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Abstract

Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V.
cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse
intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract.
Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae
compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for
detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently
colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We
demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric
oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this
hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal
colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we
demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species
defense defective mutants suggesting a common defense pathway for these mutants.
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Introduction

Maintaining genomic integrity during infection is important for

several bacterial pathogens to colonize their hosts. DNA repair

defects in Listeria monocytogenes, Salmonella typhimurium, Helicobacter

pylori and others leads to decreased or even a complete attenuation

of virulence [1–6]. While there are several types of DNA repair in

bacteria [7], many of the studies showing a requirement for DNA

repair in pathogenesis focus on three pathways: the SOS response,

base excision repair, and mismatch repair [1–10].

The SOS response is a well studied and conserved stress

response in bacteria that is elicited following DNA damage and

replication fork arrest [for review [11]]. The SOS response is

controlled by positive and negative regulators. RecA positively

regulates the SOS response by binding to single-stranded DNA

fragments generated by attempted replication past DNA lesions.

The RecA/ssDNA nucleoprotein filament induces the auto-

cleavage of the negative regulator LexA, a transcriptional

repressor. Cleavage of LexA allows for expression of 57 genes in

the E. coli SOS regulon including translesion DNA polymerases

that are able to replicate DNA past noncoding base lesion, and

proteins involved in the inhibition of cell division [for review [11]].

Base excision repair (BER) is the most common form of repair

for single base damage [for review [7]]. In BER, a DNA N-

glycosylase first excises the damaged base from the deoxyribose

moiety in the DNA strand creating an abasic site. Class II

apurinic/apyrimidinic (AP) endonuclease then hydrolyzes the

phosphodiester bond immediately 59 to the abasic site [for review

(Kornberg and Baker 1992, Friedberg 2005)]. Subsequent actions

process this site to prime and repair the abasic site ultimately by

DNA synthesis with DNA polymerase I and ligation by DNA

ligase.

Normal replication can also introduce errors in the form of

mismatched DNA base-pairs. These mismatches can lead to

permanent mutations after a subsequent round of DNA

replication. Mismatch repair (MMR) specifically identifies and

corrects these base pairing errors increasing the fidelity of the

replication pathway nearly ,1000-fold [for review [7]].

While extensive work has shown the benefit of maintaining

genomic integrity for an invading bacterium, there appear to be

instances where lapses in genomic fidelity are beneficial for a

pathogenic bacterium [12–14]. In order to colonize and thrive in a

mammalian host, a bacterium must be able to adapt and respond

to the conditions and stresses associated its new environment.
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Genomic mutations support this by allowing current gene

products to gain or alter their functions. The utility of mutation(s)

and a pathogen’s ability to grow in the human environment has

been a source of discussion for several years [13,15]. Giraud et al.

showed that a high mutation rate was initially beneficial for

Escherichia coli to colonize the mouse gut, but this benefit became a

liability once adaptation had been reached [12]. Oliver et al.

demonstrated that Pseudomonas aeruginosa from chronically infected

individuals often has an increased mutation frequency, suggesting

an increased mutation rate can be beneficial to P. aeruginosa to

allow rapid adaptation to the hostile host environment [14]. Thus

depending on the pathogen, the mode and duration of the

infection, defects in DNA repair may be detrimental or beneficial

to the infecting bacterium.

Several studies have indicated that host produced reactive

oxygen species (ROS) and reactive nitrogen species (RNS) cause

DNA damage to the invading bacterium [4,16,17]. Not surpris-

ingly bacteria have several defense mechanisms to detoxify ROS

and RNS. Each enzyme detoxifies a specific type of ROS or RNS.

For example catalases/peroxidases decompose H2O2, superoxide

dismutases dismutate superoxide and ferrisiderophore reductase

removes nitric oxide [18,19]. As with certain DNA repair systems,

loss of ROS and RNS defenses have been shown to attenuate

bacterial pathogens [16,20].

Studies supporting the importance of ROS/RNS defenses and

DNA repair pathways in bacterial pathogenesis often focus on

intracellular pathogens [1,2,4]. To survive, intracellular pathogens

engulfed by phagocytic cells are either able to escape the

phagosome or have mechanisms to survive within it. Within the

phagosome, captured bacteria may be exposed to host production

of ROS and RNS in a host defense response called the oxidative

burst. It is hypothesized that the oxidative burst is responsible for

the DNA damage experienced by engulfed bacteria [4,16,17].

Vibrio cholerae is the causative agent of the severe human

diarrheal disease cholera. V. cholerae is a non-invasive pathogen

that colonizes the small intestine of its host [21,22]. As a non-

invasive pathogen, V. cholerae is not expected to experience the

same types of stresses as intracellular pathogens, such as an

oxidative burst. However V. cholerae does pass through several

hostile environments as the disease progresses. Immediately

following ingestion, V. cholerae is exposed to the exceptionally

antagonistic environment of the stomach where the pH of gastric

acid can reach as low as 1 [23,24]. Furthermore, nitrite from both

food sources and the salivary nitrite cycle can enter the stomach

creating acidified nitrite [25,26,27]. Acidified nitrite has potent

antimicrobial effects on gut pathogens [28,29,30,31]. These

studies show that the viability of several pathogenic bacteria

decreases rapidly under acidified nitrite conditions. Furthermore,

nitrates, which can also be found in the stomach, have been shown

to modify of gene expression reducing acid tolerance [32]. The

antimicrobial effects of acidified nitrite are thought to be due to the

generation of deleterious RNS [33]. However, with the exception

of a few studies [34,35,36], the points of action of these RNS as

well as the bacterial determinants required for protection against

them have remained largely unexamined. After traversing the

stomach V. cholerae faces several innate host defenses in the

intestine including bile, lysozyme, small antimicrobial peptides and

complement [37]. Thus, V. cholerae must overcome several barriers

during infection that have the potential to cause DNA damage

through a direct or indirect mechanism.

We report here that V. cholerae strain C6706 experiences

increased DNA damage during passage through the murine

gastrointestinal track. We demonstrate that increased genomic

stress is a potential barrier to host colonization by V. cholerae. We

found that two important DNA repair pathways are necessary for

V. cholerae to efficiently colonize the infant mouse intestine.

Furthermore, we show that defense against RNS is also necessary

for V. cholerae to colonize the infant mouse. In doing so we identify

a novel protein required for defense against RNS in pathogenic

bacteria. In vitro we show that all our colonization defective DNA

repair and RNS defense mutants share a common sensitivity to

acidified nitrite and we further show that neutralizing stomach

acid rescues intestinal colonization defect of these mutants.

Results

Mismatch repair and base excision repair pathways are
required for V. cholerae colonization of the infant mouse
intestine

To determine if V. cholerae requires defenses against DNA damage

during colonization, we tested a series of transposon mutants that

contained insertions in different steps in three important DNA

repair pathways for their ability to colonize the infant mouse

intestine in competition with the wild type strain. These pathways

were nucleotide excision repair (NER), base excision repair (BER)

and mismatch repair (MMR) (Table 1). While the SOS response is

an important contributor to genomic integrity we did not test a

requirement for SOS since Quiones et al. previously showed that

SOS activation is not required for intestinal cholera toxin

production or colonization [38]. We used uvrA as a representative

gene required for NER since uvrA is obligatory for NER. We found

no difference in the ability of the uvrA::Tn containing strain to

colonize the infant mouse relative to the parental strain suggesting

that NER is dispensable for V. cholerae pathogeneis (Table 1).

Apurinic/apyrimidininc (AP) endonucleases are critical in BER.

