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Abstract: Efforts to maximize the indications potential and revenue from drugs that are already
marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist
advocated—“The most fruitful basis for the discovery of a new drug is to start with an old drug”.
However, rational design of drug mixtures poses formidable challenges because of the lack of
or limited information about in vivo cell regulation, mechanisms of genetic pathway activation,
and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the
result of “serendipity”, discovered during late phase clinical studies of unexpected but beneficial
findings. The connections between drug candidates and their potential adverse drug reactions or
new applications are often difficult to foresee because the underlying mechanism associating them
is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such
multi-domain pharmacomodules—pharmacologically relevant sub-networks of biomolecules and/or
pathways—from collection of databases by independent/simultaneous mining of multiple datasets is
an active area of research. Here, while presenting some of the promising bioinformatics approaches
and pipelines, we summarize and discuss the current and evolving landscape of computational
drug repositioning.

Keywords: computational drug repositioning; drug repositioning; drug repurposing; machine
learning; deep learning; crowdsourcing; open innovation; drug discovery

1. Introduction

The path to new drug discovery has always been a road full of twists and turns. De novo drug
discovery in particular is an expensive, time-consuming, and high risk process. For instance, the total
average cost of developing a new drug, as per an estimate, ranges from $2 billion to $3 billion and it
takes at least 13–15 years to bring a drug to the market—starting from initial discovery to the approval
stage [1]. Further, the process suffers from a high rate of attrition. About 10% of the drugs that enter
into clinical trials get approved by regulatory agencies [2]. The remaining 90% of the drugs fail due to
inefficacy or high toxicity due to the limited predictive value of preclinical studies [3]. Nearly 62% of
the compounds fail in Phase II and approximately 45% attrition occurs in Phase III [4]. These attritions
are due to insufficient R&D productivity in identifying the drug response on the target due to the
limited availability of preclinical disease models which has raised concerns in the pharmaceutical
industry [5]. Despite rapid technological advances and exponential increases in pharmaceutical R&D
investments, the number of newly approved drugs continues to be the same [6]. To overcome these
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challenges and to potentially bypass this productivity gap, more and more companies are resorting
to “drug repositioning” or “drug repurposing” (sometimes also referred to as drug reprofiling, drug
retasking, or therapeutic switching) or simply identifying and developing new therapeutic uses for
existing or abandoned pharmacotherapies [7]. The premise is that since most approved compounds
have known bioavailability and safety profiles, proven formulation and manufacturing routes, and
reasonably characterized pharmacology, repositioned drugs can enter clinical phases more rapidly
and at a lower cost than novel compounds. Further, the 90% therapeutic development failure rate
means there are many existing, partially developed therapeutic candidates that could be re-visited,
explored further, and potentially repurposed for a new disease, common or rare. It is therefore not
surprising that in recent years, of the new drugs that reach their first markets, repositioned drugs
have taken up to a percentage of ~30%! For instance, of the 113 new drugs and biologics approved or
launched in 2017, only seven were first-in-class agents (an approved and launched first drug with a
novel mechanism of action) while 36 were repositioned drugs [8]. As per an estimate, this bypassing
can potentially make a drug available for use in patients within 3–12 years with a total estimated cost
of $40–80 million [9,10].

Table 1. Examples of repositioned drugs (adapted in part from [11], this list is neither extensive nor
exhaustive).

Drug Original Indication New Indication

Allopurinol Cancer Gout
Amantadine Influenza Parkinson’s disease

Amphotericin Antifungal Leishmaniasis
Arsenic Syphilis Leukemia
Aspirin Inflammation, pain Antiplatelet

Atomexetine Depressive disorder ADHD
Bimatoprost Glaucoma Promoting eyelash growth

Bromocriptine Parkinson’s disease Diabetes mellitus
Bupropion Depression Smoking cessation
Colchicine Gout Recurrent pericarditis

Colesevelam Hyperlipidemia Type 2 diabetes mellitus
Dapsone Leprosy Malaria

Disulfiram Alcoholism Melanoma
Doxepin Depressive disorder Antipruritic

Eflornithine Depression ADHD
Finasteride Benign prostatic hyperplasia Male pattern baldness
Gabapentin Epilepsy Neuropathic pain
Gemcitabine Antiviral Cancer
Lomitapide Lipidemia Familial hypercholesterolemia

Methotrexate Cancer Psoriasis, rheumatoid arthritis
Miltefosine Cancer Visceral leishmaniasis
Minoxidil Hypertension Hair loss

Naltrexone Opioid addiction Alcohol withdrawal
Naproxen Inflammation, pain Alzheimer’s disease

Nortriptyline Depression Neuropathic pain
Premetrexed Mesothelioma Lung cancer
Propranolol Hypertension Migraine prophylaxis
Raloxifene Contraceptive Osteoporosis
Sildenafil Angina Erectile dysfunction; pulmonary hypertension

Thalidomide Morning sickness Leprosy; multiple myeloma
Tretinoin Acne Leukemia

Zidovudine Cancer HIV/AIDS
Zileuton Asthma Acne

Most of the successful cases of drug repurposing have been serendipitous discoveries rather than
systematic, hypothesis-driven outcomes. These include the accidental discovery of thalidomide as an
agent for leprosy or the more notable example of sildenafil, an angina medication developed in 1989
subsequently marketed as Viagra®, a blockbuster drug to treat erectile dysfunction [12] (see Table 1 for



Pharmaceuticals 2018, 11, 57 3 of 21

additional examples of drug repositioning). De novo drug therapies for more than 8000 orphan or rare
diseases are impossible to develop with the current R&D costs, however, drug repositioning with its
premise of discovering hidden connections or building connections between a drug and disease hold
promise for orphan disease therapy [13]. Further, revisiting the approved drugs for identifying new
indications helps the pharmaceutical companies to extend the patent life of drugs, through application
to adjacent diseases and also helps the company to protect the IP against competitors [14].

In-silico methods like data-mining, machine learning, and network-based approaches, offer an
unprecedented opportunity to predict all possible drug repositioning candidates using available
diverse and heterogeneous data sources from genomics and biomedical domains [15]. Indeed,
predictive models have been built using these methods exploiting existing data such as protein
targets, chemical structure, or phenotypic information such as profiles of side-effect, gene expression,
etc. While the advances in computational sciences bring the possibility of applying novel algorithms
and approaches to systems biology data, these datasets themselves have triggered fundamental
research on more complex problems [16]. As a result of this hybrid approach of utilizing computational
methods and experimental screenings, various modalities of drug repositioning methods have emerged.
Computational drug repositioning methods focus on shared characteristics between two drugs
and depending on what kind of drug discovery (drug-based or disease-based) [17], the methods
can be classified in to target-based, expression-based, knowledge-based, chemical structure-based,
pathway-based and mechanism of action-based [18]. In this review article, we briefly outline the
recent progress in computational methods and strategies applied on the drug-disease data for drug
repositioning investigations.

2. Approaches

In silico drug repurposing challenges that are drug-centric (i.e., discovering new indications
for existing drugs) or disease-centric (i.e., identifying an effective drug as a potential treatment
for disease) have the common challenge of either assessing the similarity or connections between
drugs or between diseases [19]. Jin and Wong [18] reviewed a variety of approaches used as a basis
for computational drug repurposing. These can be broadly categorized as knowledge-based and
signature-based approaches.

2.1. Knowledge-Based Drug Repurposing

This repurposing method utilizes the available information on drug such as drug-targets, chemical
structures, adverse effects, pathways etc. and builds computational models to predict unknown
mechanisms, targets or new bio-markers for diseases [20–24]. In pathway-based approach, signaling
pathways, metabolic pathways and protein-interaction networks data are used to compute the
similarity or connections between drug and disease. The processed omics data, for example, from
human patients or animal models of disease are used to reconstruct disease-specific pathways that
can serve as key targets for novel therapeutic discovery or for repositioned drugs [25–30]. Target
mechanism-based approaches on the other hand take into account known mechanism of action and
target role : Here, the data available on signaling pathways, protein interactions and omics data are
integrated to identify the potential mechanism of action (MoA) of drugs [31–34]. This in turn can
enable find better and even specific drug targets and also for discover of an alternate medication for
any disease.

2.2. Signature-Based Drug Repurposing

This method makes use of gene expression signatures by comparing drug gene expression profiles
and disease gene expression profiles and is frequently referred to as ‘signature reversion’ method [35].
Gene expression based methods are effective in constructing a detailed map of connections between
diseases and drug actions [36–40].
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Table 2. Drug and Disease Centric Database Resources.

Database Type Description URL Ref.

ADReCS Drug System Toxicology and in silico drug safety evaluation. Contains
137,619 Drug-ADR pairs http://bioinf.xmu.edu.cn/ADReCS/ [41]

ChEMBL Drug Database of bioactive drug-like small molecules and abstracted
bioactivities https://www.ebi.ac.uk/chembl [42]

ChemSpider Drug Database of 64 million chemical structures http://www.chemspider.com/ [43]

Clue (L1000
Platform) Drug

Dataset of transcriptional responses of human cells to chemical
and genetic perturbation. 1.2 Million L1000 profiles and tools for
their analysis.

https://clue.io/ [44]

Comparative
Toxicogenomics

Database
Drug Associations of Drug-Gene, Gene-Disease, Drug-Disease and

gene-gene http://ctdbase.org/ [45]

DailyMED Drug Catalogue of drug listings/drug label information https://dailymed.nlm.nih.gov/dailymed/ [46]

DGIdb Drug Drug-gene annotations, interactions and potential drug ability
database http://dgidb.org/ [47]

DrugBank Drug Contains 11,000 drug entries and each entry contains more than
200 data fields of chemical information and drug targets. https://www.drugbank.ca/ [48]

DrugCentral Drug
Information on active ingredients chemical entities,
pharmaceutical products, drug mode of action, indications,
pharmacologic action

http://drugcentral.org/ [49]

e-Drug3D Drug e-Drug3D offers a facility to explore FDA approved drugs and
active metabolites http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html [50]

Genomics of Drug
Sensitivity in

Cancer (GDSC)
Drug Screenings of >1000 genetically characterized human cancer cell

lines with a wide range of anti-cancer therapeutics http://www.cancerrxgene.org/ [51]

Inxight Drugs Drug A comprehensive portal for drug development information from
NCATS https://drugs.ncats.io/ginas/app

Open Targets
Platform Drug comprehensive and robust data integration for access to and

visualization of potential drug targets associated with disease https://www.targetvalidation.org [52]

PharmGKB Drug Curated dataset of genetic variation on drug response https://www.pharmgkb.org/ [53]

http://bioinf.xmu.edu.cn/ADReCS/
https://www.ebi.ac.uk/chembl
http://www.chemspider.com/
https://clue.io/
http://ctdbase.org/
https://dailymed.nlm.nih.gov/dailymed/
http://dgidb.org/
https://www.drugbank.ca/
http://drugcentral.org/
http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html
http://www.cancerrxgene.org/
https://drugs.ncats.io/ginas/app
https://www.targetvalidation.org
https://www.pharmgkb.org/
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Table 2. Cont.

