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ABSTRACT

Objective: Healthcare data such as clinical notes are primarily recorded in an unstructured manner. If

adequately translated into structured data, they can be utilized for health economics and set the groundwork for

better individualized patient care. To structure clinical notes, deep-learning methods, particularly transformer-

based models like Bidirectional Encoder Representations from Transformers (BERT), have recently received

much attention. Currently, biomedical applications are primarily focused on the English language. While

general-purpose German-language models such as GermanBERT and GottBERT have been published, adapta-

tions for biomedical data are unavailable. This study evaluated the suitability of existing and novel transformer-

based models for the German biomedical and clinical domain.

Materials and Methods: We used 8 transformer-based models and pre-trained 3 new models on a newly gener-

ated biomedical corpus, and systematically compared them with each other. We annotated a new dataset of

clinical notes and used it with 4 other corpora (BRONCO150, CLEF eHealth 2019 Task 1, GGPONC, and JSynCC)

to perform named entity recognition (NER) and document classification tasks.

Results: General-purpose language models can be used effectively for biomedical and clinical natural language

processing (NLP) tasks, still, our newly trained BioGottBERT model outperformed GottBERT on both clinical

NER tasks. However, training new biomedical models from scratch proved ineffective.

Discussion: The domain-adaptation strategy’s potential is currently limited due to a lack of pre-training data.

Since general-purpose language models are only marginally inferior to domain-specific models, both options

are suitable for developing German-language biomedical applications.
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Conclusion: General-purpose language models perform remarkably well on biomedical and clinical NLP tasks.

If larger corpora become available in the future, domain-adapting these models may improve performances.

Key words: clinical concept extraction, natural language processing, transformer-based models

LAY SUMMARY

In 2022, the majority of clinical documents are still written as free text. Assuming that these records are consistently and cor-

rectly transformed into structured data, they present an opportunity for optimized health-economic purposes as well as per-

sonalized patient care. Deep-learning methods, particularly transformer-based models, have recently received much atten-

tion as they excel in a variety of fields; however, the majority of applications are currently only available in English.

Although there are general-language models in German, none have been developed specifically for biomedical or clinical

documents. In this context, this study systematically compared 8 previously published general-language models and 3 newly

trained biomedical domain models in information extraction and document classification tasks. Our findings show that while

training entirely new models with currently available data has proven ineffective, adapting existing models for biomedical

language holds a lot of promise. Furthermore, we found out that even models that have not been specifically developed for

biomedical applications can achieve excellent results in the specified fields.

INTRODUCTION

In many countries, a considerable portion of clinical routine infor-

mation is still not gathered in a structured format. While structured

data are commonly utilized for health economics and registries, it

often lacks specific information, such as descriptions of adverse drug

events, disease severity, family history, or behavioral and environ-

mental health determinants. Such information is predominantly

documented in clinical free-text form, which makes up to 40% of

the data generated in current hospital systems.1 The great potential

of information documented in narrative text to support translational

research and the implementation of clinical applications was recog-

nized early,2–4 but exploiting that potential still poses a challenge.

Extracting clinical information through natural language processing

(NLP) methods could structure that information to support down-

stream clinical applications such as deep phenotyping, better-

individualized clinical decision-making, and automated coding for

health economic purposes.

Nowadays, the development of NLP systems for information

extraction in English is already quite advanced. Systems such as

MedLEE,2,5 MetaMap,6 cTAKES,7 and CLAMP8 have been devel-

oped and deployed in the past to extract information from clinical

narrative texts. Furthermore, open competitions such as Informatics

for Integrating Biology and the Bedside (i2b2),9 National NLP Clin-

ical Challenges (n2c2),10,11 and CLEF eHealth12 encourage sharing

of data and models and are further driving developments in this

area. The systems developed so far include rule-based, machine-

learning-based, and hybrid models. While rule-based approaches

were indispensable in the early stages, today’s research often focuses

on machine-learning methods. In particular, deep-learning net-

works, such as recurrent neural networks (RNNs) or convolutional

neural networks, have been used extensively in recent years13 as

they can achieve higher performances if sufficient amounts of train-

ing data exist. Compared to traditional machine-learning methods,

deep neural networks usually employ methods such as Word2-

Vec,14,15 GloVe,16 or FastText17 to represent words as vectors.

These methods model language by learning relationships between

words – so-called word embeddings – from a large textual corpus.