BER has been most well studied in E. coli. E. coli encodes two class II

AP endonucleases, Xth [endo II (endo VI)] and Nfo (endo IV). In E.

coli Xth is responsible for ,90% of the AP endonuclease activity in

the cell [39,40]. Few phenotypes have been attributed solely to Nfo

activity but Nfo is known to contribute to BER [41]. V. cholerae

carries close homologs of both Xth and Nfo (VC1860 and VC2360

respectively). Interestingly we found that the xth::Tn mutant was not

Author Summary

Studies on intracellular bacterial pathogens have shown
the need for maintaining genomic fidelity to promote
colonization. Loss of DNA repair functions often leads to
attenuation and rapid clearing of the invading pathogen.
However, for some pathogens, an increased mutation rate
has been shown to be beneficial for promoting host
colonization, presumably by allowing the pathogen to
rapidly adapt to adverse host conditions. We asked if the
non-invasive pathogen V. cholerae experienced increased
DNA damage during infection and if so, how the increased
damage influenced host colonization and from where the
source of the damage was derived. Our results demon-
strate that V. cholerae experiences increased DNA damage
during infection in the infant mouse model and that loss of
ability to repair this damage results in attenuation of
virulence. We specifically show that V. cholerae requires
both base excision repair and mismatch repair for efficient
intestinal colonization. Furthermore, we present evidence
that the source of the DNA damage is derived from
reactive nitrogen species (RNS) formed by acidified nitrite
in the mouse gut and in doing so we identify a new RNS
defense protein found in V. cholerae and several other
pathogenic bacteria.

DNA Damage during V. cholerae Host Colonization
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defective in intestinal colonization however the nfo::Tn mutant

showed a defect in colonization compared to the parental strains

(Table 1). We created a clean deletion of nfo (Dnfo) in V. cholerae and

found this mutant also had a colonization defect. In E. coli deletion

of xth and nfo leads to a more profound defect in DNA repair than

either single mutant. Consistent with this observation, we found that

an xth::Tn Dnfo double mutant showed a ,10-fold defect in

colonization that appears slightly greater than the ,5-fold defect in

colonization of the Dnfo mutant alone (Table 1), although this

difference is not statistically significant for this number of replicates

tested (p.0.05). Thus, these results suggest that BER is important

for V. cholerae to colonize the infant mouse intestine when in

competition. These results also show a critical function for Nfo in

survival, which has not been apparent under laboratory conditions.

Loss of mismatch repair function has been shown to be either

beneficial or detrimental depending on the pathogen studied

[12,13,14,15]. We found that a transposon mutant in mutS, which

encodes the gene product that initially binds to a mismatch, resulted in

a decrease in colonization efficiency (Table 1). We constructed a clean

deletion of mutS (DmutS) to ensure the defect was not due to the

transposon. We found that the clean deletion of mutS was also

attenuated in its ability to colonize the intestine suggesting that

mismatch repair or at least MutS is important for V. cholerae

pathogenesis (Table 1). We also found that a second clean deletion

of mutS showed a similar competitive index defect (CI = 0.1860.03)

suggesting that the colonization defect was not due to mutations in the

first mutS clean deletion strain. We noted that the mutS transposon

mutant was more defective than its clean deletion counterpart (Table 1).

This difference may be due to a polar effect of the transposon or

mutations acquired by the mutS::Tn strain during outgrowth of the

original isolate. We also tested the colonization proficiency of a Dnfo

DmutS double mutant and found that the colonization defect of this

double mutant appears slightly greater than either the Dnfo or DmutS

mutant alone (Table 1) although this difference is not statistically

significant for this number of replicates tested (p.0.05).

The requirement of BER and MMR for V. cholerae to efficiently

colonize the infant mouse intestine suggests that V. cholerae

experiences DNA damage in the mouse, and that a reduced ability

to repair such damage is detrimental for V. cholerae pathogenesis.

V. cholerae base excision repair and mismatch repair
mutants show classic DNA repair defects

V. cholerae genes encoding Xth, Nfo and MutS were identified

based on sequence similarity with their well-studied E. coli

homologs. To ensure the V. cholerae homologs possessed their

predicted functions we tested our mutant strains for the well

characterized phenotypes described in other bacterial systems.

Loss of mismatch repair causes an increase in mutation rate often

referred to as a mutator phenotype [42]. We found that our DmutS

mutant had a significantly increased mutation frequency com-

pared with the wild type control (Figure 1A). The wild type

phenotype could be restored by expression of mutS from a plasmid

but not by the plasmid itself (Figure S1B). This result indicates that

MutS in V. cholerae shares the same activity as its other well studied

bacterial homologs in the repair of DNA replication errors.

Loss of Xth activity in E. coli renders the strain sensitive to

hydrogen peroxide (H2O2) [43]. We found that our xth::Tn strain

was also sensitive to H2O2 (Figure 1B). Loss of nfo activity alone

does not greatly sensitize E. coli to H2O2 but loss of xth and nfo

creates a strain with increased sensitivity to H2O2 [43]. We found

a similar effect in V. cholerae where the xth::Tn Dnfo strain was much

more sensitive to H2O2 then the xth::Tn mutant alone (Figure 1B).

Furthermore, high level expression of nfo from a plasmid

complemented the H2O2 sensitivity of the xth::Tn Dnfo mutant

(Figure S1C). These results suggest that V. cholerae Nfo acts like its

E. coli homolog.

Passage through the mouse increases the mutation
frequency of V. cholerae

The requirement of BER and mismatch repair (MMR) systems

for V. cholerae to efficiently colonize the mouse intestine suggests

that V. cholerae experiences increased DNA damage while in the

mouse. To address this possibility we measured the mutation

frequency of V. cholerae following passage though the mouse as

compared to passage in liquid culture. We inoculated five mice

and five liquid cultures with the same size inoculums of V. cholerae.

The following day we purified bacteria from the mouse intestine

(see Materials and Methods). We plated both V. cholerae passaged

through the mouse and grown in liquid cultures followed by

selection for resistance to two antibiotics we used as an indicator

for measuring mutation frequency. The first was a gain of function

mutation in rpoB conferring resistance to rifampicin; the second

was a loss of function of thyA conferring resistance to trimethoprim.

Mutations in rpoB and thyA are well characterized markers for

increases in mutation frequency [44,45,46]. We found that

following passage of V. cholerae through the mouse there was an

,2 fold increase in rifampicin resistance and ,2.5 fold increase in

trimethoprim resistance compared to the liquid culture grown

Table 1. Ability of V. cholerae mutants defective in DNA repair pathways to colonize the infant mouse intestine in competition
with the parental strain (WT).

Gene Function Repair Pathway

aCompetitive Index: Tn
Mutant/WT

aCompetitive Index:
Deletion Mutant/WT

uvrA Excinuclease ABC Nucleotide Excision Repair 1.1460.11

xth Exonuclease III Base Excision Repair 1.0760.05

nfo Endonuclease IV Base Excision Repair 0.1560.01*** 0.2360.01***

xth/nfo Double mutant Base Excision Repair N/A 0.0760.06***

mutS Mismatch Recognition Mismatch Repair 0.0160.01*** 0.1660.07***

nfo/mutS Double mutant Base Excision and Mismatch Repair 0.0860.02***

aThe competitive index is the ratio of mutant to parental (WT) cfu in the small intestine post infection divided by the input ratio of mutant to parental (WT) cfu. The
average and standard error of 5–7 mouse experiments is shown for each mutant. The DmutS, Dnfo, xth::Tn Dnfo, DmutS, Dnfo mutant strains grew similarly to the wild
type under free-living conditions (Figure S1A). The mean and standard error of 5–7 mouse experiments is shown for each mutant. Statistical significance of the
competitive colonization defect of each mutant strain relative to the null hypothesis was determined as described in the materials and methods (*** p,0.001).

doi:10.1371/journal.ppat.1001295.t001

DNA Damage during V. cholerae Host Colonization
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strains (Figure 2A, B). We sequenced 19 trimethoprim resistance

isolates that were passed through the mouse and 20 isolates

obtained following growth in liquid culture. We identified 39

unique mutations in thyA (data not shown) suggesting that our

results were not influenced by a mutation acquired early on in the

procedure. We did not observe a bias in the types of mutation

from the two conditions. These results suggest that passage

through the mouse results in an increase in mutation rate for V.

cholerae suggestive of an increase in DNA damage and the need for

repair mechanisms.