Database Type Description URL Ref.

pkCSM Drug Small-molecule pharmacokinetic (ADMET) properties prediction
using SMILE data http://biosig.unimelb.edu.au/pkcsm/prediction [54]

Project Achilles Drug A genome-wide catalog of tumor dependencies, to identify
vulnerabilities associated with genetic and epigenetic alterations https://portals.broadinstitute.org/achilles [55]

Promiscuous Drug Database contains three different types of entities: drugs, proteins
and side-effects as well as relations between them http://bioinformatics.charite.de/promiscuous/ [56]

PubChem Drug
PubChem contains more than 90 million compounds chemical
information along with their bio activities, gene and protein
targets

http://pubchem.ncbi.nlm.nih.gov/ [57]

SIDER Drug Information on marketed medicines and their recorded adverse
drug reactions http://sideeffects.embl.de/ [58]

STITCH Drug 68,000 chemicals, interactions and over 1.5 million proteins in 373
species http://stitch.embl.de/ [59]

SuperPred Drug A prediction webserver for ATC code and target prediction of
compounds http://prediction.charite.de/ [60]

Therapeutic Target
Database (TTD) Drug

Dataset of known and explored therapeutic protein and nucleic
acid targets, the targeted disease, pathway information and the
corresponding drugs directed at each of these target

http://bidd.nus.edu.sg/group/cjttd/ [61]

Toxin and
Toxin-Target

Database (T3DB)
Drug

A database of 3673 toxins described by 41,733 synonyms,
including pollutants, pesticides, drugs, and food toxins, which
are linked to 2087 corresponding toxin target records

http://www.t3db.ca/ [62]

Human Protein
Atlas

Disease
and Drug

Consists of three separate parts; the Tissue Atlas showing the
distribution of the proteins across all major tissues and organs in
the human body, the Cell Atlas showing the subcellular
localization of proteins in single cells, and finally the Pathology
Atlas showing the impact of protein levels for survival of patients
with cancer.

https://www.proteinatlas.org/ [63]

KEGG Medicus Disease
and Drug

Collection of databases dealing with genomes, biological
pathways, diseases, drugs, and chemical substances

http://www.genome.jp/kegg/disease/
http://www.kegg.jp/
http://www.genome.jp/kegg/drug/

[64]

http://biosig.unimelb.edu.au/pkcsm/prediction
https://portals.broadinstitute.org/achilles
http://bioinformatics.charite.de/promiscuous/
http://pubchem.ncbi.nlm.nih.gov/
http://sideeffects.embl.de/
http://stitch.embl.de/
http://prediction.charite.de/
http://bidd.nus.edu.sg/group/cjttd/
http://www.t3db.ca/
https://www.proteinatlas.org/
http://www.genome.jp/kegg/disease/
http://www.kegg.jp/
http://www.genome.jp/kegg/drug/
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Table 2. Cont.

Database Type Description URL Ref.

PsychEncode Disease https://www.synapse.org//#!Synapse:
syn4921369/wiki/235539 [65]

Allen Brain Atlas Disease Gene expression maps for mouse and human brain http://www.brain-map.org/ [66]

ArrayExpress Disease Micro array gene expression data at EBI https://www.ebi.ac.uk/arrayexpress [67]

CCLE Disease Database of mRNA expression and mutation data over 1100
cancer cell lines https://portals.broadinstitute.org/ccle [68]

COSMIC Disease Catalogue of somatic mutations in human cancer http://cancer.sanger.ac.uk/cosmic [69]

dbGAP Disease Catalogue of somatic mutations causing cancer http://www.ncbi.nlm.nih.gov/gap [70]

dbSNP Disease Database of single nucleotide polymorphisms https://www.ncbi.nlm.nih.gov/snp [71]

dbVar Disease Public archives for genomic structural variation https://www.ncbi.nlm.nih.gov/dbvar [72]

DisGeNET Disease Database on human disease-associated genes and variants http://www.disgenet.org/ [73]

ENCODE Disease Database of comprehensive parts list of functional elements in
human genome https://genome.ucsc.edu/ENCODE/ [20]

Genomics Data
Commons Disease Harmonized Cancer Datasets with 40 cancer mutated gene

projects, 22,147 Genes and 3 million mutations https://gdc.cancer.gov/ [74]

GEO Disease High throughput gene expression datasets http://www.ncbi.nlm.nih.gov/geo [75]

GTex Disease Catalog of genetic variations and their influence on gene
expressions https://www.gtexportal.org/home/ [76]

Human Proteome
Map Disease Interactive resource with massive peptide sequencing results http://www.humanproteomemap.org/ [77]

ICGC Disease Dataset with more than 17,000 cancer donors spanning 76
projects and 21 tumor sites http://icgc.org/ [78]

IGSR Disease 1000 genome project data usability and extension http://www.internationalgenome.org/ [79]

Orphadata Disease Rare diseases, drugs and associated genes http://www.orphadata.org/cgi-bin/index.php/ [80]

Roadmap
Epigenomics Disease

Epigenomic maps for stem cells and primary ex vivo tissues
selected to represent the normal counterparts of tissues and organ
systems frequently involved in human disease

http://www.roadmapepigenomics.org/ [81]

STRING Disease Protein-Protein interaction, analysis, and networks https://string-db.org/cgi/input.pl [82]

https://www.synapse.org//#!Synapse:syn4921369/wiki/235539
https://www.synapse.org//#!Synapse:syn4921369/wiki/235539
http://www.brain-map.org/
https://www.ebi.ac.uk/arrayexpress
https://portals.broadinstitute.org/ccle
http://cancer.sanger.ac.uk/cosmic
http://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/dbvar
http://www.disgenet.org/
https://genome.ucsc.edu/ENCODE/
https://gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
https://www.gtexportal.org/home/
http://www.humanproteomemap.org/
http://icgc.org/
http://www.internationalgenome.org/
http://www.orphadata.org/cgi-bin/index.php/
http://www.roadmapepigenomics.org/
https://string-db.org/cgi/input.pl
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Connectivity Map (CMap) [83,84], NCBI’s Gene Expression (GEO) [75], and the relatively recent
LINCS datasets [44] are also extensively explored in drug repositioning studies. Recent technical
and technological advancements in molecular biology and exponential growth of biomedical data
while presenting challenges have also opened up an array of opportunities to develop and apply
novel and powerful computational approaches that can enable informed drug repositioning. The free
availability of data repositories are further directing and catalyzing these efforts. In Table 2 we present
some of the widely used open source drug- and disease-centric and related databases. These include,
for instance, databases that provide information on the known targets, mechanism of action, gene
expression, clinical status, ADMET properties, signaling pathways and disease-centric database which
has omics data (transcriptomic, proteomic, genetic characteristics of diseases).

2.3. In Silico Methods for Drug Repositioning

In the following sections, we present an overview of some of the in silico methods—current and
emerging—used for facilitating drug repositioning candidate discovery.

2.3.1. Machine Learning

Any machine learning workflow typically comprises of 4 steps: data pre-processing, feature
extraction, model fitting and evaluation [85]. PREDICT, is a similarity based machine learning
framework, integrating drug-drug similarity (based on drug-protein interactions, sequence and
gene-ontology) and disease-disease similarity (disease-phenotype and human phenotype ontology)
where the authors have used them as features applying logistic regression to predict similar drugs
for similar diseases and they achieved AUC = 0.9 in predicting drug indications [86]. SPACE, another
similarity-based method predicts anatomical therapeutic chemical classification of drugs by integrating
multiple data sources using Logistic Regression [87]. Likewise, several such similarity based methods
have been reported for predicting novel drug indications [88–90].

Deep learning, a large class of machine learning-based models composed of multiple processing
layers representing data with a high level of abstraction are now being explored computational biology
field for a wide-variety of applications including drug discovery [91,92]. The principal difference
between conventional “shallow” learning (neural network with one or two hidden layers) and deep
learning is that while the former does not deal with raw data and requires a feature extraction
step to be performed before the learning process, the latter not only discovers intricate structure in
large data sets but by using the backpropagation algorithm allows changing the internal parameters
incrementally to compute the representation in each layer from the representation in the previous
layer [92]. Deep learning-based approaches have dramatically improved the state-of-the-art in speech
recognition, visual object recognition, object detection and are currently being explored in biomedical
and genomic domains. Aliper and Plis, for example, used deep learning with gene expression data
to learn drug therapeutic categories and found that deep neural networks surpassed SVM after 10
fold cross validation suggesting a working proof for applying deep learning for drug discovery
and development [93]. Interestingly, Zhao and Cheong, compared deep neural networks (DNN)
approach with SVM-based approach to predict psychiatric drug indications based on the expression
profiles of drugs and reported that [37]. While more studies are needed to understand if DNN-based
approaches indeed have the claimed benefits, there have been additional reports suggesting that deep
learning-based approaches perform better than traditional machine learning algorithms in toxicity
prediction by enabling multi-task learning [94,95].

