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Promoters are short regions at specific locations of DNA
sequences, which are playing key roles in directing gene tran-
scription. They can be grouped into six types (s24; s28; s32;
s38; s54; s70). Recently, a predictor called “iPromoter-2L”
was constructed to predict the promoters and their six types,
which is the first approach to predict all the six types of pro-
moters. However, its predictive quality still needs to be further
improved for real-world application requirement. In this study,
we proposed the smoothing cutting window algorithm to find
the window fragments of the DNA sequences based on the con-
servation scores to capture the sequence patterns of promoters.
For each window fragment, the discriminative features were
extracted by using kmer and PseKNC. Combined with support
vector machines (SVMs), different predictors were constructed
and then clustered into several groups based on their distances.
Finally, a new predictor called iPromoter-2L2.0 was con-
structed to identify the promoters and their six types, which
was developed by ensemble learning based on the key predic-
tors selected from the cluster groups. The results showed that
iPromoter-2L2.0 outperformed other existing methods for
both promoter prediction and identification of their six types,
indicating that iPromoter-2L2.0 will be helpful for genomics
analysis.
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INTRODUCTION
A promoter is a DNA fragment at a specific location that can
be recognized and bound by RNA polymerase to initiate
transcription. In bacteria, the RNA polymerase contains five subunits
(2a;b;b0,u) and an extra s factor.1,2 Thes factors can be labeled as
s24;s28;s32;s38;s54 and s70 according to the molecular weights.
Differents factors direct the RNA polymerase binding to different
promoter regions, which can affect the consequent activation of
genes.s24 ands32 participate in heat-shock response,s28 participates
in the flagellar gene expression during normal growth, s54 partici-
pates in nitrogen metabolism, and s70, called primary s factor, is
in charge of transcription of most genes in growing cells.2–4

Because the wet experiments are expensive to identify the types
of promoters, several predictors were developed to identify
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the promoters based on the DNA sequence information; for
example, iPro54-PseKNC5 based on the PseKNC6 was constructed
to identify promoters. A position-correlation scoring function
(PCSF)7 and Bayes profile8 were proposed to identify promoter.
By combining the variable window technique with the regular
Z-curve method,9–11 “variable-window Z-curve” was proposed
to detect promoters. These methods were discussed in a recent
study.12

Recently, the iPromoter-2L12 has been proposed, which is the first
predictor that is able to predict the promoters and their aforemen-
tioned six different types. This predictor employed the multi-
window-based PseKNC approach to capture the sequence patterns
of the promoters. However, for this predictor, it is extremely hard
to find the optimized sequence windows by using the flexible-
sliding-window approach to extract the discriminative features,
preventing the performance improvement of this method. In order
to overcome these shortcomings, in this study we proposed the
smoothing cutting window (SCW) algorithm to divide the DNA
sequences into fragment windows based on the conservation
scores and ensemble of different predictors based on various
sequence-based features to further improve the predictive
performance.
RESULTS AND DISCUSSION
Comparison with Other Existing Methods

Table 1 shows the results (Equation 24) generated by iPromoter-
2L2.0 via the 5-fold validation on the benchmark dataset. The cor-
responding rates obtained by the existing methods are also given
in Table 1. For the second-layer prediction, only the iPromoter-
2L and iPromoter-2L2.0 are able to predict the promoter types
among the five existing methods.
he Authors.
//creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omtn.2019.08.008
mailto:bliu@bliulab.net
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omtn.2019.08.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. A Comparison of iPromoter-2L2.0 with Other Predictors for

Identifying Promoters (the First Layer) and Their Types (the

Second Layer) via the 5-fold Cross-Validation on the Same

Benchmark Dataset

Method Acc (%) MCC Sn (%) Sp (%)