Using the word embeddings as features replaces the manual feature

engineering required by traditional methods. Following the idea of

word vector representation, research continued and led to the devel-

opment of another group of deep neural networks – transformer-

based models. The Transformer, published by Vaswani et al. in

2017,18 was initially designed for neural machine translation and

addressed two shortcomings of RNNs: missing parallelization and

long-range dependencies. It relies heavily on the self-attention mech-

anism, which weighs each part of the input differentially. Since it

works without recurrence, it is parallelizable and computationally

more efficient than the RNN counterpart. In 2019, Devlin et al.

used parts of the original architecture to develop Bidirectional

Encoder Representations from Transformers (BERT) and achieved

state-of-the-art results in numerous NLP tasks.19 As with other

transformer-based models, it is trained in 2 stages: First, it is pre-

trained using large amounts of unlabeled data by applying novel

training objectives such as masked language modeling (MLM) and

next-sentence prediction. In the second stage, the model is fine-

tuned for specific NLP tasks with labeled data. Since the publication

of BERT, numerous variants of the model have been presented.

While approaches such as RoBERTa20 and ELECTRA21 tackled

potential limitations and shortcomings of the model architecture

and training procedure, other variants such as BioBERT22 and Clini-

calBERT23,24 were developed to achieve domain specificity.

In the German-speaking world, developments lag far behind and

are often driven only by commercial software or local applica-

tions.25 Strict data protection laws hinder data sharing, and thus

clinics typically only allow for the use of data internally. These fac-

tors inhibit the sharing of datasets and models, as well as the hosting

of open challenges with German datasets.25,26 Nevertheless, there

have been promising approaches in recent years: With JSynCC27

and GGPONC,28 2 datasets have been published that contain texts

with biomedical language but are not affected by data protection

issues. Recently, the first corpus containing de-identified discharge

letters, called BRONCO150,29 was published. Furthermore, the

CLEF eHealth challenge provided a dataset of non-technical sum-

maries of animal studies in 2019. S€anger et al. used the multilingual

BERT version (mBERT) to classify these summaries and showed

that mBERT significantly outperformed a baseline Support Vector

Machine model.30 Later, Bressem et al. trained domain-specific

BERT models using 3.8 million radiographic reports and evaluated

them in a classification task with promising results. Similarly,

Richter-Pechanski et al. pre-trained BERT models on 200 000 dis-
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charge letters and fine-tuned them for a clinical concept extraction

task. General-purpose language models (GPLMs) have already per-

formed excellently in all of these cases. However, none of these stud-

ies systematically compared already published models such as

GottBERT or GELECTRA, but rather focused on mBERT or Ger-

manBERT. Furthermore, none of the pre-trained clinical models are

publicly available yet.

In our work, we developed 3 new biomedical domain-specific

GPLMs and evaluated their performance on 5 clinical NLP tasks in

comparison to 8 GPLMs. For this purpose, we first assembled a

dataset of unlabeled biomedical texts and trained our models. We

then annotated clinical entities in 50 discharge letters to generate a

new dataset called ChaDL (Charit�e Discharge Letters), which we

used with BRONCO150, the CLEF eHealth dataset from 2019,

GGPONC, and JSynCC to fine-tune and evaluate models. To our

knowledge, this is the first comprehensive comparison of German-

language transformer models for clinical NLP applications.

MATERIALS AND METHODS

General overview
The work described in this article consisted of 3 phases (Figure 1):

1. Annotation of ChaDL: We manually annotated 50 de-identified

discharge letters from the Charit�e – Universit€atsmedizin Berlin

with respect to the entities diagnosis, disorder, dosage, intake,

medication, and procedure.

2. Pre-Training: Subsequently, we pre-trained several transformer

models on German-language scientific abstracts, drug leaflets,

and medicine-related Wikipedia articles.

3. Fine-Tuning: Finally, we performed fine-tuning and evaluation

of eleven models for named entity recognition (NER) and docu-

ment classification based on 5 corpora, including ChaDL.

In the following, we describe our approach in more detail.

Datasets
We used 6 different datasets for pre-training and fine-tuning of

transformer models. The corpora we compiled for pre-training con-

sisted of German medical articles from Wikipedia, drug leaflets

from the AMIce database (https://www.dimdi.de/dynamic/de/arznei-

mittel/arzneimittel-recherchieren/amis/), and scientific abstracts

from the LIVIVO search engine.33 For the latter, we only used

abstracts from databases with biological or medical relevance. All

elements such as lists, tables, and equations that can confuse text

mining systems were removed from the documents. As shown in

Supplementary Table A.1, the corpus contains approximately 0.8

GB of textual data and 66 million tokens.

For fine-tuning, we used 4 publicly available datasets, namely

BRONCO150,29 the CLEF eHealth 2019 dataset,34 GGPONC,28

and JSynCC,27 and a newly created dataset of clinical discharge let-

ters called ChaDL that originated from Charit�e – Universit€atsmedi-

zin Berlin.