2.3.2. Network Models

Network-based approaches have been extensively exploited in computational drug repositioning
for identifying novel drug targets, interactions, and indications [96]. Typically, in these models,
the nodes in the networks represent either drug, disease, or gene products and edges represent
the interactions or relationships between them. These networks are either knowledge-based or
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computationally inferred using multiple data resources and have various representations such as
drug-drug, drug-target, drug-disease, disease-disease, disease-gene, disease-drug, protein-protein
interactions, and transcriptional networks [97]. Cheng and Liu computed similarities—drug-based,
target-based, and network-based—to predict drug-target interaction in a bi-partite network and found
that network based inference method performed best with an average ROC AUC of 0.96 [21]. Similar
homogenous or bipartite network models have been incorporated using phenotype data such as
side-effect [98–100], transcriptional [101–103], drug-disease [104,105] and signaling pathway data [25].

Integrating heterogeneous data also provides diverse information and has the potential to unveil
hidden or unknown drug-disease relationships based on the guilt-by-association principle. Most of
the similarity-based methods are either drug-centric or disease-centric networks, with relatively few
approaches that built a drug-disease heterogeneous network using compendia of gene annotations and
network clustering to identify drug repositioning candidates [105,106]. Luo and Zhao, built a similar
network-based framework using heterogeneous data through a network diffusion process and used
the diffusion distributions to derive the prediction scores of drug-target interactions [107]. Recently,
Himmelstein et al. integrated data from 29 public resources to identify dug repositioning candidates
and predicted the probability of repositioning for 209,168 drug-disease pairs [108].

2.3.3. Mining Electronic Health Records for Drug Repurposing

Electronic health records (EHR) of the patients which provide medications details along with
patient history can also be mined to identify drug repositioning candidates. Applying natural
language processing on EHRs, for instance, reveals post-market, additional adverse drug events
which are not found in clinical trials [109]. These side-effects information can be potentially used for
drug-repositioning and validation [23]. Mining EHR records for example helped in identifying that
metformin, a most commonly prescribed medication for type II diabetes, can also be repurposed for
cancer treatment [110]. The relevance and accuracy of the model’s prediction needs to be assessed
in discovering a drug whose indications are unknown. The validity of novel drug prediction can be
evaluated by comparing the predicted targets in ClinicalTrials.gov, PubMed abstracts or EHR records.
The performance of the model can be evaluated by computing area under the ROC curve (AUC ROC)
and Precision Recall (PR) curve. Sensitivity is a metric to measure the proportion of true positive
identified correctly and Specificity is the proportion of negatives correctly identified as negatives.
Due to the large unannotated drug-indication pairs as false positives, the sensitivity and specificity
estimates are poor and creates substantial imbalance of true positives and true negatives. In a recent
review, Brown and Patel suggest that using sensitivity-validation alone is ideal since it does not need
the true negatives. The authors further suggest that investigators should test their model performance
with cross-validation to prevent over-fitting and weak predictive performance [111].

2.4. Open Innovation—Crowd Sourcing

Crowd sourcing is a collaborative approach of delegating tasks to the crowd where the variety
of expertise available generates new insights or hypothesis with the available data. This paradigm
has been taken advantage in a multitude areas from diverse domains including health care and
genomics. The open source drug discovery process enables faster translation of research to results with
a clear definition on specific problem, task decomposition and immediate feedback loop [112–115].
Pharmaceutical companies, due to the limitations in R&D business model and man power often
are focused on specific diseases which may or may not include rare and neglected diseases. Hence,
few pharmaceutical and non-profit companies have used crowdsourcing platforms and embraced
a wide-variety of innovative solutions [116,117] directing towards discussing the scientific enigmas.
Several open innovation platforms have been established in order to build industry-academia
partnerships and to explore science and business opportunities with mutual benefit (Table 3).
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Table 3. Open innovation research resources.

Name Description URL

Centers for Therapeutic
Innovation (CTI)

Collaborative research platform for clinical
applications and drug discovery [118] https://www.pfizercti.com

CREEDS Crowd-extracted expression of differential
signatures [119] http://amp.pharm.mssm.edu/CREEDS

Grants4Leads Financial support for exploration of new
approaches in infectious diseases [120] https://www.grants4leads.com/

Kaggle
Data scientists and statisticians competition
platform with few bioinformatics challenges
[117,121]

http://www.kaggle.com/

Open Innovation Drug
Discovery

Academic and Industry researchers open
collaboration platform for drug discovery [122] https://openinnovation.lilly.com/dd/

Sage Bionetworks
Bioinformatics and data science challenge
platform building prognostic models for breast
cancer [123]

http://sagebionetworks.org/

TopCoder Machine learning engineers, programmers and
data scientists challenge platform [116] http://www.topcoder.com

National Center for Advancing Translational Sciences (NCATS)—NIH-Academia-Industry
Partnerships Initiative

The National Institutes of Health (NIH), as part of the new therapeutic uses program, launched
(i) NCATS’ NIH-Industry Partnerships initiative in 2012 to foster collaboration between pharmaceutical
companies and the biomedical research community; and (ii) bench-to clinical repurposing initiative to
test the utility of crowdsourcing efforts or computational approaches for drug repurposing.

The focus of the match-making NIH-industry partnerships projects is to match researchers with
open assets from pharmaceutical assets to fuel and accelerate drug repurposing candidate discovery.
Through this initiative, NCATS supports and advances research on a wide range of common and
rare (including neglected) diseases. Current industry partners in this initiative include: AstraZeneca,
AbbVie, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Janssen Pharmaceuticals, MedImmune,
Mereo BioPharma, Pfizer, and Sanofi. The participating companies make a number of partially
developed assets available to academic researchers to crowdsource repurposing ideas. Projects using
most of these assets can go directly into Phase II clinical trials, while some may require additional
pre-clinical investigations or a Phase I clinical trial (e.g., testing in target populations to determine
dosing, assess safety and tolerability).

Through the bench-to-clinic repurposing program, NCATS supports pre-clinical studies, clinical
feasibility studies or proof-of-concept clinical trials to assess the utility of computational approaches or
crowdsourcing efforts in discovering drug repurposing candidates. Table 4 lists the new therapeutic
uses projects funded by NIH-NCATS through these two programs (additional details can be found at
https://ncats.nih.gov/ntu/projects).

https://www.pfizercti.com
http://amp.pharm.mssm.edu/CREEDS
https://www.grants4leads.com/
http://www.kaggle.com/
https://openinnovation.lilly.com/dd/
http://sagebionetworks.org/
http://www.topcoder.com
https://ncats.nih.gov/ntu/projects
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Table 4. NIH-NCATS funded new therapeutic uses projects (2013–2018).

Project/Study Title Year NCATS Program Condition

The Efficacy and Safety of a Selective Estrogen Receptor Beta Agonist (LY500307) 2013 NIH-Industry Partnership Schizophrenia

Fyn Inhibition by AZD0530 for Alzheimer’s Disease 2013 NIH-Industry Partnership Alzheimer’s disease

Medication Development of a Novel Therapeutic for Smoking Cessation 2013 NIH-Industry Partnership Cigarette smoking

A Novel Compound for Alcoholism Treatment: A Translational Strategy 2013 NIH-Industry Partnership Alcoholism

Partnering to Treat an Orphan Disease: Duchenne Muscular Dystrophy 2013 NIH-Industry Partnership Duchenne muscular dystrophy

Reuse of ZD4054 for Patients with Symptomatic Peripheral Artery Disease 2013 NIH-Industry Partnership Peripheral artery disease

Therapeutic Strategy for Lymphangioleiomyomatosis 2013 NIH-Industry Partnership Lymphangioleiomyomatosis

Therapeutic Strategy to Slow Progression of Calcific Aortic Valve Stenosis 2013 NIH-Industry Partnership Calcific aortic valve stenosis

Translational Neuroscience Optimization of GlyT1 Inhibitor 2013 NIH-Industry Partnership Schizophrenia

Anti-inflammatory Small Drug as Adjunctive Therapy to Improve Glucometabolic
Variables in Obese, Insulin-Resistant Type 2 Diabetic Patients 2015 NIH-Industry Partnership Insulin-resistant type 2 diabetes

Evaluation of AZD9291 in Glioblastoma Patients with Activated EGFR 2015 NIH-Industry Partnership Glioblastoma

Evaluation of a Cathepsin S Inhibitor as a Potential Drug for Chagas Disease 2015 NIH-Industry Partnership Chagas disease

Wee1 and HDAC Inhibition in Relapsed/Refractory AML 2015 NIH-Industry Partnership Relapsed/refractory AML

Anti-Virulence Drug Repurposing Using Structural Systems Pharmacology 2016 Bench-to-Clinic Bacterial virulence

CXCR2 Antagonism in the Immunometabolic Regulation of Type 2 Diabetes 2016 Bench-to-Clinic Type 2 diabetes

Drug Repositioning in Diabetic Nephropathy 2016 Bench-to-Clinic Diabetic nephropathy

Ketorolac and Related NSAIDs for Targeting Rho-Family GTPases in Ovarian Cancer 2016 Bench-to-Clinic Ovarian cancer

Network-Driven Drug Repurposing Approaches to Treat Coronary Artery Disease 2016 Bench-to-Clinic Coronary artery disease

Pre-Clinical Evaluation of a Neutrophil Elastase Inhibitor for the Treatment of
Inflammatory Bowel Disease 2016 Bench-to-Clinic Inflammatory bowel disease

Quantum Model Repurposing of Cethromycin for Liver Stage Malaria 2016 Bench-to-Clinic Liver-stage malaria

Repurposing Lesogaberan for the Treatment of Type 1 Diabetes 2016 Bench-to-Clinic Type 1 diabetes

Repurposing Misoprostol for Clostridium Difficile Colitis as Identified by PheWAS 2016 Bench-to-Clinic Clostridium difficile colitis
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Table 4. Cont.