First Layer

PCSFa 74.81 0.4980 78.92 70.70

vw Z-curvea 80.28 0.6098 77.76 82.80

Stabilitya 78.04 0.5615 76.61 79.48

iPro54a 80.45 0.6100 77.76 83.15

iPromoter-2L1.0a 81.68 0.6343 79.20 84.16

iPromoter-2L2.0b 84.98 0.6998 84.13 85.84

Second Layer

iPromoter-2L1.0a

s24 promoter 93.50 0.7338 72.52 96.93

s28 promoter 96.82 0.5708 42.54 99.49

s32 promoter 94.41 0.6524 52.58 99.14

s38 promoter 94.69 0.2962 15.34 99.48

s54 promoter 94.04 0.6459 53.19 99.57

s70 promoter 80.66 0.6056 95.34 59.35

iPromoter-2L2.0b

s24 promoter 94.62 0.8053 81.82 97.22

s28 promoter 97.94 0.7561 71.64 99.23

s32 promoter 95.38 0.7361 71.82 98.05

s38 promoter 94.58 0.2242 7.36 99.85

s54 promoter 98.11 0.6714 59.57 99.42

s70 promoter 85.94 0.7109 95.22 72.47

See Equation 1. Acc, accuracy; Sn, sensitivity; Sp, specificity.
aThe results reported in Liu et al.12
bThe predictor proposed in this study.

Figure 1. A Screenshot of the Homepage of the Web Server for

iPromoter-2L2.0

iPromoter-2L2.0 can be accessed at http://bliulab.net/iPromoter-2L2.0/.
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From Table 1 we can see the following: (1) for the first-layer pre-
diction, the iPromoter-2L2.0 outperformed all the other methods
in terms of all the four performance measures (cf. Equation 24);
(2) for the second-layer prediction, the iPromoter-2L2.0 outper-
formed iPromoter-2L for the prediction of s24 promoters, s28 pro-
moters, s32 promoters, s54 promoters, and s70 promoters in terms
of accuracy (Acc) and Matthew’s correlation coefficient (MCC),
and its performance is comparable with that of iPromoter-2L
for the prediction of s38 promoters. The reasons for the perfor-
mance improvement of the iPromoter-2L predictor is that it is
based on the SCW algorithm, which is able to more accurately
extract the sequence features to discriminate the promoters and
their types.
�
S=S+ W S�

S+ =S+ ðs24ÞWS+ ðs28ÞWS+ ðs32ÞWS+ ðs38ÞWS+ ðs54ÞWS+ ðs70Þ
It can be anticipated that the proposed SCW algorithm would have
many potential applications, such as enhancer prediction, DNA repli-
cation origin prediction, etc.
Web Server and Its User Guide

We established a web server for iPromoter-2L2.0 so as to help
the readers to use the proposed method by following the steps below.

Step 1. Click the hyperlink http://bliulab.net/iPromoter-2L2.0/ to
access the homepage as shown in Figure 1. An introduction to the
web server is given in the Read Me.

Step 2. Copy/paste or type the query DNA sequences into the
input box at the center of Figure 1 or upload the data by the
Browse button.

Step 3. Click on the Submit button—you will see the predicted re-
sults. If using the example sequences for the prediction, you will
see the following results: (1) both the first and the second query
sequences are non-promoters; (2) the third query sequence is a
s70 promoter.

Step 4. On the results, the predictive result can be downloaded via
clicking the Download button.
MATERIALS AND METHODS
Benchmark Dataset

To facilitate performance comparison of various methods, we em-
ployed the datasetS12 to construct the predictor and evaluate the per-
formance of various methods, which can be formulated as12
; (Equation 1)
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where “W” indicates the “union” in the theory; S+ indicates pro-
moter samples; S� indicates non-promoter samples; and S+ ðs24Þ,
S+ ðs28Þ, S+ ðs32Þ, S+ ðs38Þ, S+ ðs54Þ, and S+ ðs70Þ indicate six
kinds of promoters. Specifically, the benchmark dataset S consists
of 5,920 samples, half of which are promoters, and the others are
non-promoters. S+ ðs24Þ contains 484 samples;S+ ðs28Þ contains
134 samples; S+ ðs32Þ contains 291 samples;S+ ðs38Þ contains 163
samples;S+ ðs54Þ contains 94 samples;S+ ðs70Þ contains 1,694
samples.