Defense against RNS is required for V. cholerae to
colonize the infant mouse

We have identified two DNA repair mechanisms required by V.

cholerae to efficiently colonize the infant mouse, and have shown

that V. cholerae passaged through a mouse has an increased

mutation frequency. Thus, we sought to identify potential causes

of DNA damage for V. cholerae while in the mouse to understand

the requirement for BER and MMR in the mouse. A major source

of DNA damage for intracellular pathogens is from host produced

Figure 1. Phenotypes of V. cholerae DNA repair mutants. A.
Mutation frequency. The number of DmutS rifampicin resistant colonies
relative to wild type colonies is shown. The number of V. cholerae
colonies was normalized to 1. The error bars reflect the SEM from at
least 3 independent experiments (*** p,0.001). B. Hydrogen peroxide
sensitivity. The sensitivity of wild type (&), xth::Tn (.), Dnfo (m) and
xth::Tn Dnfo (¤) strains to increasing concentrations of hydrogen
peroxide are shown 6 SEM from at least 3 independent experiments.
The xth::Tn mutant is statistically different from the wild type and the
Dnfo mutant at 100mM and 200mM H2O2 (*** p,0.001). The xth::Tn Dnfo
strain is significantly different from the wild type, xth::Tn and Dnfo
mutant at 100mM and 200mM H2O2 (*** p,0.001).
doi:10.1371/journal.ppat.1001295.g001

Figure 2. Mutation frequency of culture vs. mouse passaged
wild type V. cholerae. Wild type cells were grown in LB or passaged
through a mouse and plated on (A) rifampicin or (B) trimethopirin to
determine the number of resistant colonies. The results show the
average mutation frequency of V. cholerae from 5 mice relative to the
average mutation frequency from 5 LB grown cultures. The average
mutation frequency of the LB grown V. cholerae cultures was
normalized to 1. The error bars reflect the SEM from at least 3
independent experiments (*** p,0.001).
doi:10.1371/journal.ppat.1001295.g002

DNA Damage during V. cholerae Host Colonization
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ROS and RNS. While V. cholerae is a non-invasive pathogen we

considered that it still may experience ROS and RNS at some

point during infection. We used a genetic approach to determine if

ROS/RNS affected V. cholerae colonization and if so what type(s) of

ROS/RNS were most important during this encounter.

Bacteria have several enzymes to detoxify ROS/RNS. Each

enzyme detoxifies a specific type of ROS or RNS [for review see

[18,19]. For example catalases/peroxidases decompose H2O2,

superoxide dismutases remove superoxide and ferrisiderophore

reductases remove nitric oxide. Bacteria can contain multiple

proteins capable of dealing with one type of stress. V. cholerae

possesses two catalases/peroxidases (KatB/PerA) and one alkyl

hydroperoxide reductase (AhpC), three superoxide dismutases

(SodA/B/C) but only one ferrisiderophore reductase (HmpA). We

tested mutants defective for each of these different types of defense

enzymes to identify the type(s) of radicals that may be damaging V.

cholerae in the mouse (Table 2).

RNS, including nitric oxide, have been shown to be powerful

antimicrobial agents. The most well studied RNS defense enzyme

in bacteria is Hmp, a ferrisiderophore reductase that destroys

nitric oxide [47]. V. cholerae carries an hmp homolog, hmpA. Both an

hmpA::Tn mutant and a DhmpA deletion mutant showed a defect in

colonizing the infant mouse intestine (Table 2). Deletion of hmpA

delayed V. cholerae growth in the presence of a nitric oxide donor

but not in the absence (Figure 3A) consistent with previous

observations in other bacteria [20,48]. This suggests that V.cholerae

may encounter deleterious RNS during passage in the mouse. The

growth defect of the DhmpA mutant in the presence of a nitric

oxide donor could be complemented by ectopic expression of hmp

from the arabinose inducible plasmid pBAD18 (Figure S1D). In

fact, expression of hmp from pBAD18 allowed the DhmpA mutant

to recover growth more rapidly than the parental strain in the

presence of a nitric oxide donor.

After testing all previously predicted antioxidant enzymes we

began to mine the V. cholerae genome for additional putative

antioxidant enzymes. We began by searching for putative proteins

that belonged to large antioxidant families. Enzymes, such as

AhpC, belong to the Peroxiredoxin (PRX) family. Searching for

peroxiredoxin family proteins yielded a putative defense enzyme

we have called PrxA (VC2637). PrxA, classified is a peroxiredoxin-

5 family protein, is found in several pathogenic bacteria and is a

distant homolog of a macrophage peroxynitrite detoxification

protein [49].

Deletion of prxA did not effect V. cholerae growth in LB alone but

significantly delayed V. cholerae growth in the presence of a nitric

oxide donor (Figure 3A). Furthermore, both the prxA::Tn mutant

and the DprxA allele we constructed caused a decrease in the ability

of V. cholerae to colonize the infant mouse in competition assays

(Table 2). The growth defect of the DprxA mutant in the presence

of a nitric oxide donor could be complemented by ectopic

expression of prxA from the arabinose inducible plasmid pBAD18

(Figure S1E). The discovery of a new gene required for both

defense against RNS and efficient colonization of the infant mouse

further supports our findings that V. cholerae may be exposed to

RNS during passage though the mouse.

We tested the sensitivity of a DprxA DhmpA double mutant and

found that the growth of the double mutant in the presence of a

nitric oxide donor was even more delayed than either the DprxA or

DhmpA single mutant alone (Figure 3A). We also tested the

colonization efficiency of a DprxA DhmpA (Table 2) and found that

it was not significantly less than the DprxA mutant alone (p.0.05).

Thus hmpA and prxA are both important for colonization but the

effects were not additive.

We asked if defects in ROS defense also affect V. cholerae

colonization. Disruption of ahpC, katB, perA, sodA or sodC did not

affect the ability of V. cholerae to colonize the infant mouse and

these deficiencies did not affect the ability of V. cholerae to colonize

the infant mouse in competition experiments (Table 2). We did not

test the sodB::Tn mutant since both it and a DsodB deletion strain

we constructed had a decreased plating efficiency and grew very

poorly compared to the parental strain (Figure S1F). Thus, while

SodB appears to be important for growth of V. cholerae under

laboratory conditions we did not pursue the sodB mutant in mouse

experiments.

Interestingly, of ahpC, katB and perA only disruption of perA

sensitized V. cholerae to H2O2 in vitro (Figure 3B). Furthermore, of

strains disrupted individually for sodA, sodB and sodC only

disruption of sodB sensitized V. cholerae to the superoxide generating

compound plumbagin (Figure 3C). We also tested the DprxA

mutant but found that it did not show increased sensitivity to

either H2O2 or plumbagin (Figure S2A and data not shown). It is

possible that some of these known ROS defense enzymes overlap

Table 2. Ability of V. cholerae mutants defective in ROS or RNS detoxification to colonize the infant mouse intestine in competition
with the parental strain (WT).