JSynCC is the first publicly available dataset with documents in

the German clinical language. It contains 867 documents extracted

from 10 medical textbooks (see Table 1). Since each document is

assigned to one or more specialized medical fields, this dataset is

suited for a multi-label document classification task. Nonetheless,

the class distribution is highly imbalanced, and most labels are only

represented a few times (see Supplementary Figure A.5). Since a

model can neither be adequately trained nor evaluated if classes are

this scarcely represented, we generated 2 subsets of JSynCC in which

we excluded classes whose frequency does not exceed a specified

threshold. Version A represents the extreme case in which only a

few samples are available to train a model: We kept all document

labels that occurred at least 5 times, thereby reducing the number of

documents from 867 to 849. For version B, which is closer to a real-

world scenario with more samples available for training, we limited

labels to those that occur at least 50 times, thereby reducing the

total documents from 867 to 494. The main article shows the results

of our experiments with version B. A detailed description of

version A and the respective results are available in Supplementary

Appendix C.2.

As part of 2019s CLEF eHealth challenge, a dataset comprising

8793 German NTPs of animal experiments was made available. The

documents have been manually annotated by experts; each has

received zero or more ICD-10 codes as document-level label. Like

JSynCC, we used it for a multi-label document classification task.

GGPONC contains 8414 text segments that have been extracted

from 25 oncology clinical practice guidelines and hence is one of the

largest corpora of German medical texts. Borchert et al. automati-

cally annotated the corpus with 7 UMLS terms and screened for

TNM expressions and gene names. Afterward, 4 annotators man-

ually curated a subset of 4153 text segments to generate a gold

standard. In this study, we used only the 4153 manually curated text

segments for our experiments.

As the first freely available corpus of de-identified clinical notes,

the recently published Berlin-Tübingen Oncology corpus

(BRONCO150) contains shuffled sentences from 150 German onco-

logical discharge summaries. Nine annotators (medical experts and

students) annotated the documents using the labels diagnosis, treat-

ments, medication, and other attributes.

Our newly created dataset ChaDL consists of 50 de-identified

discharge letters from the neurological department of the Charit�e –

Universit€atsmedizin Berlin, collected as part of studies in which

informed consent was given to extract data from the hospital infor-

mation system. These discharge letters contain various sections from

which we focused on anamnesis, diagnoses, medication, and epicri-

sis. We used the annotation tool INCEpTION35 to manually anno-

tate the mentions for diagnostic, disorder, dosage, intake,

medication, and procedure entity classes (see Supplementary Mate-

rial Section A.2 for details of the annotation process). These entity

classes were chosen to capture detailed information about patients’

examination, health condition, and treatment. The majority of the

discharge letters were annotated by only 1 annotator; however,

20% were annotated by a second expert to determine the quality of

manual annotation by calculating the inter-annotator agreement

score Krippendorff’s alpha. On average, we achieved a score of

0.76 6 0.11, indicating a relatively high agreement between the 2

annotators.

Published transformer models
We focused our experiments on the 3 transformer-based model

architectures BERT, ELECTRA, and RoBERTa.

BERT19 is a bidirectional transformer-based encoder model,

which is pre-trained on large amounts of unlabeled data using MLM

and next sentence prediction (NSP) jointly as training objectives.

During MLM, some input tokens are randomly masked and the

objective is to predict the original tokens based only on their con-
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text. The NSP task is to determine if 2 sentences are consecutive or

not.

RoBERTa20 is an optimized version of BERT. It is built on the

same architecture as BERT but abandons the NSP objective and

only uses masked-language modeling for pre-training. Unlike BERT,

however, the data are not masked statically during preprocessing

but dynamically during each epoch. In addition, some hyperpara-

meters such as the batch size and the tokenizer have been changed.

ELECTRA21 uses the same architecture as BERT but differs in

its pre-training procedure. While BERT aims for MLM and NSP,

Fine-TuningAnnotation of ChaDL Pre-Training

Wikipedia articles

BioELECTRA 
(small/base)

BioGottBERT

ELECTRA
pre-training

GottBERT 
domain-adaption

Compilation of a 
German biomedical 

corpus

50 discharge letters 
(Charité Berlin)

Annotated with 
INCEpTION

BioELECTRA
BioGottBERT
ClinicalBERT

DBMDZ ELECTRA
germanBERT

GBERT
GELECTRA
GottBERT

mBERT
SBERT

Models

Performance benchmark:
Fine-Tuning of published and newly 
trained models on Named-Entity 
Recognition (NER) and Document 

BRONCO (NER)
CLEF eHealth 2019 (DC)

ChaDL (NER)
GGPONC (NER)

JSynCC (DC)

Corpora

Labels Diagnostic
Disorder
Dosage
Intake
Procedure
Medication

Figure 1. Study overview. First, a set of 50 discharge letters was annotated with medical entities. Second, biomedical transformer models were pre-trained on a

newly assembled biomedical corpus by either training it from scratch or through domain adaption of an existing model. Third, the pre-trained models were com-

pared to 8 published models on 5 fine-tuning tasks.