Project/Study Title Year NCATS Program Condition

Repurposing Pyronaridine as a Treatment for the Ebola Virus 2016 Bench-to-Clinic Ebola virus

Therapeutic Repurposing of Benserazide for Colon Cancer 2016 Bench-to-Clinic Colon cancer

Computational Repurposing of Chemotherapies for Pulmonary Hypertension 2017 Bench-to-Clinic Pulmonary hypertension

Pre-Clinical Evaluation of Vorinostat in Alopecia Areata 2017 Bench-to-Clinic Alopecia areata

Pre-Clinical Testing of a Novel Therapeutic for Nonalcoholic Steatohepatitis 2017 Bench-to-Clinic Nonalcoholic steatohepatitis

Repurposing Pyronaridine as a Treatment for Chagas Disease 2017 Bench-to-Clinic Chagas disease

Single-Cell-Driven Drug Repositioning Approaches to Target Inflammation
in Atherosclerosis 2017 Bench-to-Clinic Atherosclerosis

Impact of SAR152954 on Prenatal Alcohol Exposure-Induced Neurobehavioral Deficits 2017 Bench-to-Clinic Neurobehavioral deficits

An Endoplasmic Reticulum Calcium Stabilizer for the Treatment of Wolfram Syndrome 2017 Bench-to-Clinic Wolfram syndrome

Utilization of Phenotypic Precision Medicine to Identify Optimal Drug Combinations
for the Treatment of Hepatocellular Carcinoma 2017 Bench-to-Clinic Hepatocellular carcinoma

Targeting Glucose Metabolism for the Treatment of Hepatocellular Carcinoma 2017 Bench-to-Clinic Hepatocellular carcinoma

Application of a Repurposed FDA Approved Drug as a Local Osteogenic Agent 2017 Bench-to-Clinic To induce local osteogenesis

Repurposing Misoprostol to Prevent Recurrence of Clostridium Difficile Infection 2018 Bench-to-Clinic Recurrent Clostridium difficile

AZD9668: A First in Class Disease Modifying Therapy to Treat Alpha-1 Antitrypsin
Deficiency, a Genetically Linked Orphan Disease 2018 NIH-Industry Partnership Alpha-1 antitrypsin deficiency

AZD9668 and Neutrophil Elastase Inhibition to Prevent Graft-versus-Host Disease 2018 NIH-Industry Partnership Graft-versus-host disease

Use of the Src Family Kinase Inhibitor Saracatinib in the Treatment of
Pulmonary Fibrosis 2018 NIH-Industry Partnership Pulmonary fibrosis
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2.5. Open Source Software

The open source movement has created a substantial value in pursuing towards “state-of-the-art”
research over the last decade with the help of reusable and generic software libraries for data
processing [124,125]. Jupyter Notebook for instance is the modern data analysis tool for reproducible
computational research that supports open source languages like Python, Julia, C++, R and
several other languages and provides rich features for interactive computing, visualization, and
documentation [126]. Structured data tools like Scikit-learn [127], R-Programming, Orange [128] and
Weka [129] are useful for mining, analysis, learning and statistical computing. For the high dimensional
un-structured data such as images, text, or audio outputs, deep learning tools like TensorFlow [130],
Keras [131], PyTorch [132], CNTK [133], and Matlab [134] that take advantage of multi-GPU accelerated
training are increasingly used. Gephi [135] and Cytoscape [136] are other popular tools used primarily
for bimolecular interaction networks, omics-data integration, clustering and visualization. In Table 5,
we summarize few such used tools used in computational drug discovery and repositioning.

Table 5. Web-tools and open source kits.

Tool Description URL Ref

Clue
Tools for perturbagens (small molecules or genes)
query, L1000 cohorts, and gene expression
heatmap visualization

https://clue.io [44]

Clue
Repurposing Tool

Interactive application to access approved and
pre-clinical drug annotations https://clue.io/repurposing [137]

COGENA Analysis, visualizing and clustering tool for gene
expression profiles https://github.com/zhilongjia/cogena [138]

DeepChem Deep learning toolkit for drug discovery and
cheminformatics https://deepchem.io/ [139]

DR.PRODIS Prediction of drug-protein interactions, side
effects http://cssb.biology.gatech.edu/repurpose [140]

e-LEA3D Collection of tools related to computer-aided
drug design http://chemoinfo.ipmc.cnrs.fr/ [141]

Frog2 Chemo-informatics toolkit for small compound
3D generation from 1D/2D input

http://bioserv.rpbs.univ-paris-diderot.fr/
services/Frog2/ [142]

GIFT Infer chemogenomic features from drug-target
interactions.

http://bioinfo.au.tsinghua.edu.cn/
software/GIFT/ [143]

GoPredict Drug target prioritization tool for breast and
ovarian cancer http://csblcanges.fimm.fi/GOPredict/ [144]

JOELib/JOELib2
Toolkit to interconvert chemical file formats,
descriptor calculation classes, and SMARTS
substructure search

http://www.ra.cs.uni-tuebingen.de/
software/joelib/introduction.html [145]

ksRepo Drug repositioning tool that utilizes gene
expression drug datasets from different platforms

https:
//github.com/adam-sam-brown/ksRepo [101]

L1000CDS L1000 dataset based gene expression signature
search engine

http://amp.pharm.mssm.edu/
L1000CDS2/#/index [146]

MANTRA Prediction and analysis of mechanism of action
of drugs for drug repositioning http://mantra.tigem.it/ [147]

NFFinder Tool to discover multiple drugs with similar
drugs based on up/down regulated genes http://nffinder.cnb.csic.es/ [102]

Open babel Open source chemistry toolbox http://openbabel.org/wiki/Main_Page [148]

Open PHACTS

European funded initiative to bring together
industry and academic partners for semantic
integration of pharmacological data using an
RDF data model

http://www.openphacts.org [149]

3. Discussion

Drug repositioning acts as a viable strategy for a cost-effective de novo drug discovery. Although
in silico methods have proven to be successful in addressing the problem of repurposing, some
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challenges continue to be addressed. One of the principal issues is the missing drug-disease
indication data. Marking the missing indications as true negatives or ignoring them from training
can potentially compromise the predictive power of the computational model for drug repurposing
candidate discovery. Second, the lack of a true gold standard dataset for drug repositioning makes
it difficult for in silico methods to evaluate results. As a result, common performance metrics
such as sensitivity, specificity, and precision are used to assess the utility of computational drug
repurposing algorithms. Third, existing computational methods tend to be predominantly one-sided
(e.g., drug-centric or disease-centric). However, the integration of multi-omic data with similarity
measures have been shown to have better predictive performance with identification of novel
therapeutic compounds [105,108].

The sea of biomedical information (see Table 2), in which small molecule and gene/protein
structural, functional and process knowledge—both in normal and disease states—is embedded
consists of unstructured free-text as in publications and structured or semi-structured relational
databases. Transforming information from these silos into actionable knowledge is facilitated by
establishing connectivity among the subsets taken from these multiple heterogeneous and diverse
domains. For example, a pharmacomodule consisting of a group of genes, biological processes,
pathways, phenotypes, small molecules (approved drugs or investigational compounds), and a
group of drug-induced or related adverse events forms a meaningful multi-domain module when the
interdependency among most of the pairs of subsets are supported by scientific evidence (literature or
databases). These pharmacomodules can potentially take us closer to answering the how question about
the underlying a hypothetical mechanism of action or phenomena. An informed answer to the how
question holds the premise to generate better and informed drug repositioning hypotheses. Growing
scientific evidence [7] suggests that any compound found to be safe in humans is likely to have multiple
therapeutic uses. However, almost all successful drug reposition crossovers so far have been the result
of either accidental occurrences or informed guesses. Given that this “back-to-basics” approach for
repositioning is growing in popularity [8], there is an urgent need for more efficient and systematic
computational approaches to first systematize the available genomic and pharmacological databases
for representation and knowledge discovery and then use these databases and pattern discovery tools
to identify the potential new uses for existing drugs. What is needed clearly is a paradigm shift in the
approaches—genomic, biopharmacological, and computational—for a more informed systematic drug
rediscovery (“systematic serendipity”) taking into account all of the data resources. Originally coined
by Eugene Garfield, “systematic serendipity” refers to the organized process of discovering previously
unknown scientific relations using citation databases, leading to better possibilities for a collaboration
of human serendipity with computer supported knowledge discovery [150].

The credibility of published research will improve the discoveries in science if the provided
compendium has an evidence for the accuracy and reproducibility of the results. Reproducibility
particularly is a major issue especially when scientific papers publish unexpected, positive results and
other researchers or an independent research group is unable to replicate the same results even after
using same or similar methods as reported by the original study [151,152]. It has been estimated that
the irreproducible research costs up to $28 billion per year [153]! Providing the code and data used to
obtain the claimed and reported results is always a better strategy than mere describing them in natural
language in the paper and can be eventually an incremental step towards a better science [154–156].
The recent Findability, Accessibility, Interoperability, Reusability (FAIR) data principles go beyond
the mere reuse of data by individuals but rather enhance the ability of machines to support and find
and use the data automatically. These include any efforts that support discovery and reproducibility
through good data management practices such as good data management, maintenance of the data
flow, and sharing relevant tools or pipelines used in the research [157]. The recent Datasets2Tools
project is in compliance with these principles and enables users to search for contributed canned
analyses, datasets and tools [158]. Computational science research can be replicated effectively using
tools like code version control software like Github [159] and transferable computational environments
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like Docker [160]. Over the past few years, the reproducibility issue is being taken seriously and many
journals insist on providing code and data when submitting the paper.

In summary, emerging and advanced novel computational methods and crowdsourcing-based
approaches that enable the joint analysis of genomic, biomedical and pharmacological data hold the
premise to facilitate informed, efficient, and systematic drug repositioning. Whether this premise
expedites drug development pipelines and how much of it translates into novel therapeutic discovery
and impacts public health, especially catering to unmet needs (e.g., rare and neglected diseases),
positively remains to be seen.

