Multivariate statistical analyses.  To evaluate the covariate-adjusted association of the high-dimensional 
genetic data (genotyping and GE) with the clinical-effects data or the imaging-derived therapeutic needs (see the 
pTIF concept above), we used a data-driven multivariate cross-correlation analysis in combination with a rand-
omized permutation test61,62. Specifically, we applied SVD14, a technique that generalizes both principal compo-
nent analysis (PCA)15 and partial least squares (PLS)16, to the case of genetic and clinical/imaging features. The 
SVD seeks to express the cross-correlation structure between any two sets of variables by a small number of pairs 
of “principal components” (PCs), with each PC associated with weights or loadings that vary across features14.

For pTIF and clinical outcome variables, covariates were age, sex, education level, handedness, baseline MDS-
UPDRS motor score and LEDD. There was no covariate for genotyping and gene expression. We removed covari-
ates (cov) from variables by doing robust regression, estimating each feature in variable with covariates, then 
taking the sum of intercept and residuals as covariate adjusted variable. We also run analyses without covariates 
removal and got similar results. Normality assumptions were reached by applying Box-Cox transformation and 
z-score rescaling for both covariates and variables. In addition, for genotyping analyses, we computed the ranks 
of the pTIF and clinical outcome variables in order to deal with the persistent discrete distribution of genotyp-
ing data. In supplementary analyses, we also adjusted for potential confounding effects due to antidiabetics, 
ant-inflammatory and statins drugs intake, which may modify PD risk and associated biomarkers20–23. Dummy 
variables reflecting the individual use of these drugs were added to the covariables and removed before each 
SVD calculation, as described before.

Subsequently, while accounting for covariates, this method allowed us to evaluate the statistical association 
of the individual genetic features (i.e., predictor variables) with (1) imaging-inferred treatment needs and (2) 
treatment-induced clinical effects. For each of these two scenarios (i.e., genetics vs imaging features and genet-
ics vs clinical effects) a permutation with 1000 iterations was executed to determine the statistical significance 
of each principal component after SVD16. Cross-validated added covariance was computed as the difference 
between the original (non-permuted) explained variance and the mean of the randomly permuted explained 
variances. Bootstrapping with 1000 iterations was used to assess the importance and significance of each feature 
by reporting their bootstrapping ratio and CI, respectively16. The ratio was calculated as the original weight of 
a feature divided by its standard error across all bootstrapping iterations. Features with CIs that did not contain 
zero were considered statistically significant. This analysis was designed for each of the two described scenarios 
to investigate whether genetic features could predict imaging features and clinical effects.

Data availability
Data used for this paper were obtained from the Parkinson’s Progression Markers Initiative database (PPMI, 
www.​ppmi-​info.​org/​data). PPMI provides full, open access to all investigators in the scientific community.

Code availability
Analytical methods for pTIF estimation are available for academic researchers as part of the open-access cross-
platform user-friendly Neuroinformatics for Personalized Medicine toolbox (NeuroPM-box, freely available at 
www.​neuro​pm-​lab.​com/​softw​are60).
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