Table 1. The overview of the datasets provides details about the number of documents, sentences, and tokens as well as the number of

instances for each class

BRONCO150 ChaDL GGPONC JSynCC (version B) CLEF

Textual elements

Documents/segments 150 50 (225a) 4153 494 8792

Sentences 8976 2527 29 528 20 971 200 989

Tokens 70 572 31 920 664 029 275 700 3 332 420

Entities

Anatomical structure – – 3825 – –

Chemical drugs – – 8335 – –

Devices – – 1519 – –

Diagnostics – 349 – – –

Diagnosis 3473 – – – –

Disorder – 1901 18 721 – –

Dosage – 301 – – –

Intake – 315 – – –

Living beings – – 10 363 – –

Medication 1233 579 – – –

Physiology – – 4848 – –

Procedures – 515 23 741 – –

Treatment 2320 – – – –

TNM – – 1081 – –

Document classes

Accident surgery – – – 266 –

Emergency medicine – – – 107 –

Orthopedics – – – 282 –

Traumatology – – – 50 –

Note: Classes that are not present in one of the datasets are denoted with “–”. For the CLEF eHealth 2019 dataset, we only report the number of documents,

sentences and tokens, as more than 200 possible labels exist.
aNumber of sections which were extracted from the discharge letters.
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ELECTRA uses a method called replaced token detection (RTD).

Two separate models are used for this purpose: a generator and a

discriminator. The generator is trained by MLM, and its output is

then used as input for the discriminator. The discriminator has to

predict whether a token has been replaced or whether it is the origi-

nal input. After pre-training, only the discriminator is used.

Table 2 lists the models we used in this study and provides infor-

mation on the data used for pre-training. All German language mod-

els were trained on general language corpora consisting of

Wikipedia articles, books, news articles, or vast amounts of crawled

textual data.

Training and assessment of language models for the

German clinical domain
Pre-training

We followed 2 strategies to pre-train transformer models specific to

the German biomedical domain. First, we used an existing

RoBERTa-based model, named GottBERT, for domain adaption,

and second, we trained 2 newly initialized ELECTRA-based models

from scratch.

For the domain-adapted GottBERT model, we loaded the pre-

trained model and trained it on our biomedical corpus with static

masked-language modeling and linear learning rate scheduling. A

detailed list of used hyperparameters can be found in Supplementary

Table B.1. We denote this model as BioGottBERT.

For the ELECTRA models, we used our biomedical corpus to

generate a new vocabulary for the WordPiece tokenizer.43 Then, we

initialized 2 new ELECTRA models in both the small and base con-

figurations and subsequently trained both with the hyperparameters

specified in Supplementary Table B.1. We refer to these 2 models as

BioELECTRA-small and BioELECTRA-base, respectively.

Performance assessment

We assessed the performance of the 8 published and the 3 pre-

trained transformer-based models on 2 types of downstream tasks,

document classification and NER.

The JSynCC and the CLEF eHealth datasets (see Table 1) were

used to evaluate the models for multi-label document classification

tasks. For the transformer-based models, the documents were split

into one or more sequences of 512 tokens. If multiple instances

existed per document, max-pooling was applied to the logits before

loss calculation and final classification.

For the NER task, BRONCO150 (we used the same 5 outer folds

as the authors to evaluate the model performances), GGPONC, and

ChaDL (see Table 1) were used for the performance assessment. The

data were prepared according to the BILOU tagging scheme, and the

performance was assessed at the entity level.

In all fine-tuning studies, we fine-tuned the transformer-based

models and compared their performances to a baseline. In the case

of the CLEF dataset, we compare performance to the best result the

challenge organizers provided. In all other experiments, we trained a

bidirectional LSTM network with a Conditional Random Field (Bi-

LSTM-CRF). When we trained the models for the CLEF dataset, we

used the train, validation, and test splits from the original tasks. In

all other cases, we performed 5-fold nested cross-validation to assess

the performance of the models. We used the Optuna hyperpara-

meter optimization framework44 to optimize hyperparameters such

as the batch size, learning rate, and weight decay (see Supplementary

Table B.2 for details) by maximizing the micro F1-score. We trained

for a maximum of 50 (BRONCO150, ChaDL, GGPONC, JSynCC)

or 80 (CLEF eHealth 2019) epochs but used an early stopping pro-

cedure to stop after 15 epochs if performance did not improve

(DF1 < 0:01); the best model was used for evaluation in the end.

Implementation
The tokenizers and transformers libraries developed by the Hugging-

Face team were used for pre-training and fine-tuning experiments of

the transformer-based models. For the training of the Bi-LSTM-CRF

model, we used the flair framework with GloVe and flair embed-

dings.45–47 For pre-training, we utilized up to 4 NVIDIA V100 or

A100 GPUs. In all other cases, single NVIDIA V100 or A100 GPUs

were used.