Author Contributions: J.K.Y. and A.G.J. conceived the outline, reviewed the literature and wrote the manuscript;
S.Y. and Y.W. participated in the discussions and provided the edits to some sections of the paper.

Acknowledgments: This research was supported in part by the NIH NHLBI’s 1R21 HL133539 (A.G.J.) and 1R21
HL135368 (A.G.J.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D
efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [PubMed]

2. Akhondzadeh, S. The Importance of Clinical Trials in Drug Development. Avicenna J. Med. Biotechnol. 2016,
8, 151. [PubMed]

3. Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev.
Drug Discov. 2013, 12, 581–594. [CrossRef] [PubMed]

4. Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 1–5.
[CrossRef] [PubMed]

5. Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How
to improve RD productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9,
203–214. [CrossRef] [PubMed]

6. Booth, B.; Zemmel, R. Opinion/Outlook: Prospects for productivity. Nat. Rev. Drug Discov. 2004, 3, 451–456.
[CrossRef] [PubMed]

7. Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs.
Nat. Rev. Drug Discov. 2004, 3, 673–683. [CrossRef] [PubMed]

8. Graul, A.I.; Cruces, E.; Stringer, M. The year’s new drugs & biologics, 2013: Part I. Drugs of Today 2014, 50,
51–100. [PubMed]

9. Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: From
data to therapeutics. Clin. Pharmacol. Ther. 2013, 93, 335–341. [CrossRef] [PubMed]

10. Papapetropoulos, A.; Szabo, C. Inventing new therapies without reinventing the wheel: The power of drug
repurposing. Br. J. Pharmacol. 2018, 2016–2018. [CrossRef] [PubMed]

11. Padhy, B.M.; Gupta, Y.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications.
J. Postgrad. Med. 2011, 57, 153–160. [CrossRef] [PubMed]

12. Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [CrossRef] [PubMed]
13. Sardana, D.; Zhu, C.; Zhang, M.; Gudivada, R.C.; Yang, L.; Jegga, A.G. Drug repositioning for orphan

diseases. Brief. Bioinform. 2011, 12, 346–356. [CrossRef] [PubMed]
14. Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.;

Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2017.
[CrossRef] [PubMed]

15. Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational
drug repositioning. Brief. Bioinform. 2016, 17, 2–12. [CrossRef] [PubMed]

16. Prathipati, P.; Mizuguchi, K. Systems Biology Approaches to a Rational Drug Discovery Paradigm. Curr. Top.
Med. Chem. 2015, 16, 1009–1025. [CrossRef]

17. Li, Y.Y.; Jones, S.J.M. Drug repositioning for personalized medicine. Genome Med. 2012, 4, 27. [PubMed]
18. Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into

efficient pipelines. Drug Discov. Today 2014, 19, 637–644. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/22378269
http://www.ncbi.nlm.nih.gov/pubmed/27920881
http://dx.doi.org/10.1038/nrd4051
http://www.ncbi.nlm.nih.gov/pubmed/23868113
http://dx.doi.org/10.1038/nrd1470
http://www.ncbi.nlm.nih.gov/pubmed/15286737
http://dx.doi.org/10.1038/nrd3078
http://www.ncbi.nlm.nih.gov/pubmed/20168317
http://dx.doi.org/10.1038/nrd1384
http://www.ncbi.nlm.nih.gov/pubmed/15136792
http://dx.doi.org/10.1038/nrd1468
http://www.ncbi.nlm.nih.gov/pubmed/15286734
http://www.ncbi.nlm.nih.gov/pubmed/24524105
http://dx.doi.org/10.1038/clpt.2013.1
http://www.ncbi.nlm.nih.gov/pubmed/23443757
http://dx.doi.org/10.1111/bph.14081
http://www.ncbi.nlm.nih.gov/pubmed/29313889
http://dx.doi.org/10.4103/0022-3859.81870
http://www.ncbi.nlm.nih.gov/pubmed/21654146
http://dx.doi.org/10.1038/534314a
http://www.ncbi.nlm.nih.gov/pubmed/27306171
http://dx.doi.org/10.1093/bib/bbr021
http://www.ncbi.nlm.nih.gov/pubmed/21504985
http://dx.doi.org/10.1111/bph.13798
http://www.ncbi.nlm.nih.gov/pubmed/28369768
http://dx.doi.org/10.1093/bib/bbv020
http://www.ncbi.nlm.nih.gov/pubmed/25832646
http://dx.doi.org/10.2174/1568026615666150826114524
http://www.ncbi.nlm.nih.gov/pubmed/22494857
http://dx.doi.org/10.1016/j.drudis.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24239728


Pharmaceuticals 2018, 11, 57 15 of 21

19. Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W.; Tong, W. In silico drug repositioning: What
we need to know. Drug Discov. Today 2013, 18, 110–115. [CrossRef] [PubMed]

20. Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug Target
Prediction and Repositioning Using an Integrated Network-Based Approach. PLoS ONE 2013, 8. [CrossRef]
[PubMed]

21. Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target
interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 2012, 8. [CrossRef]
[PubMed]

22. Zhao, S.; Li, S. Network-based relating pharmacological and genomic spaces for drug target identification.
PLoS ONE 2010, 5. [CrossRef] [PubMed]

23. Yang, L.; Agarwal, P. Systematic drug repositioning based on clinical side-effects. PLoS ONE 2011, 6.
[CrossRef] [PubMed]

24. Kinnings, S.L.; Liu, N.; Buchmeier, N.; Tonge, P.J.; Xie, L.; Bourne, P.E. Drug discovery using chemical
systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant
tuberculosis. PLoS Comput. Biol. 2009, 5. [CrossRef] [PubMed]

25. Jadamba, E.; Shin, M. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug
Phenotype Profiles Using Pathway-Drug Network. BioMed Res. Int. 2016, 2016. [CrossRef] [PubMed]

26. Li, J.; Lu, Z. Pathway-based drug repositioning using causal inference. BMC Bioinform. 2013, 14. [CrossRef]
[PubMed]

27. Kotelnikova, E.; Yuryev, A.; Mazo, I.; Daraselia, N. Computational approaches for drug repositioning and
combination therapy design. J. Bioinform. Comput. Biol. 2010, 8, 593–606. [CrossRef] [PubMed]

28. Cramer, P.; Cirrito, J.; Wesson, D. ApoE-Directed Therapeutics Rapidly Clear beta-Amyloid and Reverse
Deficits in AD Mouse Models. Science 2012, 335, 1503–1506. [CrossRef] [PubMed]

29. Sivachenko, A.; Kalinin, A.; Yuryev, A. Pathway Analysis for Design of Promiscuous Drugs and Selective
Drug Mixtures. Curr. Drug Discov. Technol. 2006, 3, 269–277. [CrossRef] [PubMed]

30. Strittmatter, W.J. Old drug, new hope for Alzheimer’s disease. Science 2012, 335, 1447–1448. [CrossRef]
[PubMed]

31. Jin, G.; Zhao, H.; Zhou, X.; Wong, S.T.C. An enhanced Petri-Net model to predict synergistic effects of
pairwise drug combinations from gene microarray data. Bioinformatics 2011, 27. [CrossRef] [PubMed]

32. Jin, G.; Fu, C.; Zhao, H.; Cui, K.; Chang, J.; Wong, S.T.C. A novel method of transcriptional response analysis
to facilitate drug repositioning for cancer therapy. Cancer Res. 2012, 72, 33–44. [CrossRef] [PubMed]

33. Iskar, M.; Zeller, G.; Blattmann, P.; Campillos, M.; Kuhn, M.; Kaminska, K.H.; Runz, H.; Gavin, A.C.;
Pepperkok, R.; Van Noort, V.; et al. Characterization of drug-induced transcriptional modules: Towards
drug repositioning and functional understanding. Mol. Syst. Biol. 2013, 9. [CrossRef] [PubMed]

34. Gaiteri, C.; Ding, Y.; French, B.; Tseng, G.C.; Sibille, E. Beyond modules and hubs: The potential of gene
coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain
Behav. 2014, 13, 13–24. [CrossRef] [PubMed]

35. Iorio, F.; Rittman, T.; Ge, H.; Menden, M.; Saez-Rodriguez, J. Transcriptional data: A new gateway to drug
repositioning? Drug Discov. Today 2013, 18, 350–357. [CrossRef] [PubMed]

36. Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery
and preclinical validation of drug indications using compendia of public gene expression data (Science
Translational Medicine (2011) 3, (102er)). Sci. Transl. Med. 2011, 3, 96ra77. [CrossRef] [PubMed]

37. Zhao, K.; So, H.-C. A machine learning approach to drug repositioning based on drug expression profiles:
Applications in psychiatry. arXiv 2017, arXiv:1706.03014.