Sample Formulation

In this study, the DNA sequence samples were divided into several
fragment windows by using the proposed SCW algorithm, and
then for each fragment window, a sliding window approach was
used to extract the sequence features by using kmer13 and
PseKNC.6,14,15

SCW Algorithm

Previous studies showed that the distribution of conservation scores
between promoters and non-promoters are obviously different.12

Here, we proposed the SCW algorithm to incorporate these
sequence patterns into the predictor so as to improve the predictive
performance.

A DNA sample is represented as

D = N1N2/Ni/N81; (Equation 2)

where Ni denotes the i-th nucleotide at the sequence position i. It can
be one of the following four nucleotides, i.e.,

Ni˛fAðadenineÞ CðcytosineÞ GðguanineÞ T ðthymineÞ g;
(Equation 3)

where ˛ refers to “member of,” a symbol in set theory.

To reflect the conservation score distribution patterns alongD, it was
split into S+1 fragments rð½1; t1 � 1�; ½t1; t2 � 1�;/; ½ts; L�Þby the
cutting points tjðj = 1; 2;/; SÞ (S is the total number of cutting
points), which can be represented as

8>><
>>:

r1 =N1N2/Nt1�1

r2 =Nt1Nt1 + 1/Nt2�1

/
rS+ 1 =NtsNts + 1/NL

: (Equation 4)

The cutting point tj is defined as follows:

tj =

8>><
>>:

41; if 41 >a and 42 � 41 >a

4m; if 1<m<Z and 4m � 4m�1 >a and 4m+ 1 � 4m >a

4Z ; if L� 4Z >a and 4Z � 4Z�1 >a

is not a cutting point; otherwise

;

(Equation 5)
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whereais a distance threshold, which was set as 8 in
this study, 4is the candidate cutting point, and Z is
the total number of4:For a given sequence position i, 4 is
defined as

4m =

8>><
>>:

i; if SSDi < SSDi�1 and SSDi < SSDi+ 1 and 1< i < L
1; if SSDi < SSDi+ 1 and i= 1
Z; if SSDi < SSDi�1 and i= L

is not a candidate cutting point; otherwise

;

(Equation 6)

where SSDi represents the smooth standard deviation of the average
conservation score (CS) of sequence position i, which can be calcu-
lated by

SSDi =

8>>>>>>>>>>><
>>>>>>>>>>>:

1
5

Xi+ 2

k= i�2

SDk; 2< i < L� 1

1
i+ 2

Xi+ 2

k= 1

SDk; i= 1; 2

1
L� i+ 3

XL

k= i�2

SDk; i= L� 1; L

; (Equation 7)

where k is the sequence position and SDk is the standard deviation
of the average CS at the k-th sequence position, which can be calcu-
lated by

SDk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Y

XY
y = 1

�
ε
y
k � m

�2vuut ; (Equation 8)

where Y represents number of labels, which is equal to 2 for
the first layer and 6 for the second layer. εyk denotes the y-th
class samples’ average CS at the k-th sequence position,
which can be calculated by the approach introduced in Schneider
and Stephens.16 m is the average CS of all labels at the k-th
position.

The conservation profiles and the standard deviations of
promoters and non-promoters are shown in Figure 2A, and
the conservation profile and the standard deviation of each
promoter type are shown in Figure 3A. The smooth standard
deviation curves are shown in Figures 2B and 3B. The DNA se-
quences were divided into several fragments by SCW as shown
in Figures 2C and 3C. The pseudo-code of SCW algorithm is
shown in Box 1.

After the process shown in Box 1, each DNA sequence inS (cf. Equa-
tion 1) was divided into four fragments ([1, 28], [29, 44], [45, 56], [57,
81]), and each DNA sequence inS+ (cf. Equation 1) was divided into
four fragments ([1, 17], [18, 41], [42, 56], [57, 81]). Then for each
fragment, the sliding-window approach was used to extract the
features.