Gene Function aCompetitive Index: Tn Mutant/WT aCompetitive Index: Deletion Mutant/WT

ahpC Peroxidase 1.4160.02

katB Catalase 1.1460.07

perA peroxidase 1.4260.17

sodA Superoxide dismutase 1.1560.10

sodB Superoxide dismutase N/A

sodC Superoxide dismutase 1.2560.06

hmpA Ferrisiderophore reductase 0.1360.02*** 0.1660.01***

prxA (VC2637) Peroxiredoxin putative 0.1460.02*** 0.0960.01***

prxA/hmpA Double mutant 0.0760.01**

hmpA/mutS Double mutant 0.1360.01***

aThe competitive index is the ratio of mutant to parental (WT) cfu in the small intestine post infection divided by the input ratio of mutant to parental (WT) cfu. The
mean and standard error of 5–10 mouse experiments is shown for each mutant. Statistical significance of the competitive colonization defect of each mutant strain
relative to the null hypothesis was determined as described in the materials and methods (*** p,0.001, ** p,0.01).

doi:10.1371/journal.ppat.1001295.t002

DNA Damage during V. cholerae Host Colonization
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in function masking the effects of a deficiency in any one gene in

vitro or in mouse studies. For other bacterial pathogens and

symbionts deletion of several or all catalases and superoxide

dismutases has been required before a strong effect on virulence or

symbiosis was observed [50,51,52]. Currently, the results from our

analysis suggest RNS may pose a significant barrier to V. cholerae in

colonizing the infant mouse. ROS may also play a role, however

their effect is not immediately evident in our analysis.

XthA appears to be more important than Nfo in protecting V.

cholerae against environmental stress in vitro (Figure 1B), yet Nfo

appears to be more important for colonization of the small

intestine (Table 1). The requirement for DhmpA and DprxA for

efficient intestinal colonization lead us to ask if Nfo was required

for defense against nitric oxide. We monitored the growth of the

xth::Tn, Dnfo and xth::Tn Dnfo mutants in the presence of a nitric

oxide donor. We found that, at least in vitro, xth:Tn was more

Figure 3. Growth of RNS/ROS mutants under stress. A. Nitric oxide stress. Exponentially growing cultures of wild type V. cholerae, the DhmpA
mutant, DprxA mutant or DprxA DhmpA double mutant were grown with or without 1 mM spermine NONOate as a nitric oxide donor. The recovery
and growth of each strain was monitored over time. The averages of 3 experiments are shown for each strain. Curves for wild type, DhmpA, DprxA
and DprxA DhmpA double mutant treated with spermine NONOate are labeled as ‘‘+NO’’ for clarity. All strains grown in LB without spermine
NONOate cluster together and are shown on the plot with the label ‘‘All strains2NO’’. wild type+NO (red), DhmpA+NO (green), DprxA+NO (blue),
DprxA DhmpA+NO (orange), wild type2NO (black), DhmpA2NO (purple), DprxA2NO (cyan) and DprxA DhmpA2NO (yellow). The growth of the
DprxA, DhmpA and DhmpA DprxA mutant is significantly delayed by NO compared to wild type by 435 min (p,0.05). B. H2O2 sensitivity. Wild type
(&) and katB::Tn (m), perA::Tn (.) and ahpC::Tn (¤) mutants were plated on increasing concentrations of hydrogen peroxide. Cfu were determined
after overnight growth. The average of 3 experiments is shown. C. Superoxide sensitivity. Wild type (&) and sodA::Tn (m), DsodB (.) and sodC::Tn (¤)
mutants were plated on agar containing increasing concentration of the superoxide generating compound plumbagin. Cfu were determined after
overnight growth. The average of 3 experiments is shown. D. Exponentially growing cultures of wild type, the xth::Tn mutant, Dnfo mutant or xth::Tn
Dnfo double mutant were grown with or without 1 mM spermine NONOate as a nitric oxide donor. The recovery and growth of each strain was
monitored over time. The averages of 3 experiments are shown for each strain. Curves for wild type, xth::Tn, Dnfo and xth::Tn Dnfo treated with
spermine NONOate are labeled as ‘‘+NO’’ for clarity. All strains grown in LB without spermine NONOate cluster together and are shown on the plot
with the label ‘‘All strains2NO’’. wild type+NO (red), xth::Tn+NO (green), Dnfo+NO (blue), xth::Tn Dnfo+NO (orange), wild type2NO (black),
xth::Tn2NO (purple), Dnfo2NO (cyan) and xth::Tn Dnfo2NO (yellow). At 750 min the growth delay of the xth::Tn mutant compared to the wild type in
NO is significant (p,0.001) while the growth delay of the Dnfo mutant is not.
doi:10.1371/journal.ppat.1001295.g003
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important than Nfo for protection against nitric oxide (Figure 3D).

We also found that the double mutant was again more sensitive to

the stress than either single mutant alone (Figure 3D).

Colonization defective mutants have increased sensitivity
to acidified nitrite

Our results led us to ask if our DNA repair and RNS defense

defective V. cholerae mutants were sensitive to any host defenses.

The intestine has several innate defenses [37]. We tested many of

these defenses including lysozyme, phospholipase, antimicrobial

peptides, complement, bile, changes in osmolarity and pH,

however, we did not observe any difference in sensitivity between

the parental and the mutant strains (data not shown). RNS have

been shown to be generated by macrophages to kill phagocytised

bacteria [reviewed in [53]]. The RNS from macrophages is

generated by an inducible nitric oxide synthase (iNOS). Inhibition

of iNOS activity has been shown to rescue the virulence defects in

hmp mutant strains of Salmonella enterica serovar typhimurium [20].

However, our hmpA::Tn V. cholerae mutant showed no difference in

it ability to colonize the intestine of a wild type or isogenic iNOS2/2

infant mouse (Table S1).

Thus, our results suggest that the colonization defect of the

DNA repair and RNS defense mutants may occur before V. cholerae

is exposed to the host defenses found in the small intestine. In the

stomach V. cholerae is exposed to low pH in combination with mM

amounts of nitrite from ingested food and the salivary nitrite cycle

[25,26,27]. Acidified nitrite produces a variety of toxic RNS. We

quantified the amount of nitrite in the infant mouse stomach using

the Griess reaction and found that it was 20.060.7 mM, which is

similar to that of humans [26]. The pH range of human gastric

juice is reported as 1–3 [23,24]. We determined the pH of the

infant mouse stomach to be 4.560.1 using a fluorescent pH

sensitive dye. This measurement is conservative and the pH of the

infant mouse gastric juice may be even less (see Materials and

Methods). Thus, the infant mouse stomach is sufficiently acidic to

promote the formation of acidified nitrite.

At pH 3 in rich medium we found that V. cholerae had a greater

than 99.9% decrease in survival in less than 1 minute (data not

shown) agreeing with similar work examining V. cholerae acid

tolerance [54]. We did not find a difference in survival between the

parental and mutant strains at low pH (1–4) levels (data not

shown). We gradually increased pH to identify the lowest level at

which V. cholerae could grow. At pH 5.5 V. cholerae and the DNA

repair and RNS defense mutants grew with identical kinetics

(Figure 4A). We titrated nitrite into the growth medium and found

that nearly all the mutant strains showed a growth defect

compared to the wild type at pH 5.5 in the presence of 400 mM

nitrite (Figure 4B). No differences in growth between wild type and

mutant strains were observed at pH 7.0 with or without 400 mM

nitrite (Figure S3A, B). Not only did low pH and nitrite slow the

growth of our mutants but the DhmpA, DprxA, Dnfo and xth::Tn

Dnfo mutants began to show a decrease in optical density after

longer exposure (Figure 4B) suggesting the cells were lysing.