38. Wang, Y.; Yella, J.; Chen, J.; McCormack, F.X.; Madala, S.K.; Jegga, A.G. Unsupervised gene expression
analyses identify IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm. Med. 2017,
17. [CrossRef] [PubMed]

39. Claerhout, S.; Lim, J.Y.; Choi, W.; Park, Y.-Y.; Kim, K.; Kim, S.-B.; Lee, J.-S.; Mills, G.B.; Cho, J.Y. Gene
Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer. PLoS ONE
2011, 6, e24662. [CrossRef] [PubMed]

40. Chang, M.; Smith, S.; Thorpe, A.; Barratt, M.J.; Karim, F. Evaluation of phenoxybenzamine in the CFA model
of pain following gene expression studies and connectivity mapping. Mol. Pain 2010, 6. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.drudis.2012.08.005
http://www.ncbi.nlm.nih.gov/pubmed/22935104
http://dx.doi.org/10.1371/journal.pone.0060618
http://www.ncbi.nlm.nih.gov/pubmed/23593264
http://dx.doi.org/10.1371/journal.pcbi.1002503
http://www.ncbi.nlm.nih.gov/pubmed/22589709
http://dx.doi.org/10.1371/journal.pone.0011764
http://www.ncbi.nlm.nih.gov/pubmed/20668676
http://dx.doi.org/10.1371/journal.pone.0028025
http://www.ncbi.nlm.nih.gov/pubmed/22205936
http://dx.doi.org/10.1371/journal.pcbi.1000423
http://www.ncbi.nlm.nih.gov/pubmed/19578428
http://dx.doi.org/10.1155/2016/7147039
http://www.ncbi.nlm.nih.gov/pubmed/28127549
http://dx.doi.org/10.1186/1471-2105-14-S16-S3
http://www.ncbi.nlm.nih.gov/pubmed/24564553
http://dx.doi.org/10.1142/S0219720010004732
http://www.ncbi.nlm.nih.gov/pubmed/20556864
http://dx.doi.org/10.1126/science.1217697
http://www.ncbi.nlm.nih.gov/pubmed/22323736
http://dx.doi.org/10.2174/157016306780368117
http://www.ncbi.nlm.nih.gov/pubmed/17430103
http://dx.doi.org/10.1126/science.1220725
http://www.ncbi.nlm.nih.gov/pubmed/22442467
http://dx.doi.org/10.1093/bioinformatics/btr202
http://www.ncbi.nlm.nih.gov/pubmed/21685086
http://dx.doi.org/10.1158/0008-5472.CAN-11-2333
http://www.ncbi.nlm.nih.gov/pubmed/22108825
http://dx.doi.org/10.1038/msb.2013.20
http://www.ncbi.nlm.nih.gov/pubmed/23632384
http://dx.doi.org/10.1111/gbb.12106
http://www.ncbi.nlm.nih.gov/pubmed/24320616
http://dx.doi.org/10.1016/j.drudis.2012.07.014
http://www.ncbi.nlm.nih.gov/pubmed/22897878
http://dx.doi.org/10.1126/scitranslmed.3001318
http://www.ncbi.nlm.nih.gov/pubmed/21849665
http://dx.doi.org/10.1186/s12890-017-0472-9
http://www.ncbi.nlm.nih.gov/pubmed/29058630
http://dx.doi.org/10.1371/journal.pone.0024662
http://www.ncbi.nlm.nih.gov/pubmed/21931799
http://dx.doi.org/10.1186/1744-8069-6-56
http://www.ncbi.nlm.nih.gov/pubmed/20846436


Pharmaceuticals 2018, 11, 57 16 of 21

41. Cai, M.C.; Xu, Q.; Pan, Y.J.; Pan, W.; Ji, N.; Li, Y.B.; Liu, H.J.J.K.; Ji, Z.L. ADReCS: An ontology database for
aiding standardization and hierarchical Classification of adverse drug reaction terms. Nucleic Acids Res. 2015,
43, D907–D913. [CrossRef] [PubMed]

42. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.;
Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery.
Nucleic Acids Res. 2012, 40. [CrossRef] [PubMed]

43. Williams, A.J. Internet-based tools for communication and collaboration in chemistry. Drug Discov. Today
2008, 13, 502–506. [CrossRef] [PubMed]

44. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.;
Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First
1,000,000 Profiles. Cell 2017, 171, 1437–1452. [CrossRef] [PubMed]

45. Mattingly, C.J.; Colby, G.T.; Forrest, J.N.; Boyer, J.L. The Comparative Toxicogenomics Database (CTD).
Environ. Health Perspect. 2003, 111, 793. [CrossRef] [PubMed]

46. National Institutes of Health: Health & Human Services DailyMed. Available online: http://dailymed.nlm.
nih.gov/dailymed/index.cfm (accessed on 25 April 2018).

47. Griffith, M.; Griffith, O.L.; Coffman, A.C.; Weible, J.V.; Mcmichael, J.F.; Spies, N.C.; Koval, J.; Das, I.;
Callaway, M.B.; Eldred, J.M.; et al. DGIdb: Mining the druggable genome. Nat. Methods 2013, 10, 1209–1210.
[CrossRef] [PubMed]

48. DrugBank DrugBank. Available online: http://www.drugbank.ca (accessed on 22 April 2018).
49. Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral:

Online drug compendium. Nucleic Acids Res. 2017, 45, D932–D939. [CrossRef] [PubMed]
50. Pihan, E.; Colliandre, L.; Guichou, J.F.; Douguet, D. E-Drug3D: 3D structure collections dedicated to drug

repurposing and fragment-based drug design. Bioinformatics 2012, 28, 1540–1541. [CrossRef] [PubMed]
51. Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.;

Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res. 2013, 41. [CrossRef] [PubMed]

52. Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.;
Maguire, M.; Papa, E.; et al. Open Targets: A platform for therapeutic target identification and Validation.
Nucleic Acids Res. 2017, 45, D985–D994. [CrossRef] [PubMed]

53. Hewett, M.; Oliver, D.E.; Rubin, D.L.; Easton, K.L.; Stuart, J.M.; Altman, R.B.; Klein, T.E. PharmGKB: The
pharmacogenetics knowledge base. Nucleic Acids Res. 2002, 30, 163–165. [CrossRef] [PubMed]

54. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity
properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [CrossRef] [PubMed]

55. Cowley, G.S.; Weir, B.A.; Vazquez, F.; Tamayo, P.; Scott, J.A.; Rusin, S.; East-Seletsky, A.; Ali, L.D.;
Gerath, W.F.J.; Pantel, S.E.; et al. Parallel genome-scale loss of function screens in 216 cancer cell lines
for the identification of context-specific genetic dependencies. Sci. Data 2014, 1. [CrossRef] [PubMed]

56. Von Eichborn, J.; Murgueitio, M.S.; Dunkel, M.; Koerner, S.; Bourne, P.E.; Preissner, R. PROMISCUOUS: A
database for network-based drug-repositioning. Nucleic Acids Res. 2011, 39. [CrossRef] [PubMed]

57. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.;
Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44,
D1202–D1213. [CrossRef] [PubMed]

58. Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res.
2016, 44, D1075–D1079. [CrossRef] [PubMed]

59. Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals
and proteins. Nucleic Acids Res. 2008, 36. [CrossRef] [PubMed]

60. Dunkel, M.; Günther, S.; Ahmed, J.; Wittig, B.; Preissner, R. SuperPred: Drug classification and target
prediction. Nucleic Acids Res. 2008, 36. [CrossRef] [PubMed]

61. Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002, 30, 412–415.
[CrossRef] [PubMed]

62. Wishart, D.; Arndt, D.; Pon, A.; Sajed, T.; Guo, A.C.; Djoumbou, Y.; Knox, C.; Wilson, M.; Liang, Y.;
Grant, J.; et al. T3DB: The toxic exposome database. Nucleic Acids Res. 2015, 43, D928–D934. [CrossRef]
[PubMed]

http://dx.doi.org/10.1093/nar/gku1066
http://www.ncbi.nlm.nih.gov/pubmed/25361966
http://dx.doi.org/10.1093/nar/gkr777
http://www.ncbi.nlm.nih.gov/pubmed/21948594
http://dx.doi.org/10.1016/j.drudis.2008.03.015
http://www.ncbi.nlm.nih.gov/pubmed/18549976
http://dx.doi.org/10.1016/j.cell.2017.10.049
http://www.ncbi.nlm.nih.gov/pubmed/29195078
http://dx.doi.org/10.1289/ehp.6028
http://www.ncbi.nlm.nih.gov/pubmed/12760826
http://dailymed.nlm.nih.gov/dailymed/index.cfm
http://dailymed.nlm.nih.gov/dailymed/index.cfm
http://dx.doi.org/10.1038/nmeth.2689
http://www.ncbi.nlm.nih.gov/pubmed/24122041
http://www.drugbank.ca
http://dx.doi.org/10.1093/nar/gkw993
http://www.ncbi.nlm.nih.gov/pubmed/27789690
http://dx.doi.org/10.1093/bioinformatics/bts186
http://www.ncbi.nlm.nih.gov/pubmed/22539672
http://dx.doi.org/10.1093/nar/gks1111
http://www.ncbi.nlm.nih.gov/pubmed/23180760
http://dx.doi.org/10.1093/nar/gkw1055
http://www.ncbi.nlm.nih.gov/pubmed/27899665
http://dx.doi.org/10.1093/nar/30.1.163
http://www.ncbi.nlm.nih.gov/pubmed/11752281
http://dx.doi.org/10.1021/acs.jmedchem.5b00104
http://www.ncbi.nlm.nih.gov/pubmed/25860834
http://dx.doi.org/10.1038/sdata.2014.35
http://www.ncbi.nlm.nih.gov/pubmed/25984343
http://dx.doi.org/10.1093/nar/gkq1037
http://www.ncbi.nlm.nih.gov/pubmed/21071407
http://dx.doi.org/10.1093/nar/gkv951
http://www.ncbi.nlm.nih.gov/pubmed/26400175
http://dx.doi.org/10.1093/nar/gkv1075
http://www.ncbi.nlm.nih.gov/pubmed/26481350
http://dx.doi.org/10.1093/nar/gkm795
http://www.ncbi.nlm.nih.gov/pubmed/18084021
http://dx.doi.org/10.1093/nar/gkn307
http://www.ncbi.nlm.nih.gov/pubmed/18499712
http://dx.doi.org/10.1093/nar/30.1.412
http://www.ncbi.nlm.nih.gov/pubmed/11752352
http://dx.doi.org/10.1093/nar/gku1004
http://www.ncbi.nlm.nih.gov/pubmed/25378312


Pharmaceuticals 2018, 11, 57 17 of 21

63. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.;
Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science
2015, 347, 1260419. [CrossRef] [PubMed]

64. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 1999, 27, 29–34. [CrossRef] [PubMed]