We used several libraries to calculate metrics: The kAlpha

(https://github.com/emerging-welfare/kAlpha, accessed on Novem-

ber 24, 2021) implementation was used to calculate Krippendorff’s

Alpha for the inter-annotator agreement. The metrics for the multi-

label document classification tasks were calculated with the classifi-

cation_report function from scikit-learn (version 0.23.2),48 and the

metrics for the NER tasks were calculated with classification_report

function from the seqeval library (version 1.2.2).49

RESULTS

In this study, we show the assessment results of general-purpose and

domain-specific language models for the German clinical domain.

We begin by presenting the pre-training results of the 3 models.

Then, we highlight the fine-tuning performance of these 3 newly

pre-trained and 8 already-published models on the 5 fine-tuning

tasks.

Pre-training performance
Figure 2 shows the pre-training metrics of the 3 new models. In the

case of BioGottBERT, where we followed a transfer-learning

approach and initialized it with the GottBERT parameters, the

MLM accuracy increased from 75 to 82.0%. Unfortunately, a direct

comparison of the BioGottBERT metrics and those of the

BioELECTRA-small and BioELECTRA-base models is problematic

since different training objectives were followed. For these 2 models,

there are 2 measures, namely MLM and RTD accuracy. In both

cases, the generators’ MLM accuracy starts at 0% and moves, after

an initial sharp increase, to 54%, and 70% for the small and base

models. On the other hand, the discriminators’ RTD accuracy starts

at close to 100% and deteriorates to 39% for the base model,

whereas in the small model, it ends at 99%. A subsequent examina-

tion of the training’s environmental impact revealed that the training

of BioELECTRA-small and BioGottBERT required comparable

amounts of energy; however, BioELECTRA-base required approxi-

mately 4 times more (see Supplementary Appendix B.2).

Fine-tuning performance
Table 3 depicts the results of the document classification tasks on

the CLEF eHealth 2019 and JSynCC (see Supplementary Table C.4

for the results of subset version A) datasets. For JSynCC, all models,

including the Bi-LSTM-CRF model, achieved very high F1-scores

ranging from 89.0 to 92.7%. The greatest F1-scores were obtained

by GBERT, mBERT, and GermanBERT, with no significant differ-

ence between them. When applied to the CLEF eHealth dataset, the

differences between the results increased substantially. Our fine-

tuned variant was slightly inferior to S€anger et al’s mBERT model

(DF1 ¼ �1:2); however, GottBERT and GBERT reached a compara-
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ble result. In both cases, our pre-trained BioELECTRA and BioGott-

BERT models were outperformed by the top-performing GBERT

model.

The results of the 3 NER tasks, in which various medical entities

are detected in BRONCO150, ChaDL, and GGPONC corpora, are

summarized in Table 4. In contrast to the GGPONC dataset, the

model performances vary considerably on BRONCO150 and

ChaDL datasets.

For the BRONCO150 dataset, F1-scores between 46.7 and

83.2% were observed. The BioELECTRA-small, BioELECTRA-

base, and mBERT models achieved the lowest performances with a

gap of 36.5, 19.1, and 20.7% to the best model, respectively. All

other models showed more similar performances and achieved F1-

scores of 73.9–83.2%. Compared to the models Kittner et al. used,

our Bi-LSTM-CRF model had a lower performance; however, the

top-performing BioGottBERT model outperformed their LSTM-WE

model (the authors used a bidirectional Long Short-Term Memory

(LSTM) network combined with FastText word embeddings for this

NER task) for all 3 entity classes: Diagnosis, Treatment, and Medi-

cation (see Supplementary Table C.1).

For the ChaDL dataset, we observed a diverse performance. The

2 BioELECTRA models performed poorly as seen on BRONCO150

dataset (61.1 and 55.3% for the small and base model, respectively).

Similarly, the ClinicalBERT model, which was fine-tuned using a

translated version of the ChaDL corpus (see Supplementary Mate-

rial Section A.2.3 for details of the translation process), reached a

low score of 44.4%. The F1-scores of the remaining models ranged

between 61.4 and 80.4%, and as before, BioGottBERT scored best.

The top-performing models, BioGottBERT, GottBERT, and

GELECTRA, outperformed our Bi-LSTM-CRF model.

The results obtained on the GGPONC dataset are for most mod-

els in a more similar range (79.4–83.9% without BioELECTRA-

Table 2. Overview of the published models

Model name Data Corpus size (GB)

ClinicalBERT24 MIMIC-III36 –

DBMDZ ELECTRA model37 Europeana newspapersa 51.0

GermanBERTb German Wikipedia, OpenLegalData,38 and news articles 12.0

GBERT39 German Wikipedia, OpenLegalData, OPUS,40 and OSCAR41 163.4

GELECTRA39 ” ”

GottBERT (RoBERTa)42 OSCAR41 145.0

multilingual BERT (mBERT)c Wikipedia of 100þ languages –

Sentence-BERT (SBERT)d Paraphrase dataset of 50þ languages –

Notes: Names and information about the data used for pre-training for each of the 8 publicly available models. Unabridged dataset names: Open Super-large

Crawled Aggregated coRpus (OSCAR), Open Parallel corpUS (OPUS), and Medical Information Mart for Intensive Care (MIMIC-III).