Only the growth of the DmutS strain was unaffected at 400 mM.

We considered that while MutS may not be required for survival

of acidified nitrite during this time course it may be required to

prevent acidified nitrite induced mutations in V. cholerae that are

detrimental for colonization. We grew V. cholerae in LB at pH 5.5

over night in the presence or absence of 600 mM nitrite and then

plated for rifampicin resistant colonies. We found that V. cholerae

grown in the presence of nitrite had a greater than 10-fold increase

in mutation frequency compared to the media only control

(Figure 4C). Loss of MutS then increased the mutation frequency

of V. cholerae in nitrite at pH 5.5 , an additional 5-fold (Figure 4C).

Thus, MutS may be important to prevent acidified nitrite induced

mutations that could impair the ability of V. cholerae to colonize the

infant mouse. To further test this possibility we created a DhmpA

DmutS double mutant and tested its colonization proficiency

(Table 2). Interestingly, the colonization defect of the DhmpA

DmutS double mutant was not significantly different than either of

the single mutants alone (p.0.05). This result may suggest that

HmpA and MutS may share a similar defense pathway in the

infant mouse.

Additionally, E. coli MutS can recognize an O6-methyl-dG:dC

base pair, a mutation which can occur by alkylation of G bases

[55]. Therefore it is possible that MutS may also be important for

protection again some type of alkylation that occurs in the mouse

stomach.

Low pH and nitrite induce radical formation in V. cholerae
If acidified nitrite produces RNS that damaged V. cholerae DNA,

we reasoned that we should be able to detect increased

intracellular radical formation in V. cholerae following nitrite

treatment. We grew V. cholerae at pH 5.5 with increasing amounts

of nitrite and assayed for radical formation using 29,79-dichlor-

odihydrofluorescein diacetate (H2DCFDA). H2DCFDA is a cell

permeable dye that fluoresces after reacting with RNS and ROS

species. H2DCFDA reacts with several ROS and RNS including

hydrogen peroxide, nitric oxide and peroxynitrite [56,57,58]. We

found that H2DCFDA fluorescence correlated with increasing

nitrite concentration at pH 5.5 indicating an increase in

intracellular radicals (Figure 4D). For comparison, we found that

H2DCFDA fluorescence did not increase over the concentrations

of nitrate examined at pH 7.0. These results further support the

requirement for low pH to induce radical formation from nitrite

sources (Figure 4D).

A colonization defect is observed for the DNA repair and
RNS defense mutants early after inoculation

Our results suggested that V. cholerae may experience DNA

damage as it passes through the stomach. If so, we were curious if a

colonization defect could be observed at an early time point after

inoculation. We repeated the competitive colonization assays testing

the DmutS, Dnfo, DprxA and DhmpA mutants. We found that at

3 hours post inoculation each mutant strain already showed a 50–

60% colonization defect when co-inoculated with the wild type

(Table S2) though this defect was not as great as the 5–20% defects

reported in Table 1. This suggests that a defect of the mutant strains

is detrimental for colonization early after inoculation. Angelichio

et al. [59] reported that V. cholerae populations in the small intestine

do not show a significant increase in number until between 10–24 h

post inoculations. These results suggest that the effects of the DNA

damage are ,50% detrimental at the earliest stages of infection and

become more apparent as the bacteria replicate to high numbers in

the intestine. Such a conclusion is consistent with the concept of

damage occurring primarily in the stomach.

The colonization defect of the DNA repair and RNS
defense mutants is rescued by neutralizing stomach acid

Our results support a relationship between acidified nitrite

sensitivity and colonization defects in our RNS and DNA repair.

We reasoned that if acidified nitrite in the stomach was responsible

for the colonization defects of our mutants then neutralizing

stomach acid in the mouse should relieve, at least in part, the

observed colonization defects. We used sodium bicarbonate to

neutralize the mouse stomach acid. When we inoculated infant

mice with our DNA repair and RNS defense defective mutants in
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the presence of sodium bicarbonate all four mutant strains (Dnfo,

DmutS, DprxA and DhmpA) showed significant improvement in their

ability to colonize the intestine in competition with the parental

strain (Table 3). In fact the colonization defect of the DmutS and

Dnfo mutant was completely rescued. The colonization defect of

the DprxA was restored to near wild type levels. The colonization

defect of the DhmpA mutant was partially rescued although this

difference is not statistically significant for the number of replicates

tested (p.0.05).

The nitrite concentration of the infant mouse stomach after

sodium bicarbonate treatment remained nearly unchanged at

20.360.8 mM.

Discussion

We have shown that V. cholerae must defend against DNA

damage to efficiently colonize the infant mouse intestine and that

such damage likely occurs early during infection as V. cholerae

Figure 4. Effect of nitrite on growth of wild type and mutant V. cholerae strains. A/B. Exponentially growing cultures of wild type and
DmutS, Dnfo, DprxA, DhmpA and Dnfo xth::Tn mutants were grown in LB buffered at pH 5.5 in the absence (A) or presence (B) of 400 mM sodium
nitirite. The average of three experiments is shown for each strain. Wild type (black squares), DmutS (blue triangles), Dnfo (orange circles), DprxA
(green inverted triangle), DhmpA (red diamond) and Dnfo xth::Tn (yellow open square). C. Mutation frequency as measured by rifampicin resistant
colony formation frequency from wild type and DmutS mutant cultures grown at pH 5.5 in the presence or absence of 600 mM sodium nitrite. The
average mutation frequency of the wild type grown in the absence sodium nitrite was normalized to 1 (* p,0.05, ** p,0.01 compared to wild type)
D. Intracellular RNS production following nitrite treatment. Wild type cultures were grown at pH 7.0 or 5.5 plus 0, 0.5, 1.0, 5.0, or 10.0 mM sodium
nitrite. After washing cells were exposed to the radical binding dye H2DCFDA. After removal of media, cells were lysed and H2DCFDA fluorescence
was measured. The average of at least 3 independent experiments is shown with error bars representing the SEM (* p,0.05, ** p,0.01).
doi:10.1371/journal.ppat.1001295.g004
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enters the stomach. We have demonstrated that V. cholerae

specifically requires BER and MMR pathways to efficiently

colonize the infant mouse intestine. Furthermore, we have

identified one previously known and one novel RNS defense

protein that facilitates intestinal colonization of the infant mouse.

These DNA repair and RNS defense proteins were also required

for V. cholerae to grow or maintain genomic fidelity in the presence

of acidified nitrite. Furthermore the colonization defects of each

mutant could be partially or fully complemented by neutralizing

stomach acid suggesting that RNS defense and DNA repair share

a common defensive role in the mouse.

V. cholerae has been shown to be very sensitive to low pH [54].

For this reason, human volunteers have their stomach contents

neutralized to promote experimental V. cholerae infection as is done

with live attenuated vaccine studies [60]. In the recently developed

infant rabbit model for cholera, stomach acid is also neutralized

and cimetidine is administered to prevent re-acidification in order

for V. cholerae to colonize the infant rabbit intestine [61]. However,

our DNA repair and RNS defense mutants did not show increased

sensitivity to low pH compared to the parent strain. Agreeing with

our observations a large screen used to identify genes necessary for

colonization and tolerating low pH in V. cholerae did not identify

any of the genes we reported here for influencing colonization

[62]. While low pH of the stomach alone is undoubtedly

detrimental towards V. cholerae our results suggest that neutralizing

stomach acid may also be important to prevent RNS formation by

acidified nitrite. We propose that the defect in colonization of the

DNA repair and RNS defense mutants is due to RNS formation.

