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ABSTRACT
The integration of diagnosis and therapy is an effective way to improve therapeutic effects for cancer
patients, which has acquired widely attentions from researchers. Herein, a multifunctional drug-loaded
nanosystem (F/A-PLGA@DOX/SPIO) has been designed and synthesized to reduce the side effects of
traditional chemotherapy drugs and realize simultaneous tumor diagnosis and treatment. The surface
modification of folic acid (FA) and activatable cell-penetrating peptide (ACPP) endows the nanosystem
with excellent cancer targeting capabilities, thus reducing toxicity to normal organs. Besides, the F/A-
PLGA@DOX/SPIO nanosystem can serve as an excellent magnetic resonance imaging (MRI) T2-negative
contrast agent. More importantly, according to in vitro experiments, the F/A-PLGA@DOX/SPIO nanosys-
tem can promote the overproduction of reactive oxygen species (ROS) within A549 lung cancer cells,
inducing cell apoptosis, greatly enhancing the antineoplastic effect. Furthermore, with the help of MRI
technology, the targeting imaging of the F/A-PLGA@DOX/SPIO nanosystem within tumors and the
dynamic monitoring of medicine efficacy can be realized. Therefore, this study provided a multifunc-
tional drug-loaded F/A-PLGA@DOX/SPIO targeted nanosystem for magnetic resonance molecular imag-
ing-guided theranostics, which has excellent potential for the application in tumor diagnosis
and therapy.
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1. Introduction

Currently, chemotherapy remains the main treatment
method for patients with advanced tumors who are unable
to receive operative treatments (Rossi et al., 2014).
Unfortunately, traditional chemotherapy drugs tend to trig-
ger tumor multidrug resistance (MDR) and then lead to
chemotherapy failure (Fang et al., 2012). In addition, chemo-
therapy drugs, which are nonselective, are usually toxic and
have negative side effects on normal organs, restricting clin-
ical applications to some extent. Currently, several
approaches including physical targeting, proactive targeting,
and reactive targeting have been applied to solve chemo-
therapy drugs in clinical problems. Among them, proactive
target is based on the interaction of special receptors which
expressed in cancer cells and targeting peptides, such as
folic acid (FA), arginine-glycine-aspartic acid (RGD), and bio-
tin, which has attracted more and more attention.

Besides, the emergence and development of nanotechnol-
ogy provided novel vitality for the treatment of cancer in
recent years, due to its advantages of easy targeting modifi-
cation, long circulation, and retention time and wide

applications in the field of targeted therapy, molecular diag-
nosis, and tumor imaging. Meanwhile, a new multifunctional
drug-loaded targeted nanosystem, which integrates drugs
and contrast agents into nanoparticles (NPs), can not only
serve as an excellent imaging cooperatively under lower
drug dosages, but also show strong anticancer activities.
Thus, it reduces toxicity to normal organs and could be very
promising. This will, with the imaging probe of the nanoplat-
form, realize efficient and targeted drug transfer, reduce
drug side effects, and overcome tumor MDR (Chen et al.,
2011; Nazir et al., 2014), enabling traditional chemotherapy
drugs to have new possibilities.

Based on traditional imaging, molecular imaging (MI)
employs specific molecular probes to realize the optimal dos-
age regimen and personalized treatment monitoring for
tumors (Veeravagu et al., 2008). A molecular probe is an
imaging agent (Rajendran & Mankoff, 2007) that can detect
and describe the biological process of an in vivo system and
present molecule information via medical imaging
equipment. At present, superparamagnetic iron oxide (SPIO)
is frequently used as a magnetic resonance imaging (MRI)
T2-negative contrast agent. With excellent superparamagnetic
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performance, SPIO is mainly employed to shorten T2 relax-
ation time and weaken the T2-weighted signal. This type of
contrast agent has a small particle size, strong penetrability,
and a relaxation rate that is 7–10 times greater than that of
Gd3þ under equal conditions. According to relevant experi-
mental results, cells marked by SPIO have no short-term or
long-term side effects, which is a safe and efficient molecule
probe with high specificity, now widely used in the field of
MR molecule imaging research (Sherry & Woods, 2008; Kim
et al., 2010; Jafari et al., 2015). The SPIO has been approved
by the Pure Food and Drug Administration (FDA) to be used
in clinical practice (McBain et al., 2008) to dynamically moni-
tor the image diagnosis of tumors in vivo and the targeted
tumor treatment field (Chu et al., 2013; Majd et al., 2013) by
acting as a carrier for chemotherapy drugs. Therefore, with
the realization of longer blood half-life, SPIO, as a contrast
agent, can be used for the imaging of tumor cells and mol-
ecule levels, improving the sensitivity of MRI techniques.