“–” indicates missing information about the dataset size.
ahttp://www.europeana-newspapers.eu/. Accessed March 2, 2022.
bhttps://deepset.ai/german-bert. Accessed March 2, 2022.
chttps://github.com/google-research/bert. Accessed March 2, 2022.
dhttps://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2. Accessed March 2, 2022.

Figure 2. Pre-training accuracy. Overview of the pre-training performances for the BioELECTRA-base, BioELECTRA-small, and BioGottBERT models. The masked-

language modeling (MLM) accuracy was calculated for all model types, while the replaced-token detection (RTD) could only be calculated for the BioELECTRA-

base and BioELECTRA-small models.
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base). All models except the BioELECTRA-base and mBERT out-

performed the Bi-LSTM-CRF model. BioELECTRA-base achieved

the lowest overall value (F1 of 65.1%); however, BioELECTRA-

small achieved an F1-score of 82.3%, which came relatively close to

the best value of 83.9%, achieved by GottBERT. More detailed

information on the recognition of individual entities and reference

metrics for all 3 datasets can be found in Supplementary Tables

C.1–C.3, respectively.

Given all results, we conclude that not all transformer-based

models are equally suited for biomedical and clinical applications.

For the document classification tasks, we identified GBERT as the

best-performing model. Our pre-trained BioGottBERT, the pub-

lished GottBERT, and GELECTRA models were the best perform-

ing models for the NER tasks. In contrast to the BioGottBERT

model, the newly trained BioELECTRA models proved ineffective.

Except for the JSynCC dataset, the base model performed signifi-

Table 3. Model performances of the document classification task on the CLEF eHealth 2019 and JSynCC datasets

CLEF JSynCC (version B)

Model F1 Pre. Rec. F1 Pre. Rec.

BioELECTRA-base 74.3 78.2 70.9 91.2 (1.6) 87.4 (4.5) 95.6 (2.1)

BioELECTRA-small 76.9 79.7 74.2 90.3 (1.7) 84.2 (3.6) 97.5 (1.7)

BioGottBERT 77.2 81.0 73.7 89.0 (1.9) 84.3 (3.4) 94.7 (6.2)

ClinicalBERT – – – – – –

DBMDZ ELECTRA 76.4 79.6 73.6 91.4 (2.0) 86.8 (3.2) 96.7 (2.6)

GBERT 80.3 84.6 76.4 92.7 (2.3) 90.4 (4.4) 95.4 (3.7)

GELECTRA 74.4 75.7 73.2 91.4 (1.3) 86.5 (2.2) 96.9 (1.9)

GottBERT 79.5 81.7 77.4 89.5 (2.6) 88.2 (2.5) 91.3 (6.8)

GermanBERT 76.7 79.2 74.3 91.8 (2.0) 89.9 (4.2) 94.0 (3.5)

mBERT 78.8 83.9 74.2 91.9 (1.7) 88.2 (3.9) 96.2 (2.6)

sBERT 73.8 77.1 70.8 90.3 (2.1) 86.2 (3.3) 95.1 (4.7)

Bi-LSTM-CRF – – – 91.3 (3.6) 89.9 (3.8) 93.5 (9.3)

S€anger et al. (mBERT) 80 83 77 – – –

Notes: This table shows the micro-averaged scores for each model. Since nested cross-validation was performed for JSynCC, the mean and standard deviation

are reported. The best-performing models are highlighted in bold.

Table 4. Overview on scores achieved for NER task on 3 datasets

BRONCO150 ChaDL GGPONC

Model F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec.

BioELEC-

TRA-base

64.1 (6.0) 55.6 (9.2) 76.8 (2.5) 55.3 (10.5) 47.1 (13.8) 70.4 (3.6) 65.1 (7.3) 54.8 (10.4) 81.6 (0.4)

BioELEC-

TRA-

small

46.7 (10.3) 34.5 (10.4) 74.8 (8.1) 61.1 (6.5) 52.9 (10.4) 74.2 (3.2) 82.3 (0.4) 81.9 (0.7) 82.6 (0.7)

BioGott-

BERT

83.2 (1.6) 83.5 (1.2) 82.9 (2.1) 80.4 (1.1) 81.3 (1.5) 79.6 (2.2) 83.8 (0.4) 83.7 (1.2) 84.0 (0.9)