Acidified nitrite is present in the stomach where gastric juice

interacts from nitrite sources from the diet or salivary nitrite

pathway. The chemistry of acidified nitrite is known to produce

several potentially deadly radicals (1).

NO2{zHz?HNO2

2HNO2?N2O3zH2O pKa~3:42

N2O3?NO.zNO2
.

ð1Þ

Both NON and NO2
N can directly attack cellular macromolecules,

but they can also interact with other radicals to form further

species such as peroxynitrite and hydroxyl acids. From equation

(1) we can see that a key factor in this process is the pH of the

solution. In the human stomach, normal nitrite concentrations

range from 10–50 mM [24] but at a pH of 1–3 acidification and

radical production can happen rapidly. The low pKa of HNO2

may explain in part why we required much higher concentrations

of nitrite to observe detrimental effects on the mutants we studied.

pH 5.5 was the lowest pH level we could successfully grow V.

cholerae, a value well above the pKa of HNO2. Thus at pH 5.5 the

acidification of nitrite would occur more slowly and higher

concentrations of nitrite would be necessary for mass action to

drive the acidification and radicalization of nitrite. Agreeing with

this we did not observe any effect of nitrite on the growth of our

mutants or V. cholerae at pH 7.0. While acidified nitrite has been

shown to effectively kill several bacterial pathogens [28,29,30,31],

the mechanism of its action and bacterial defenses to protect

against it have remained unknown. We have now shown that

MutS, Nfo, HmpA and PrxA are required for protection of

acidified nitrite in V. cholerae.

While our results support a role for acidified nitrite in the

stomach acting as a major DNA damaging agent, we have not

identified the exact location in the gastrointestinal track where the

damage occurs. The most apparent location is the stomach where

ingested V. cholerae mixes with gastric juice. However it is possible

that DNA damage induced by acidified nitrite radicals occurs, or

continues to occur, in the upper intestinal tract. As gastric juice

exits the stomach it is neutralized by bile salt, etc. and can reach a

pH close to 8 [24]. Since the stability of at least some RNS, such as

peroxynitrite, increases with increasing pH [63] the upper

intestinal tract may provide a more favorable environment for

RNS to reach V. cholerae and induce DNA damage.

Bicarbonate has been shown to induce V. cholerae virulence genes

in a ToxT dependent fashion [64]. Abuaita and Withey show that

significant upregulation of both cholera toxin and tcpA gene

expression are observed 3–4 h after addition of bicarbonate [64].

While our inoculation of V. cholerae occurs on a much shorter time

scale (,5–15 min after exposure of bicarbonate) and the majority

of V. cholerae has passed into the small intestine before 3 h, it is

possible that some bicarbonate induced gene regulation may also

aid in the bicarbonate rescue of the colonization defect of our

DNA repair mutants.

While the debate over the benefits and detriments of increased

mutation frequency for pathogenesis continues, we have shown

that increased mutation frequency is detrimental to V. cholerae

pathogenesis, at least for the short-term colonization of the infant

mouse intestine. However, we cannot exclude the possibility that

increased mutation frequency affects long-term survival of V.

cholerae in the host. After the initial decrease in competitiveness it is

possible that increased mutation frequency in V. cholerae could

make it more competitive in later stages of colonization or during

release into the environment. It would be interesting to test

multiple clinical isolates for a mutator phenotype to address this

question.

The Xth and Nfo homologs of V. cholerae have strong sequence

similarity to their E. coli counterparts. We have shown that V.

cholerae and E. coli deletion mutants of xth and nfo also share a

similar pattern of sensitivity to hydrogen peroxide. Nfo and Xth

have been most extensively studied in E. coli. In E. coli Xth is

responsible for greater than ,90% of all AP endonuclease activity

in the cell [39,40]. In E. coli, an xth mutant is very sensitive to a

variety of DNA damaging agents whereas nfo mutants generally

show milder effects [41]. Interestingly, we have shown that in V.

cholerae Nfo is more important for colonization of the infant mouse

than Xth. Our nfo xth double mutant suggests that Xth may play a

role in colonization when Nfo is absent. However, for whatever

damage is occurring, Nfo appears to play a more important role in

the mouse.

Table 3. Effect of NaHCO3 on mutant V. cholerae ability to
colonize the infant mouse intestine in competition with the
parental strain (wild type).

Gene

aCompletive Index:
Deletion Mutant/WT

NaHCO3 Treatmenta

Competitive Index:
Deletion Mutant/WT

nfo 0.2360.01 1.1060.03***

mutS 0.1660.07 0.9260.05*

prxA (VC2637) 0.0960.01 0.7460.06**

hmpA 0.1660.01 0.4560.01

aThe competitive index is the ratio of mutant to parental (WT) cfu in the small
intestine post infection divided by the input ratio of mutant to parental (WT)
cfu. The average and SEM of 4–7 mouse experiments is shown for each
mutant. The NaHCO3 treatments that causes significant rescue of the mutant
colonization defect are indicated (* p,0.05, ** p,0.01, *** p,0.001). NaHCO3

treatment did not cause significant rescue of the DhmpA mutant (p.0.05).
doi:10.1371/journal.ppat.1001295.t003
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It is possible that Nfo and Xth are also used differentially for

repair of specific types of lesions. Preferences for specific types of

damaged bases between Nfo and Xth from E. coli have been

previously reported [65]. If RNS are responsible for DNA damage

in the mouse we suggest that Nfo may have enhanced ability to aid

in the repair of nitrosylative base damage. Additionally, there may

be differential expression of xth and nfo or their preferential

glycosylase partners in the host.

In our efforts to identify ROS and RNS defense enzymes

required for intestinal colonization, we identified a new protein we

have called PrxA that was required for RNS defense. Until now

Hmp has been the only bacterial protein identified to detoxify

RNS, specifically nitric oxide. We have shown that like HmpA,

PrxA protects V. cholerae against the nitric oxide donor spermine

NONOate. Similarly, HmpA and PrxA both protect V. cholerae

against acidified nitrite. This agrees with previous work showing

that Hmp protects Salmonella against nitric oxide and acidified

nitrite [34]. While the species(s) produced by acidified nitrite that

HmpA and PrxA defend against is not clear, we presume that it is

a RNS. PrxA homologs are not as prevalent in bacteria as HmpA

homologs, but they are found in several pathogens including

Yersina pestis, Haemphilus influenza and Neisseria gonorrhoeae. It will be

interesting to determine if PrxA homologs share a similar RNS

defense role in other bacteria.

Our observation that HmpA and PrxA are required for

colonization lead us to suggest that V. cholerae encounters RNS

stress during infection. When studying ROS defense genes we

found that deletion of SodB was detrimental for normal V. cholerae

growth. This indicated that normal growth of V. cholerae must

generate a significant amount of superoxide managed by SodB.

The growth defect of the DsodB mutant prevented us from

analyzing it by competition in the mouse model. While we did not

identify any other single ROS defense enzyme that affected

intestinal colonization it is possible that construction of various

double mutants may show that V. cholerae must also deal with ROS

during disease progression. In bacterial pathogens where SODs

have been shown to be necessary for virulence, it is generally the

periplasmic SOD that is required as this SOD encounters

superoxide entering the cells from the environment [16,66].

However, the V. cholerae periplasmic SOD, SodC, was not required

for intestinal colonization suggesting V. cholerae does not experience

superoxide stress from the host.