Currently, there have been research and reports on multi-
functional drug-loaded nanosystem designed for tumor

treatment and imaging. For example, Yang et al. (2011) have
developed SPIO NPs that allow the realization of PET/MRI
tumor dual-mode tomography. The multifunctional NPs
developed by Wang et al. (2013) were carried by mesopo-
rous silica and modified by FA on the surface, which showed
a higher drug absorption rate by the tumor. FA-conjugated
SPIO NPs developed by Li et al. (2016a), which served as an
MRI contrast in tumor-targeting MR imaging. Maeng et al.
(2010) have reported a multifunctional drug delivery nano-
system (YCC-DOX) composed of poly(ethylene oxide)-trimel-
litic anhydride chloride-folate (PEO-TMA-FA), DOX, SPIO, and
FA, which efficiently inhibited tumor growth without suffer-
ing any toxic effects and monitoring the progress of the
cancer using MRI. However, there are few research reports
on in vivo drug tractography via MRI and the dynamic evalu-
ation of the drug-loaded nanosystem treatment effect.

Therefore, in this study, we focus on integrating tumor
diagnosis and treatment using PLGA (poly(lactic-co-glycolic
acid)) as a carrier, loading doxorubicin (DOX) and SPIO, and
using FA and activatable cell-penetrating peptide (ACPP) as a

Scheme 1. Schematic illustration of the rational design of F/A-PLGA@DOX/SPIO nanoparticles for tumor magnetic resonance imaging and curative effect detection
in vivo.
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dual probe to modify and prepare the multifunctional drug-
loaded nanosystem, FA/ACPP-CS-PLGA@DOX/SPIO (F/A-
PLGA@DOX/SPIO). The design and synthesis protocol of the
agent are shown in Scheme 1. A series of bioactivity research
was conducted on cell and protein levels by synthesizing a
F/A-PLGA@DOX/SPIO nanosystem to discuss the effect and
functioning mechanism of F/A-PLGA@DOX/SPIO on antineo-
plastic activity. Then, A549 xenografts in BALB/c nude mouse
model were established to comprehensively evaluate the in
vivo antineoplastic effect and safety of the F/A-PLGA@DOX/
SPIO nanosystem. At the same time, MRI technology was
used to trace and dynamically monitor the distribution of
the F/A-PLGA@DOX/SPIO nanosystem within the tumor cells,
realize targeted imaging and in vivo dynamic monitoring of
the efficacy of tumor therapy, and study the antineoplastic
functioning mechanism of the F/A-PLGA@DOX/SPIO nanosys-
tem to provide a new theoretical foundation and iconog-
raphy support for the integration of tumor diagnosis
and treatment.

2. Materials and methods

2.1. Synthesis of F/A-PLGA@DOX/SPIO NPs

2.1.1. Activation of FA and ACPP
We dissolved 16mg of FA in 0.8mL (0.1mol/L) of NaOH,
added EDC (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide
hydrochloride) (250lL, 0.1mol/L) and NHS (N-hydroxysuccini-
mide) (250 lL, 0.1mol/L) (EDC:NHS = 1:1) to the solution to
react away from light for 2 h.

We dissolved 25mg of ACPP in 1mL pure water, added
EDC (250lL, 0.1mol/L) and NHS (250lL, 0.1mol/L)
(EDC:NHS¼ 1:1) to the solution to react away from light
for 4 h.