Clinical-

BERT

– – – 44.4 (6.0) 42.4 (7.3) 47.4 (6.5) – – –

DBMDZ

ELEC-

TRA

73.9 (4.1) 73.4 (8.9) 75.1 (3.5) 66.2 (3.6) 63.3 (7.2) 70.1 (4.2) 81.6 (1.4) 80.5 (3.2) 82.9 (0.7)

GBERT 76.2 (0.9) 74.5 (3.1) 78.0 (2.0) 68.2 (4.3) 66.4 (7.4) 70.4 (1.9) 81.9 (1.0) 80.9 (2.2) 82.9 (1.2)

GELECTRA 79.9 (2.0) 78.6 (3.5) 81.4 (0.8) 78.5 (2.5) 77.6 (5.0) 79.7 (2.5) 83.0 (0.3) 81.3 (1.3) 84.7 (1.3)

GottBERT 79.3 (3.7) 77.5 (5.4) 81.2 (2.4) 79.8 (2.3) 80.8 (3.7) 79.1 (5.2) 83.9 (0.3) 82.4 (0.9) 85.4 (0.7)

German-

BERT

76.4 (1.2) 75.1 (4.3) 77.9 (2.9) 72.7 (3.8) 71.1 (6.9) 74.8 (3.3) 83.4 (0.3) 83.3 (0.5) 83.4 (0.5)

mBERT 62.5 (6.6) 55.9 (8.9) 71.6 (3.5) 61.4 (5.2) 56.3 (8.3) 68.5 (4.4) 79.4 (1.4) 76.9 (2.1) 82.0 (0.7)

sBERT 80.8 (1.0) 82.3 (1.6) 79.3 (1.5) 73.7 (2.0) 78.5 (2.9) 69.6 (3.8) 83.0 (0.3) 83.8 (1.1) 82.3 (0.7)

Bi-LSTM-

CRF

78.6 (1.8) 78.5 (2.1) 78.8 (3.8) 74.8 (2.0) 76.8 (5.4) 73.2 (2.2) 79.5 (0.4) 80.9 (1.6) 78.2 (1.1)

Borchert

et al.

– – – – – – 67.7a 94.5a 52.8a

Notes: This table shows the micro-averaged scores for each model. Since nested cross-validation was performed, the mean and standard deviation are reported.

The best-performing models are highlighted in bold.
aBorchert et al. evaluated their method on the entire set of manually curated text segments. In contrast, we utilized these data for nested cross-validation. As a

result, the measurements cannot be directly compared and only serve to illustrate performance disparities.
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cantly worse than most other models. The small model performed

well on CLEF, JSynCC, and GGPONC but was inferior for the 2

clinical datasets, BRONCO150 and ChaDL.

DISCUSSION

Clinical notes represent a vital resource for communication between

medical experts. As information hidden in clinical notes has a high

potential to support medical research and clinical applications, the

accurate extraction and structuring of such patient information are

essential. For this purpose, novel systems are needed that are specifi-

cally designed for the clinical domain. This study addressed the

applicability of publicly-available transformer-based language mod-

els for the German clinical language domain. Furthermore, we

developed new biomedical models by pre-training them on a large

biomedical corpus, and we systematically assessed their performan-

ces compared to 8 further GPLMs.

One contribution of this study is the development of 3 new

transformer-based language models which we trained on a newly

compiled corpus of biomedical text. As described in the Results sec-

tion, the domain-adapted BioGottBERT achieved – in agreement

with our expectations – a higher MLM accuracy than the initial

GottBERT model, implying a better understanding of biomedical

language. On the other hand, the pre-training of the 2 BioELECTRA

models displays unexpected behavior. As described previously, the

base model achieved a higher MLM accuracy than the small model.

In contrast, the final RTD accuracy of the base model was much

lower than the small models’, implying that the base model’s genera-

tor predicted masked tokens more accurately, complicating the dis-

criminators’ task to differentiate original and replaced tokens.

Meanwhile, the lower performance of the small models’ generator

made the discriminators’ job easier.

Furthermore, we created ChaDL, a new clinical dataset for

NER. We annotated 50 discharge letters with medical terms and

achieved satisfactory quality according to the calculated inter-

annotator agreement score. In addition, we utilized the

BRONCO150, CLEF eHealth 2019, GGPONC, and JSynCC data-

sets. Although the nature of the datasets varies, it is helpful to use all

of them in order to evaluate a broad range of biological language

understanding. By using clinical and biological datasets, we fol-

lowed the example of the English benchmark Biological Language

Understanding Evaluation (BLUE).50 While the GGPONC, JSynCC,

and CLEF eHealth 2019 datasets are based on clinical guidelines,

fictional text, or NTPs, BRONCO150 and ChaDL are based on dis-

charge letters and, therefore, are more important to assess the per-

formance for clinical applications. While BRONCO150 contains

more discharge letters (150 vs 50), ChaDL benefits from the integ-

rity of the entire documents rather than single, randomly mixed sen-

tences. Therefore, we believe that ChaDL reflects real-world clinical

applications more accurately than the other datasets.