Materials and Methods

Ethics statement
The animal experiments were performed with protocols approved

by Harvard Medical School Office for Research Protection Standing

Committee on Animals. The Harvard Medical School animal

management program is accredited by the Association for the

Assessment and Accreditation of Laboratory Animal Care, Interna-

tional (AAALAC), and meets National Institutes of Health standards

as set forth in the Guide for the Care and Use of Laboratory Animals

(DHHS Publication No. (NIH) 85-23 Revised 1996). The institution

also accepts as mandatory the PHS Policy on Humane Care and Use

of Laboratory Animals by Awardee Institutions and NIH Principles

for the Utilization and Care of Vertebrate Animals Used in Testing,

Research, and Training. There is on file with the Office of

Laboratory Animal Welfare (OLAW) an approved Assurance of

Compliance (A3431-01).

Bacterial strains
Strains and plasmids are listed in Supporting Table S3. V.

cholerae El Tor biotype strain C6706 and a spontaneous lacZ2

derivative of C6706, were used as parental (wild type - WT)

strains. E. coli DH5a lpir and Sm10 lpir were used for cloning

and conjugation, respectively. Antibiotic concentrations used were

streptomycin (Sm: 100 mg/ml or 500 mg/ml), kanamycin (Kan:

50 mg/ml), carbenicillin (Carb: 75 mg/ml) and chloramphenicol

(Cm: 2.5 mg/ml for C6706 and 10 mg/ml for E. coli DH5a lpir).

LB was used for all growth conditions [10 g/liter of tryptone

(Bacto), 5 g/liter of yeast extract (Bacto), and 5 g/liter of NaCl]

and was supplemented with 16 g/liter of agar (Bacto) for growth

on plates. Arabinose was used at 0.1% for complementation

assays. All ID numbers/ Accession numbers/for genes highlighted

in this study are shown in Table S5.

DNA manipulations
The genomic sequence of C6706 has not been completed. We

used the sequence of the close relative, N16961, for clone

construction. For in-frame gene deletions of nfo, mutS, hmpA and

prxA, genomic DNA surrounding the respective gene was amplified

by crossover PCR and cloned into pWM91 for subsequent sacB-

mediated allelic exchange in V. cholerae, as described [67,68]. For

complementation constructs, the respective gene was amplified

from chromosomal DNA and cloned into plasmid pBAD18 after

digestion with KpnI and SalI. The respective gene was induced by

adding arabinose to the growth medium. All cloning products

were sequence-verified, and the nucleotide sequence of all primers

used is listed in Table S4.

Infant mouse colonization competition assays
A modified version of the protocol of Baselski and Parker [69]

was performed for infection and recovery of C6706 derived

strains. C6706 or C6706 lac2 and mutant strains were grown on

LB-agar plates with Sm overnight at 37uC. Wild type and mutant

strains were mixed together in LB. 50 ml of this competition

mixture (,50 000 bacteria) was inoculated into a 5-day-old CD1

mouse pup (Charles River Company). Serial dilutions of the

competition mixture were plated in LB+Sm100 and enumerated to

determine the input ratio of wild type and mutant strain. After

incubation at 30uC for 3 h or 18 h the mouse pups were sacrificed

and small intestines were removed and homogenized in 10 ml of

LB. Serial dilutions were plated in LB+Sm100 and enumerated to

determine the output ratio of wild type and mutant strain. The

competitive index for each mutant is defined as the input ratio of

mutant/wild type strain divided by the output ratio of mutant/

wild type strain. A minimum of four mice were assayed for each

mutant strain. The in vivo experiments for the transposon and clean

deletion strains were the accumulation of results performed on

different days. For ease of communication we reported the average

competitive index.

For NaHCO3 recue experiments, mice pups were first

inoculated with 50 ml of 2.5 g/100 mL NaHCO3. After 3 h the

pups were inoculated with 50 ml of the competition mixture

in 2.5g/ 100 mL NaHCO3. iNOS2/2 (#002609) and control

C57BL/6J (#000664) mice were purchased from The Jackson

Laboratory.

Mutation frequency assays
Rifampicin resistance assays. i) For DmutS mutation

frequency and complementation assays cultures were grown to

saturation at 37uC in LB Sm500 or Sm100. 500 ml of culture was

plated on LB agar+50 mg/mL rifampicin. After overnight growth

at 37uC rifampicin resistant colonies were scored. ii) For mouse

passaged assays, 5 day old mouse pups were inoculated with 50,

000 cells of wild type V. cholerae. After incubation at 30uC for 18 h

the mouse pups were sacrificed and their small intestines removed
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and homogenized in 10 ml of LB+Sm500. The 10 ml of

homogenized intestine was passed through cheese cloth and a

3.1mm filter. This filtering retained .90% of V. cholerae and

removed the majority of eukaryotic materials as determined by

western blot against mouse actin (data not shown). We recovered

,250 000–500 000 V. cholerae cfu per small intestine. The filtrate

was grown to saturation. For the control experiment 50 000 wild

type V. cholerae were inoculated into 10 mL of LB+Sm500 and

grown to saturation. We then plated an equal number of cfu from

both mouse passaged and control cultures on LB agar+50 mg/mL

rifampicin and scored resistant colonies. Control mouse samples in

which no V. cholerae had been inoculated did not grow in

LB+Sm500. Primers used for sequencing rpoB are shown in

Supporting Table S3.

Trimethoprim resistance assays. A modified version of

the Belfort and Pedersen-Lane protocol [44] was used for

identified trimethoprim resistant colonies. For mouse passaged

trimethoprin assays, 5 day old mouse pups were inoculated with

50 000 cells of wild type V. cholerae. After incubation at 30uC for

18 h the mouse pups was sacrificed and their small intestines

removed and homogenized in 10 ml of LB Sm500+50 mg/mL

thymine. The 10 ml of homogenized intestine was passaged

through cheese cloth and a 3.1mm filter. This filtering retained

.90% of V. cholerae and removed the majority of eukaryotic

materials as determined by western blot against mouse actin (data

not shown). We recovered ,250 000–500 000 wild type V. cholerae

cfu per small intestine. The filtrate was grown to saturation. For

the control experiment 50 000 wild type V. cholerae were inoculated

into 10 mL of LB Sm500+50 mg/mL thymine and grown to

saturation. We then plated an equal number of cfu from both

mouse passaged and control cultures on M9 agar+0.1% CAS,

0.2% glucose, 50 mg/mL thymine and 20 mg/mL trimethoprim.

After overnight growth at 37uC trimethoprim resistant colonies

were scored. Control mouse samples in which no V. cholerae had

been inoculated did not grow in LB+Sm500. The nucleotide

sequences of the primers used for sequencing thyA are shown in

Supporting Table S4.

To calculate the relative mutation frequency we plated equal

numbers of cfu for both mouse and passaged and control samples.

We calculated the average and standard error for the mutation

rate for the control samples. Next we normalized the individual

mutation frequencies from our 5 mice passaged samples and 5

control samples to the average control sample mutation frequency.

This normalized the average control sample mutation frequency to

1 and showed the relative mutation frequency increase in mouse

passaged samples.

Stomach pH and nitrite concentration determination
We have developed a fluorescence based assay to determine the

pH of the infant mouse stomach. We first determined a standard

curve using the fluorescent pH indicator Yellow/Blue DND-160

(Invitrogen) over a range from pH 3–8. We then extracted the

gastric juice from 5 individual mice, diluted the sample 1:2 with

ddH2O (pH 7), added Yellow/Blue DND-160 and determined the

fluorescence of the solution. Comparing these fluorescent values to

our standard curve we determined the pH of the infant mouse

stomach to be 4.560.1. We also note that this is a conservative

measurement. In order to obtain enough liquid we diluted the

gastric sample ,1:2 with ddH20 that was at ,pH 7. Thus while

water is not a buffer, the dilution of the gastric juice likely raised

the final pH of our measurements.