65. Akbarian, S.; Liu, C.; Knowles, J.A.; Vaccarino, F.M.; Farnham, P.J.; Crawford, G.E.; Jaffe, A.E.; Pinto, D.;
Dracheva, S.; Geschwind, D.H.; et al. The PsychENCODE project. Nat. Neurosci. 2015, 18, 1707–1712.
[CrossRef] [PubMed]

66. Sunkin, S.M.; Ng, L.; Lau, C.; Dolbeare, T.; Gilbert, T.L.; Thompson, C.L.; Hawrylycz, M.; Dang, C. Allen
Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids
Res. 2013, 41, D996–D1008. [CrossRef] [PubMed]

67. Parkinson, H. ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids
Res. 2004, 33, D553–D555. [CrossRef] [PubMed]

68. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A; Kim, S.; Wilson, C.J.; Lehár, J.;
Kryukov, G.V; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity Supp. Nature 2012, 483, 603–607. [CrossRef] [PubMed]

69. Forbes, S.A.; Beare, D.; Gunasekaran, P.; Leung, K.; Bindal, N.; Boutselakis, H.; Ding, M.; Bamford, S.;
Cole, C.; Ward, S.; et al. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer.
Nucleic Acids Res. 2015, 43, D805–D811. [CrossRef] [PubMed]

70. Mailman, M.D.; Feolo, M.; Jin, Y.; Kimura, M.; Tryka, K.; Bagoutdinov, R.; Hao, L.; Kiang, A.; Paschall, J.;
Phan, L.; et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 2007, 39, 1181–1186.
[CrossRef] [PubMed]

71. Sherry, S.T. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [CrossRef]
[PubMed]

72. Lappalainen, I.; Lopez, J.; Skipper, L.; Hefferon, T.; Spalding, J.D.; Garner, J.; Chen, C.; Maguire, M.;
Corbett, M.; Zhou, G.; et al. DbVar and DGVa: Public archives for genomic structural variation. Nucleic Acids
Res. 2013, 41. [CrossRef] [PubMed]

73. Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I.
DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database
2015, 2015. [CrossRef] [PubMed]

74. Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a
Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 2016, 375, 1109–1112. [CrossRef] [PubMed]

75. Barrett, T. NCBI GEO: Mining millions of expression profiles–database and tools. Nucleic Acids Res. 2004, 33,
D562–D566. [CrossRef] [PubMed]

76. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.;
et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [CrossRef] [PubMed]

77. Kim, M.-S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.;
Isserlin, R.; Jain, S.; et al. A draft map of the human proteome. Nature 2014, 509, 575–581. [CrossRef]
[PubMed]

78. Cancer, T. International Cancer Genome Consortium. Cancer 2011, 2011, 1–20. [CrossRef]
79. Clarke, L.; Fairley, S.; Zheng-Bradley, X.; Streeter, I.; Perry, E.; Lowy, E.; Tassé, A.M.; Flicek, P. The international

Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000
Genomes Project data. Nucleic Acids Res. 2017, 45, D854–D859. [CrossRef] [PubMed]

80. Aymé, S.; Schmidtke, J. Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt
Gesundheitsforschunq Gesundheitsschutz 2007, 50, 1477–1483. [CrossRef] [PubMed]

81. Bernstein, B.E.; Stamatoyannopoulos, J.A.; Costello, J.F.; Ren, B.; Milosavljevic, A.; Meissner, A.; Kellis, M.;
Marra, M.A.; Beaudet, A.L.; Ecker, J.R.; et al. The NIH roadmap epigenomics mapping consortium. Nat.
Biotechnol. 2010, 28, 1045–1048. [CrossRef] [PubMed]

82. Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.;
Muller, J.; Bork, P.; et al. The STRING database in 2011: Functional interaction networks of proteins, globally
integrated and scored. Nucleic Acids Res. 2011, 39. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
http://dx.doi.org/10.1093/nar/27.1.29
http://www.ncbi.nlm.nih.gov/pubmed/9847135
http://dx.doi.org/10.1038/nn.4156
http://www.ncbi.nlm.nih.gov/pubmed/26605881
http://dx.doi.org/10.1093/nar/gks1042
http://www.ncbi.nlm.nih.gov/pubmed/23193282
http://dx.doi.org/10.1093/nar/gki056
http://www.ncbi.nlm.nih.gov/pubmed/15608260
http://dx.doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://dx.doi.org/10.1093/nar/gku1075
http://www.ncbi.nlm.nih.gov/pubmed/25355519
http://dx.doi.org/10.1038/ng1007-1181
http://www.ncbi.nlm.nih.gov/pubmed/17898773
http://dx.doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://dx.doi.org/10.1093/nar/gks1213
http://www.ncbi.nlm.nih.gov/pubmed/23193291
http://dx.doi.org/10.1093/database/bav028
http://www.ncbi.nlm.nih.gov/pubmed/25877637
http://dx.doi.org/10.1056/NEJMp1607591
http://www.ncbi.nlm.nih.gov/pubmed/27653561
http://dx.doi.org/10.1093/nar/gki022
http://www.ncbi.nlm.nih.gov/pubmed/15608262
http://dx.doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
http://dx.doi.org/10.1038/nature13302
http://www.ncbi.nlm.nih.gov/pubmed/24870542
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.1093/nar/gkw829
http://www.ncbi.nlm.nih.gov/pubmed/27638885
http://dx.doi.org/10.1007/s00103-007-0381-9
http://www.ncbi.nlm.nih.gov/pubmed/18026888
http://dx.doi.org/10.1038/nbt1010-1045
http://www.ncbi.nlm.nih.gov/pubmed/20944595
http://dx.doi.org/10.1093/nar/gkq973
http://www.ncbi.nlm.nih.gov/pubmed/21045058


Pharmaceuticals 2018, 11, 57 18 of 21

83. Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.;
Subramanian, A.; Ross, K.N.; et al. The connectivity map: Using gene-expression signatures to connect small
molecules, genes, and disease. Science 2006, 313, 1929–1935. [CrossRef] [PubMed]

84. Musa, A.; Ghoraie, L.S.; Zhang, S.-D.; Galzko, G.; Yli-Harja, O.; Dehmer, M.; Haibe-Kains, B.; Emmert-Streib, F.
A review of connectivity map and computational approaches in pharmacogenomics. Brief. Bioinform. 2017,
bbw112. [CrossRef] [PubMed]

85. Angermueller, C.; Pärnamaa, T.; Parts, L.; Oliver, S. Deep Learning for Computational Biology. Mol. Syst.
Biol. 2016, 878. [CrossRef] [PubMed]

86. Gottlieb, A.; Stein, G.Y.; Ruppin, E.; Sharan, R. PREDICT: A method for inferring novel drug indications
with application to personalized medicine. Mol. Syst. Biol. 2011, 7. [CrossRef] [PubMed]

87. Liu, Z.; Guo, F.; Gu, J.; Wang, Y.; Li, Y.; Wang, D.; Lu, L.; Li, D.; He, F. Similarity-based prediction for
Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources. Bioinformatics
2015, 31, 1788–1795. [CrossRef] [PubMed]

88. Li, J.; Lu, Z. A new method for computational drug repositioning using drug pairwise similarity.
In Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2012,
Philadelphia, PA, USA, 4–7 October 2012; pp. 453–456.

89. Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive
similarity measures and Bi-Random walk algorithm. Bioinformatics 2016, 32, 2664–2671. [CrossRef] [PubMed]

90. Oh, M.; Ahn, J.; Yoon, Y. A network-based classification model for deriving novel drug-disease associations
and assessing their molecular actions. PLoS ONE 2014, 9. [CrossRef] [PubMed]

91. Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine.
Mol. Pharm. 2016, 13, 1445–1454. [CrossRef] [PubMed]

92. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
93. Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications

for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol.
Pharm. 2016, 13, 2524–2530. [CrossRef] [PubMed]

94. Unterthiner, T.; Mayr, A.; Klambauer, G.; Hochreiter, S. Toxicity Prediction using Deep Learning. Front.
Environ. Sci. 2015, 3, 10. [CrossRef]

95. Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks
for Drug Discovery. arXiv 2015, arXiv:1502.02072.

96. Schadt, E.E. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461,
218–223. [CrossRef] [PubMed]

97. Azuaje, F. Drug interaction networks: An introduction to translational and clinical applications. Cardiovasc.
Res. 2013, 97, 631–641. [CrossRef] [PubMed]

98. Ye, H.; Liu, Q.; Wei, J. Construction of drug network based on side effects and its application for drug
repositioning. PLoS ONE 2014, 9. [CrossRef] [PubMed]

99. Mizutani, S.; Pauwels, E.; Stoven, V.; Goto, S.; Yamanishi, Y. Relating drug-protein interaction network with
drug side effects. Bioinformatics 2012, 28. [CrossRef] [PubMed]

100. Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect
similarity. Science 2008, 321, 263–266. [CrossRef] [PubMed]

101. Brown, A.S.; Kong, S.W.; Kohane, I.S.; Patel, C.J. ksRepo: A generalized platform for computational drug
repositioning. BMC Bioinform. 2016, 17. [CrossRef] [PubMed]

102. Setoain, J.; Franch, M.; Martínez, M.; Tabas-Madrid, D.; Sorzano, C.O.S.; Bakker, A.; Gonzalez-Couto, E.;
Elvira, J.; Pascual-Montano, A. NFFinder: An online bioinformatics tool for searching similar transcriptomics
experiments in the context of drug repositioning. Nucleic Acids Res. 2015, 43, W193–W199. [CrossRef]
[PubMed]

103. Chang, R.; Shoemaker, R.; Wang, W. A novel knowledge-driven systems biology approach for phenotype
prediction upon genetic intervention. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1170–1182.
[CrossRef] [PubMed]

104. Chen, H.; Zhang, H.; Zhang, Z.; Cao, Y.; Tang, W. Network-based inference methods for drug repositioning.
Comput. Math. Methods Med. 2015, 2015. [CrossRef] [PubMed]