The final contribution is the systematic comparison of all men-

tioned models. The fine-tuning results for the 5 datasets indicated

positive effects of domain adaption. BioGottBERT outperformed

GottBERT on BRONCO150 and ChaDL while being only margin-

ally inferior on the GGPONC dataset. However, the pre-training

from scratch showed no positive effects for the 2 BioELECTRA

models, which were strongly outperformed by all other models on

the 2 clinical datasets, BRONCO150 and ChaDL. The domain-

adaption’s lower environmental impact (see Supplementary Appen-

dix B.2) provides further support for this strategy.

The overall results of this study align well with previous studies.

On the one hand, it has been shown by Bressem et al.31 and Richter-

Pechanski et al.32 that training from scratch led, so far, to lower per-

formances compared to GPLMs and is, therefore, not advantageous.

On the other hand, it has been shown that domain-adapted models

can have improved performance compared to the initial

model.22,24,31 For instance, Rad-BERT achieved on average a 2%

higher AUC than the initial GermanBERT model on the classifica-

tion of chest radiograph reports, and in the English domain using

BioBERT instead of BERT on the NCBI disease dataset increased

the F1 score by 1.1%.

We believe that the low performance of newly trained models is

mainly due to the relatively small size of available pre-training cor-

pora. Compared to GermanBERT, we only had about 6.7% of the

data used for pre-training, and in the case of GottBERT, it was only

0.5%. Training models from scratch proved unsuccessful with such

a limited amount of data. Nevertheless, we see a need to compile a

larger German biomedical corpus in the near future so that the limits

of German biomedical NLP models can be pushed further using

domain-adaption strategies.

Aside from the encouraging results for the domain-adaption

strategy, our study also confirms that GPLMs perform surprisingly

well on clinical NLP tasks. In particular, GBERT achieved excellent

results for the document classification tasks, while GottBERT and

GELECTRA excelled for the NER tasks. Although domain-specific

models will most likely outperform unspecific language models

when larger corpora of biomedical texts are available, these models

seem to be well suited as a first approach for conducting research

when domain-specific models are unavailable. Furthermore, we

found that the best transformer-based models outperformed Bi-

LSTM-CRF models when applied to BRONCO150, ChaDL, and

GGPONC, which demonstrates the potential of these models for the

development of biomedical NLP applications.

To completely comprehend a model’s capability for clinical

applications, we suggest conducting additional research to evaluate

German language models on relation extraction, question answer-

ing, and named-entity normalization tasks. In this regard, it would

be ideal for further gathering a diverse set of publicly available data-

sets for a German analog of the BLUE,50 allowing direct comparison

of future models.

Limitations
While conducting our work, we faced 2 main limitations: First, there

is a small amount of pre-training data we acquired. Access to Ger-

man clinical documents for scientists is often severely restricted if

the studies are not carried out at a hospital. Similarly, biomedical

data are not as abundant as in the English language. Focusing on

drug leaflets, Wikipedia, and scientific abstracts, we only retrieved

0.8 GBs of textual data, which hindered the pre-training of a

transformer-based model for the biomedical domains.

Second, German biomedical and clinical datasets are rare, and

there is no standardized benchmark for performance assessment. As

already reported in prior studies,51 there are large differences

between English and non-English resources. While no datasets were

available a couple of years ago, we now have access to 4 public data-

sets, BRONCO150, the CLEF eHealth dataset, GGPONC, and

JSynCC. In this study, we used them alongside our dataset ChaDL

for the evaluation. While all of them are suited for a performance

comparison of several models, some are still subject to restrictions.

JSynCC suffers from class imbalance, BRONCO150 contains some
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very short training samples due to the fragmentation into shuffled

sentences, and ChaDL consists of relatively few clinical documents.

CONCLUSION

In this study, we investigated the performance of both general-

purpose and newly trained domain-specific transformer-based mod-

els for the German-language biomedical domain. On the one hand,

our findings indicate that training new models from scratch with a

small amount of biomedical data are currently ineffective and results

in models that are inferior to existing models. On the other hand,

we observed that previously published general-purpose models per-

formed remarkably well on the biomedical named-entity recognition

and document classification tasks. We were able to slightly enhance

performances by domain-adapting an existing model, showing that

the domain-adaptation strategy has potential. If larger corpora for

the biomedical domain were to become accessible in the future, the

boundaries of German biomedical NLP models may be pushed even

further by domain adaptation.

To support future research, we have made our pre-trained Bio-

GottBERT model available on https://huggingface.co/SCAI-BIO/

bio-gottbert-base and published our code at https://github.com/

SCAI-BIO/transformers-for-german-biomedical-nlp.
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