Figure 2. A Flowchart Shows the Steps of the

Proposed Smoothing Cutting Window Algorithm

for the First-Layer Prediction

The standard deviations shown in (A) are converted into

the smooth standard deviations as shown in (B), based on

which the DNA sequences are divided into several frag-

ments, as shown in (C).
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A sliding window can be expressed by ½x;d�, where x is the width of
the window and d is the step of sliding window. For each fragment
obtained, the number of the segments produced by ½x; d� along the
fragment sequence is given by12

h = INT

�jri j � x+ d

d

�
; (Equation 9)

where “INT” is an “integer-cutting operator.” jri j denotes
the length of the i-th fragment. For example, assuming jri j =
Molecular Ther
29, x = 6, and d = 1 in Equation 9,
we obtainh = 24. For example, we can
obtain 24 DNA segments with the sliding
window of ½6; 1� on the i-th fragment of
length 29.

kmer

kmer13 is a simple and effective method
to extract the information in the DNA
sequence. By using kmer, the DNA sequence
fragment r (cf. Equation 4) can be repre-
sented as
r =
h
f kmer
1 f kmer

2 / f kmer
i / f kmer

4k

iT
; (Equation 10)

where f kmer
i ði = 1; 2;/; 4kÞ is the frequencies of k neighboring nucle-

otides in the fragment r,and T represents transpose operator. For
example, Equation 10 is a 4-mer vector when k = 4.

r= ½ f ðAAAAÞ f ðAAACÞ f ðAAATÞ / f ðTTTTÞ �T
=
�
f 4mer
1 f 4mer

2 f 4mer
3 / f 4mer

256

	T :

(Equation 11)
Figure 3. A Flowchart Shows the Process of the

Proposed Smoothing Cutting Window Algorithm for

the Second-Layer Prediction

The SDs shown in (A) are converted into the smooth SDs

as shown in (B), based on which the DNA sequences are

divided into several fragments, as shown in (C).
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Box 1 Algorithm: Smoothing Cutting Window

Parameters: sequence length L, number of label Y

Input: DNA sequence in Equation 1

Output: cutting points t1;t2; :::ts

For y = 1 to Y do

For i = 1 to L do

Calculate conservation score εyi

End for

End for

For i = 1 to L do

Calculate SSDi by Equation 7

End for

Calculate cutting points t1; t2; :::ts by Equations 5
and 6 and SSD

Return t1;t2; :::ts

Figure 4. A Flowchart Shows How iPromoter-2L2.0 Is Working
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PseKNC

The PseKNC6 incorporates the short-range sequence information,
the long-range sequence information, and the physicochemical prop-
erties of the dinucleotides,6 which can formulate the DNA sequence
fragment r of Equation 4 as

r =
�
f PseKNC1 f PseKNC2 / f PseKNC4k f PseKNC4k + 1 / f PseKNC4k + l

	T
:

(Equation 12)

PseKNC6 has three parameters: k, l (the number of sequence corre-
lations considered17), and w (the weight factor). Each of the parame-
ters has been clearly defined in a paper6 and a comprehensive
review.18

The kmer and PseKNC can be easily generated by some exiting tools,
such as Pse-in-One19 and PseKNC-General.14
Operation Engine

Support vector machines (SVMs) were successfully applied in several
bioinformatics problems (B.L., C. L., and K. Yan, unpublished
data).20–24 In this study, we employed SVMs to build the predictor.
We used the SVM with radial basis function (RBF) kernel in the
Scikit-learn package.25 The SVM has two parameters: C (regulariza-
tion) and g (kernel width).