105. Wu, C.; Gudivada, R.C.; Aronow, B.J.; Jegga, A.G. Computational drug repositioning through heterogeneous
network clustering. BMC Syst. Biol. 2013, 7, 1–9. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1132939
http://www.ncbi.nlm.nih.gov/pubmed/17008526
http://dx.doi.org/10.1093/bib/bbw112
http://www.ncbi.nlm.nih.gov/pubmed/28069634
http://dx.doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
http://dx.doi.org/10.1038/msb.2011.26
http://www.ncbi.nlm.nih.gov/pubmed/21654673
http://dx.doi.org/10.1093/bioinformatics/btv055
http://www.ncbi.nlm.nih.gov/pubmed/25638810
http://dx.doi.org/10.1093/bioinformatics/btw228
http://www.ncbi.nlm.nih.gov/pubmed/27153662
http://dx.doi.org/10.1371/journal.pone.0111668
http://www.ncbi.nlm.nih.gov/pubmed/25356910
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982
http://www.ncbi.nlm.nih.gov/pubmed/27007977
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248
http://www.ncbi.nlm.nih.gov/pubmed/27200455
http://dx.doi.org/10.3389/fenvs.2015.00080
http://dx.doi.org/10.1038/nature08454
http://www.ncbi.nlm.nih.gov/pubmed/19741703
http://dx.doi.org/10.1093/cvr/cvs289
http://www.ncbi.nlm.nih.gov/pubmed/22977007
http://dx.doi.org/10.1371/journal.pone.0087864
http://www.ncbi.nlm.nih.gov/pubmed/24505324
http://dx.doi.org/10.1093/bioinformatics/bts383
http://www.ncbi.nlm.nih.gov/pubmed/22962476
http://dx.doi.org/10.1126/science.1158140
http://www.ncbi.nlm.nih.gov/pubmed/18621671
http://dx.doi.org/10.1186/s12859-016-0931-y
http://www.ncbi.nlm.nih.gov/pubmed/26860211
http://dx.doi.org/10.1093/nar/gkv445
http://www.ncbi.nlm.nih.gov/pubmed/25940629
http://dx.doi.org/10.1109/TCBB.2011.18
http://www.ncbi.nlm.nih.gov/pubmed/21282866
http://dx.doi.org/10.1155/2015/130620
http://www.ncbi.nlm.nih.gov/pubmed/25969690
http://dx.doi.org/10.1186/1752-0509-7-S5-S6
http://www.ncbi.nlm.nih.gov/pubmed/24564976


Pharmaceuticals 2018, 11, 57 19 of 21

106. Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and
candidate gene prioritization. Nucleic Acids Res. 2009, 37. [CrossRef] [PubMed]

107. Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration
approach for drug-target interaction prediction and computational drug repositioning from heterogeneous
information. Nat. Commun. 2017, 8. [CrossRef] [PubMed]

108. Himmelstein, D.S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S.L.; Hadley, D.; Green, A.; Khankhanian, P.;
Baranzini, S.E. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 2017,
6, 1–35. [CrossRef] [PubMed]

109. Luo, Y.; Thompson, W.K.; Herr, T.M.; Zeng, Z.; Berendsen, M.A.; Jonnalagadda, S.R.; Carson, M.B.; Starren, J.
Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf. 2017, 40,
1075–1089. [CrossRef] [PubMed]

110. Xu, H.; Aldrich, M.C.; Chen, Q.; Liu, H.; Peterson, N.B.; Dai, Q.; Levy, M.; Shah, A.; Han, X.; Ruan, X.; et al.
Validating drug repurposing signals using electronic health records: A case study of metformin associated
with reduced cancer mortality. J. Am. Med. Inform. Assoc. 2014, 1–10. [CrossRef] [PubMed]

111. Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning. Brief.
Bioinform. 2018, 19, 174–177. [CrossRef] [PubMed]

112. Lee, W.H. Open access target validation is a more efficient way to accelerate drug discovery. PLoS Biol. 2015,
13, 1–9. [CrossRef] [PubMed]

113. Carter, A.J.; Donner, A.; Lee, W.H.; Bountra, C. Establishing a reliable framework for harnessing the creative
power of the scientific crowd. PLoS Biol. 2017, 15. [CrossRef] [PubMed]

114. Rijnders, T.W.; Tzalis, D.; Jaroch, S. The European lead factory—An experiment in colla- borative drug
discovery. J. Med. Dev. Sci. 2015, 1, 20–33.

115. Munos, B. Can open-source drug RD repower pharmaceutical innovation? Clin. Pharmacol. Ther. 2010, 87,
534–536. [CrossRef] [PubMed]

116. Lakhani, K.R.; Boudreau, K.J.; Loh, P.R.; Backstrom, L.; Baldwin, C.; Lonstein, E.; Lydon, M.; MacCormack, A.;
Arnaout, R.A.; Guinan, E.C. Prize-based contests can provide solutions to computational biology problems.
Nat. Biotechnol. 2013, 31, 108–111. [CrossRef] [PubMed]

117. Bentzien, J.; Muegge, I.; Hamner, B.; Thompson, D.C. Crowd computing: Using competitive dynamics to
develop and refine highly predictive models. Drug Discov. Today 2013, 18, 472–478. [CrossRef] [PubMed]

118. Patel, A.C.; Coyle, A.J. Building a new biomedical ecosystem: Pfizer’s centers for therapeutic innovation.
Clin. Pharmacol. Ther. 2013, 94, 314–316. [CrossRef] [PubMed]

119. Wang, Z.; Monteiro, C.D.; Jagodnik, K.M.; Fernandez, N.F.; Gundersen, G.W.; Rouillard, A.D.; Jenkins, S.L.;
Feldmann, A.S.; Hu, K.S.; McDermott, M.G.; et al. Extraction and analysis of signatures from the Gene
Expression Omnibus by the crowd. Nat. Commun. 2016, 7. [CrossRef] [PubMed]

120. Dorsch, H.; Jurock, A.E.; Schoepe, S.; Lessl, M.; Asadullah, K. Grants4Targets: An open innovation initiative
to foster drug discovery collaborations. Nat. Rev. Drug Discov. 2014, 14, 74. [CrossRef] [PubMed]

121. Markoff, J. Scientists see advances in deep learning. New York Times 2012.
122. Alvim-Gaston, M.; Grese, T.; Mahoui, A.; Palkowitz, A.; Pineiro-Nunez, M.; Watson, I. Open Innovation

Drug Discovery (OIDD): A Potential Path to Novel Therapeutic Chemical Space. Curr. Top. Med. Chem. 2014,
14, 294–303. [CrossRef] [PubMed]

123. Margolin, A.A.; Bilal, E.; Huang, E.; Norman, T.C.; Ottestad, L.; Mecham, B.H.; Sauerwine, B.; Kellen, M.R.;
Mangravite, L.M.; Furia, M.D.; et al. Systematic analysis of challenge-driven improvements in molecular
prognostic models for breast cancer. Sci. Transl. Med. 2013, 5. [CrossRef] [PubMed]

124. Aksulu, A.; Wade, M. A Comprehensive Review and Synthesis of Open Source Research. J. Assoc. Inf. Syst.
2010, 11, 576–656. [CrossRef]

125. Stajich, J.E.; Lapp, H. Open source tools and toolkits for bioinformatics: Significance, and where are we?
Brief. Bioinform. 2006, 7, 287–296. [CrossRef] [PubMed]

126. Kluyver, T.; Ragan-kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.;
Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational
workflows. Position. Power Acad. Publ. Play. Agents Agendas 2016, 87–90. [CrossRef]

127. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830. [CrossRef]

http://dx.doi.org/10.1093/nar/gkp427
http://www.ncbi.nlm.nih.gov/pubmed/19465376
http://dx.doi.org/10.1038/s41467-017-00680-8
http://www.ncbi.nlm.nih.gov/pubmed/28924171
http://dx.doi.org/10.7554/eLife.26726
http://www.ncbi.nlm.nih.gov/pubmed/28936969
http://dx.doi.org/10.1007/s40264-017-0558-6
http://www.ncbi.nlm.nih.gov/pubmed/28643174
http://dx.doi.org/10.1136/amiajnl-2014-002649
http://www.ncbi.nlm.nih.gov/pubmed/25053577
http://dx.doi.org/10.1093/bib/bbw110
http://www.ncbi.nlm.nih.gov/pubmed/27881429
http://dx.doi.org/10.1371/journal.pbio.1002164
http://www.ncbi.nlm.nih.gov/pubmed/26042736
http://dx.doi.org/10.1371/journal.pbio.2001387
http://www.ncbi.nlm.nih.gov/pubmed/28199324
http://dx.doi.org/10.1038/clpt.2010.26
http://www.ncbi.nlm.nih.gov/pubmed/20407458
http://dx.doi.org/10.1038/nbt.2495
http://www.ncbi.nlm.nih.gov/pubmed/23392504
http://dx.doi.org/10.1016/j.drudis.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23337388
http://dx.doi.org/10.1038/clpt.2013.89
http://www.ncbi.nlm.nih.gov/pubmed/23645247
http://dx.doi.org/10.1038/ncomms12846
http://www.ncbi.nlm.nih.gov/pubmed/27667448
http://dx.doi.org/10.1038/nrd3078-c2
http://www.ncbi.nlm.nih.gov/pubmed/25430867
http://dx.doi.org/10.2174/1568026613666131127125858
http://www.ncbi.nlm.nih.gov/pubmed/24283973
http://dx.doi.org/10.1126/scitranslmed.3006112
http://www.ncbi.nlm.nih.gov/pubmed/23596205
http://dx.doi.org/10.17705/1jais.00245
http://dx.doi.org/10.1093/bib/bbl026
http://www.ncbi.nlm.nih.gov/pubmed/16899494
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1007/s13398-014-0173-7.2


Pharmaceuticals 2018, 11, 57 20 of 21

128. Demšar, J.; Curk, T.; Erjavec, A.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.;
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