2.1.2. Synthesis of CS-PLGA@DOX/SPIO
We weighed 5mg of DOX, added a small amount of pure
water, and fully mixed them with 1mL (4mg/mL) of SPIO
(XFNANO Materials Tech, Nanjing, China.). We added 1mL of
PLGA (5mg/mL) and 2mL of acetone into the mixture and
blended it overnight. After that, 1 mL of CS (6 mg/mL) was
added to the above mixture and stirred for 6–8 hours.

2.1.3. Synthesis of F/A-PLGA@DOX/SPIO nanosystem
Activated FA and ACPP were added to the CS-PLGA@DOX/
SPIO, stirring and react away from light for 24 h at room
temperature to form the F/A-PLGA@DOX/SPIO nanosystem.
After 24 h of dialysis to eliminate excess EDC and NHS, the
samples were collected and stored at 4 �C in reserve.

2.2. Characterization

A high-resolution transmission electron microscope (HR-TEM,
Hitachi H-7650, 80 kV) was used to characterize the appear-
ance of F/A-PLGA@DOX/SPIO, and a Nano-ZS particle ana-
lyzer (Malvern Instruments Limited, Malvern, UK) was used to
characterize stability, particle distribution, and zeta potential.

We used Fourier transform infrared spectroscopy (FT-IR,
Equinox 55, Bruker, Billerica, MA, USA) to analyze and detect
the coupled mode of the characteristic functional group after
targeted modification of F/A-PLGA@DOX/SPIO. 1H-NMR spec-
trum was used to analyze the chemical structure of F/A-
PLGA@DOX/SPIO.

2.3. F/A-PLGA@DOX/SPIO in vitro T2 relaxation
performance

A GE 1.5 T clinical MRI system (Signa HDxt, Milwaukee, WI)
was used to detect the MR radiography performance of F/A-
PLGA@DOX/SPIO. We combined SPIO and F/A-PLGA@DOX/
SPIO, commercialized contrast agents, with a nutrient solu-
tion to form solutions of different concentrations (0, 0.014,
0.028, 0.055, 0.11, and 0.22mol), added the solutions in
sequence into a 96-pore plate, and put them in a water tank.
We selected an eight-channel wrist coil to conduct the T2-
weighted imaging (T2WI). The horizontal relaxation rate (r2)
was obtained by plotting the relation curve of 1/T2 value
and Fe concentration.

2.4. Hemolysis assay

The SPIO (5mg/L), DOX (5mg/L), 0.5mL of F/A-PLGA@DOX/
SPIO (5mg/L), and negative control (0.5mL of normal saline)
were each incubated with 0.5mL of the red blood cell sus-
pension for 1, 2, and 4 h. The hemolysis of the red blood
cells exposed to SPIO, DOX, and F/A-PLGA@DOX/SPIO NPs
was investigated by spectrophotometry (Nogueira et al.,
2011). We used a fluorescent microscope (EVOS FL Auto, Life
Technologies, Walsham, MA, USA) to observe the appearance
of red blood cells after they were treated for 1, 2, and 4 h. In
addition, we further detected the stability of F/A-
PLGA@DOX/SPIO nanosystem in plasma using a Nano-ZS par-
ticle analyzer (Malvern Instruments Limited, Malvern, UK) (see
the detailed experimental methods in the literature [Ma
et al., 2018]).

2.5. Cell culture and in vitro cytotoxicity test

The cell lines involved in the experiments of this thesis were
purchased from ACCT Company (ATCC, Manassas, VA) in
USA; the human non-small cell lung cancer (NSCLC) cell is an
A549 cell, and the normal liver cell is an L02 cell. All cells
adopted in the experiments were cultivated under steady
conditions (37 �C, 5%CO2) in high-sugar culture media with
fetal bovine serum (10%) and streptomycin–penicillin (1%).
When the cells reached steady growth status, those in loga-
rithmic phase were taken for in vitro activity tests. The cell
viability (2� 104 cells/mL) after treatment with different con-
centrations of DOX, FA-PLGA@DOX/SPIO, ACPP-PLGA@DOX/
SPIO, and F/A-PLGA@DOX/SPIO for 72 h was determined
using an MTT assay. To examine the relative cytotoxicity and
the cell growth inhibitory effects of F/A-PLGA@DOX/SPIO
NPs on different cells, we performed an MTT assay as previ-
ously described (Chen & Wong, 2009b). Further, we eval-
uated the safety of the nanosystem by the Safety Index (SI).
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The SI was calculated and defined as the toxicity IC50/tumor
IC50, where toxicity IC50 is defined as the concentration of
nanosystem that kills 50% of the normal cell line and tumor
IC50 is the concentration that kills 50% of cancer cell.