Accordingly, when combining sliding-window approach and SVM
based on kmer or PseKNC, there are a total of ð2 + 2 + 1Þ = 5,
or ð2 + 2 + 3Þ= 7 parameters, respectively. The values of C and g

will be given later.
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For the sliding-window with,�
5%x%9 with step gapO= 1
1%d%2 with step gapO= 1

: (Equation 13)

For the kmer approach with

k = 1; 2; 3; (Equation 14)

30 elementary classifiers can be developed, as denoted by

CðiÞ; ði = 1; 2;/; 30Þ: (Equation 15)

For the PseKNC approach with

8<
:

1%k%4 with step gapO= 1
2%l%x� k with step gapO= 3

w= 0:5
; (Equation 16)

46 elementary classifiers can be developed, denoted by

CðiÞ; ði = 31; 32; /; 76Þ: (Equation 17)

Therefore, we have a total of 30 + 46 = 76 elementary classifiers.



Table 2. The Six Key Classifiers for the First-Layer Prediction

Key Classifier Feature Vector Dimension

C1ð1Þ kmera 768

C1ð2Þ kmerb 396

C1ð3Þ kmerc 2,880

C1ð4Þ kmerd 624

C1ð5Þ PseKNCe 1,080

C1ð6Þ PseKNCf 11,880

C1ð7Þ PseKNCg 46,440

C1ð8Þ PseKNCh 1,566

C1ð9Þ PseKNCi 2,808

C1ð10Þ PseKNCj 729

aThe parameters used: x = 5, d = 1, k = 1, C = 23, g = 2�6.
bThe parameters used: x = 5, k = 1, C = 2, g = 2�4.
cThe parameters used: x = 6, d = 1, k = 2, C = 2, g = 2�4.
dThe parameters used: x = 8, d = 1, k = 1, C = 23, g = 2�6.
eThe parameters used: x = 6, d = 1, k = 1, l = 2, w = 0.5, C = 23;g = 2�4:
fThe parameters used: x = 6, d = 1, k = 3, l = 2, w = 0.5, C = 23;g = 2�4.
gThe parameters used: x = 6, d = 1, k = 4, l = 2, w = 0.5, C = 2;g = 2�4:
hThe parameters used: x = 7, d = 2, k = 2, l = 2, w = 0.5, C = 2;g = 2�2:
iThe parameters used: x = 8, d = 1, k = 2, l = 2, w = 0.5, C = 23;g = 2�4:
jThe parameters used: x = 8, d = 2, k = 1, l = 5, w = 0.5, C = 2;g = 2�2:

Table 3. The 10 Key Classifiers for the Second-Layer Prediction

Key Classifier Feature Vector Dimension

C2ð1Þ kmera 1,584

C2ð2Þ kmerb 2,688

C2ð3Þ PseKNCc 11,880

C2ð4Þ PseKNCd 1,008

C2ð5Þ PseKNCe 3,528

C2ð6Þ PseKNCf 1,566

C2ð7Þ PseKNCg 2,808

C2ð8Þ PseKNCh 729

C2ð9Þ PseKNCi 1,296

aThe parameters used: x = 5, d = 2, k = 2, C = 24, g = 2�4.
bThe parameters used: x = 7, d = 1, k = 2, C = 24, g = 2�4.
cThe parameters used: x = 6, d = 1, k = 3, l = 2, w = 0.5, C = 24;g = 2�4:
dThe parameters used: x = 7, d = 1, k = 1, l = 2, w = 0.5, C = 24;g = 2�1:
eThe parameters used: x = 7, d = 1, k = 2, l = 5, w = 0.5, C = 2;g = 2�1:
fThe parameters used: x = 7, d = 2, k = 2, l = 2, w = 0.5, C = 24;g = 2�1:
gThe parameters used: x = 8, d = 1, k = 2, l = 2, w = 0.5, C = 24;g = 2�1:
hThe parameters used: x = 8, d = 2, k = 1, l = 5, w = 0.5, C = 24;g = 2�1:
iThe parameters used were as follows: x = 9, d = 1, k = 1, l = 5, w = 0.5, C = 24;
g = 2�1:
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Ensemble Learning

Inspired by the previous studies,13,26–32 by using a voting system, a se-
ries of individual predictors can develop an ensemble predictor with
better prediction quality.