Nitrite concentration was determined using the Griess Reagent

System (Promega TB229). The concentration shown is the average

of 10 mice treated with or without sodium bicarbonate.

Hydrogen peroxide sensitivity assays
Strains were grown to exponential phase in LB with Cm when

required. Strains were serial diluted and spotted on LB plates

containing increasing concentrations of hydrogen peroxide and

incubated at 37uC overnight. For complementation Cm and

arabinose were added while strains were growing in liquid, as well

as in the LB agar plates.

Nitric oxide sensitivity growth curves
Strains were grown to exponential phase in LB. Strains were

then diluted to OD600 0.01 in LB61.0 mM spermine NONOate

and grown at 37uC in a 96 well plate with aeration (SpectraMax

Plus 384, Molecular Devices). OD600 readings were taken every

15 min.

Growth in acidified nitrite
Overnight cultures were diluted into LB and grown to log phase

at 37uC with aeration. Cultures were diluted to OD600 0.05 in

25 mM MES buffered LB of pH 7.0 or 5.5 with or without the

addition of 400 mM sodium nitrite (Sigma-Aldrich). The LB media

and MES were adjusted to a pH of 7.0 and 5.5 (Corning pH meter

240) with additions of HCl, and filter sterilized (0.22 mm, Corning)

prior to use. The growth of strains under various treatments were

determined by OD600 measurement using a 96 well format

spectrophotometer (SpectraMax Plus 384, Molecular Devices).

Environmental parameters were set to 37uC with shaking and

readings were taken every 15 minutes for 16 hours. Studies were

conducted in quadruplicate.

Fluoroscein assay
Overnight cultures were diluted into 100 mL LB with Sm100

and grown to OD600,0.8 (37uC, aeration). 10 mL of culture was

dispensed into 15 mL conical and centrifugated at 5,000 RPM for

5 minutes. The supernatant discarded and cells resuspended in an

equal volume of 25 mM MES buffered LB of pH 7.0 or 5.5 with

or without the addition of sodium nitrite (500 mM, 1 mM, 5mM,

or 10 mM). Cells were treated for 1.5 hours at 37uC with aeration

then centrifugated at 5,000 RPM for 5 minutes at 4uC. The

supernatant was discarded, cells resuspended in 1 mL PBS

(LONZA), and transferred to a 1.5 mL eppendorf tube. The cells

were centrifugated and washed an additional two times in 16PBS

before being resuspended in 1 ml of PBS with 10 mM 29,79-

dichlorodihydrofluorescein diacetate (Molecular Probes, Invitro-

gen). The cells were incubated at room temperature for

30 minutes then centrifugated and washed three times to remove

all free, extracellular dye. The cells were lysed in 225 mL of lysis

buffer (MilliQ water with 0.1M EDTA) via sonication. Cell lysates

were centrifugated at 15,000 RPM for 5 minutes, supernatant

transferred to another 1.5 mL eppendorf tube and centrifugated

again. Fluorescence was measured at 490 nm / 519 nm

(excitation/emission) (SpectraMax Gemini XS). Fluorescence

was normalized against protein concentrations, as determined by

Bradford assay. Studies were conducted in triplicate.

Statistical methods
Statistical significance was assessed for mouse colonization

assays and DmutS mutation frequency assays using a one-way

analysis of variance (ANOVA) using a Bonferroni post test to

determine significant differences in competitive index between all

pairs of V. cholerae mutants used in our study. Statistical significance

of acidified nitrite, nitric oxide and H2O2 sensitivities was assessed

using a mixed model, repeated measures two-way analysis of

variance (ANOVA), generating a p value for each pair wise curves
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over the concentration range of H2O2 to determine the

significance of our results. Statistical significance of rifampicin

and trimethoprim resistant mutants from LB vs. mouse passaged

samples were assessed using a paired t-test. Differences were

considered significant at p,0.05. All calculations were performed

using Graphpad Prisim version 5.

Supporting Information

Figure S1 A. Growth of wild type (black square), DmutS (red

triangle), Dnfo (blue circle) and xth::Tn Dnfo (green diamond) in LB

at pH 7.0. Growth was measured by changes in the cultures

OD600 readings. The averages of 3 experiments are shown for

each strain. B. Complementation of the mutator phenotype of the

DmutS mutant. The number of wild type+pBAD18 colonies

was normalized to 1. The averages of 3 experiments are shown

(*** p,0.001). C. Complementation of H2O2 sensitivity of the

Dnfo xth::Tn mutant by overexpression of Nfo. Wild type+pBAD18

(&), Dnfo xth::Tn mutant+pBAD18 (m) and Dnfo xth::Tn

mutant+pnfo (.). The averages of 3 experiments are shown. D.

Complementation of DhmpA mutant nitric oxide sensitivity.

Exponentially growing cultures of wild type+pBAD18 (black

squares), DhmpA mutant+pBAD18 (blue circles) and DhmpA

mutant+phmpA (green triangles) were grown with 1 mM spermine

NONOate as a nitric oxide donor. The recovery and growth of

each strain was monitored over time. The averages of 3

experiments are shown for each strain. E. Complementation of

DprxA mutant nitric oxide sensitivity. Exponentially growing

cultures of wild type+pBAD18 (black squares), DprxA mutant+p-

BAD18 (blue circles) and DprxA mutant+pprxA (green triangles)

were grown with 1 mM spermine NONOate as a nitric oxide

donor. The recovery and growth of each strain was monitored

over time. The averages of 3 experiments are shown for each

strain. F. Growth of wild type (N) and the DsodB (&) mutant in LB

at pH 7.0. Growth was measured by changes in the cultures

OD600 readings. The averages of 3 experiments are shown for

each strain.

Found at: doi:10.1371/journal.ppat.1001295.s001 (0.68 MB EPS)

Figure S2 A. Hydrogen peroxide sensitivity. Wild type (N) and

DprxA mutant (&) were plated on agar containing increasing

concentration of the hydrogen peroxide (H2O2). Cfu were

determined after overnight growth. The average of 3 experiments

is shown.

Found at: doi:10.1371/journal.ppat.1001295.s002 (0.43 MB EPS)

Figure S3 Exponentially growing cultures of wild type and

DmutS, Dnfo, DprxA, DhmpA and Dnfo xth::Tn mutants were grown

in LB buffered at pH 7.0 in the absence (A) or presence (B) of

400 mM sodium nitrite. Growth was measured by changes in the

cultures OD600 readings. The average of three experiments is

shown for each strain. Wild type (black squares), DmutS (blue

triangles), Dnfo (orange circles), DprxA (green inverted triangle),

DhmpA (red diamond) and Dnfo xth::Tn (yellow open square).

Found at: doi:10.1371/journal.ppat.1001295.s003 (0.56 MB EPS)

Table S1 Colonization of C57B and isogenic iNOS2/2 infant

mice by the hmp::Tn mutant.

Found at: doi:10.1371/journal.ppat.1001295.s004 (0.02 MB

DOC)

Table S2 Ability of V. cholerae mutants defective in DNA repair

pathways to colonize the infant mouse intestine in competition

with the parental strain (WT) 3 h post inoculation.

Found at: doi:10.1371/journal.ppat.1001295.s005 (0.03 MB

DOC)

Table S3 Bacterial strains and plasmids used in this study.

Found at: doi:10.1371/journal.ppat.1001295.s006 (0.06 MB

DOC)

Table S4 Primers used in this study.

Found at: doi:10.1371/journal.ppat.1001295.s007 (0.03 MB

DOC)

Table S5 ID numbers/ Accession numbers for genes used in this

study.

Found at: doi:10.1371/journal.ppat.1001295.s008 (0.03 MB

DOC)
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