When developing an ensemble learning model, there are two funda-
mental issues: the selection of the individual classifiers with low cor-
relation from the elementary classifiers and the construction of an
ensemble classifier by fusing the selected classifiers. In this study,
we employed the affinity propagation (AP) clustering algorithm33

to cluster the elementary classifiers based on the distance among clas-
sifiers. For each cluster, one key classifier was selected.

In order tomeasure the complementarity of different elementary clas-
sifiers, the distance between any two elementary classifiers CðiÞ and
CðjÞ was measured by the following equation:

DistanceðCðiÞ; CðjÞÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k= 1

�
dikDdjk

�s
; (Equation 18)

where m is the training sample number, dik is the classification prob-
ability of classifier CðiÞ on the k-th sample, and dikDdjk is calculated by
dikDdjk =

8>><
>>:

1
Y

XY
y = 1

�
diky � djky

�2
; if CðiÞ and CðjÞhave different predictio

0; otherwise
where Y represents number of labels. Y was set as 2 and 6
for promoter identification and their type prediction, respec-
tively. diky represents the probability of CðiÞ predicting k-th
sample as category y. By using Equations 18 and 19, the
distance between any elementary classifiers can be accurately
measured. The range of DistanceðCðiÞ; CðjÞÞ is from 0 to 1,
where 1 indicates the predictive results of two classifiers
are completely complementary and 0 means that their results
are identical. The elementary classifiers were then grouped
into different clusters by using the AP clustering algorithm.33

The flowchart of the proposed iPromoter-2L2.0 predictor is shown in
Figure 4.

For the first layer, 10 key classifiers were obtained (Table 2) as formu-
lated by

C1ðiÞ; ði = 1; 2;/; 10Þ: (Equation 20)

For the second layer, nine key classifiers were obtained (Table 3) as
formulated by

C2ðiÞ; ði = 1; 2;/; 9Þ: (Equation 21)
n on the k� th sample
; (Equation 19)
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By fusing the 10 key classifiers (cf. Equation 20) following this
study,13 we can obtain the first-layer ensemble predictor as
given by

CE1 = C1ð1ÞcC1ð2Þc/cC1ð10Þ=c10
i= 1C1ðiÞ: (Equation 22)

By fusing the nine key classifiers (cf. Equation 21), we can obtain the
second-layer ensemble predictor given by

CE2 = C2ð1ÞcC2ð2Þc/cC2ð9Þ=c9
i= 1C2ðiÞ; (Equation 23)

where the symbol c in Equations 22 and 23 means that linear
combination of the key individual classifiers. The weight factors
were optimized by the genetic algorithm,34 and the parameters
(population size, evolutional generations) of genetic algorithm
were set as 200 and 2,000, respectively, for the first and second
layers.

Cross-Validation and Performance Measures

The performance of various predictors was evaluated by using 5-fold
cross-validation with the following performance measures:12
8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

SnðiÞ= 1� N +
� ðiÞ

N + ðiÞ 0%Sn%1

SpðiÞ= 1� N�
+ ðiÞ

N�ðiÞ 0%Sp%1

AccðiÞ= 1� N +
� ðiÞ+N�

+ ðiÞ
N + ðiÞ+N�ðiÞ 0%Acc%1

MCCðiÞ=
1�


N +
� ðiÞ

N + ðiÞ+
N�

+ ðiÞ
N�ðiÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+

N�
+ ðiÞ � N +

� ðiÞ
N + ðiÞ

� �
1+

N +
� ðiÞ � N�

+ ðiÞ
N�ðiÞ

�s �1%MCC%1

; (Equation 24)
where i = 1; 2;/;Y , and Y is the number of classes of this system. i is
the i-th class or type. For the first-layer prediction, the value of Y is 2,
and the value of i represents the promoter (i = 1) or non-promoter (i =
2). Similarly, for the second-layer prediction, the value of Y is 6 and
the value of i is 1, 2, 3, 4, 5, or 6 for s24, s28, s32, s38, s54, or s70 pro-
moters, respectively. For the detail of these performance measures,
please refer to a recent study.12
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