2.6. Cellular uptake and intracellular trafficking of NPs

A549 and L02 cells were inoculated at the density of
10� 104 cells/mL into a 96-pore plate to be cultivated over-
night. 0.5mg/mL of DOX and F/A-PLGA@DOX/SPIO were
added to the incubator for different durations; culture media
were collected at 0, 0.5, 1, 2, 4, and 6 h, and a mixture of
100lL HCl�DMSO (1:4) was added to dissolve cells. Then, F/
A-PLGA@DOX/SPIO and DOX solutions in the same block
were diluted to equal ratios according to their concentra-
tions. The light absorption of each pore was detected via
fluorescence microplate (Spectra Max M5, BioTek, Winooski,
VT). The amount of DOX and F/A-PLGA@DOX/SPIO absorbed
by the cells was calculated at different times through the
standard curve.

A Lyso-tracker was employed to track the position of F/A-
PLGA@DOX/SPIO in the A549 cells. First, A549 cells were
cultivated at a density of 5� 104 cells/mL in the 2-cm-thick
culture medium. After 24 h, F/A-PLGA@DOX/SPIO of a certain
concentration was added, incubated for 8 h, and disposed at
0, 1, 2, 4, 6, and 8 h. Later, the green lysosomal marker, Lyso-
tracker (1lg/ml), and nucleus blue marker, Hoechst 33342
(0.1 lg/mL), were used to incubate cells for 1.5 h and 30min,
respectively. Finally, we collected fluorescence cell images
using a fluorescence microscope (EVOS FL Auto, Life
Technologies, 20�,Walsham, MA, USA).

2.7. Drug-releasing evaluation of NPs

We measured three 0.5-mL portions of F/A-PLGA@DOX/SPIO
in test tubes and added PBS (pH¼ 7.4), PBS (pH¼ 5.3), and
A549 cell lysis buffer into the tubes. We incubated them at
37 �C away from light, collected 100 lL suspensions at 0, 1,
3, 6, 12, 24, 36, 48, 60, and 72 h, centrifuged them, and took
the supinate. After the experiment was finished, we used a
multifunctional fluorescent enzyme meter (Cytation 5,
BioTek) to detect the absorption of the mixture and calcu-
lated DOX release according to the standard curve equation.
Then, we drew the release curve of the drug-
loaded nanosystem.

2.8. In vitro magnetic resonance imaging of NPs

Referring to the commercialized SPIO, we combined the
serum-free media with F/A-PLGA@DOX/SPIO sample concen-
trations (calculated by Fe content) of 0, 3.125, 6.25, 12.5, and
25lg/mL. The serum-free media were incubated with A549
cells for 2 h. We put the solution under a GE 1.5 T clinical MR
system (Signa HDxt, Milwaukee, WI) equipped with a human
eight-channel wrist coil to conduct T2WI scanning. DOX and
F/A-PLGA@DOX/SPIO of the same concentration (0.5mg/mL)
were incubated with the A549 cells and underwent T2WI
scanning for 0, 1, 2, and 4 h.

2.9. Flow cytometric analysis of cell cycle distribution

We analyzed the changes of A549 cell cycle and apoptosis
ratio caused by F/A-PLGA@DOX/SPIO. We used Multicycle
(Phoenix Flow Systems, San Diego, CA) software to analyze
cell cycle distribution and hypodiploid peak to quantitate
apoptosis (see the detailed experimental methods in the lit-
erature [Fan et al., 2013]).

2.10. Determination of intracellular reactive oxygen
species (ROS) generation

We adopted conventional approaches for the passage of
A549 cells, and after 24 h of anchorage growth of A549 cells
in culture media, we added 10lL of DHE probe (drug con-
centration was 10lM after dilution) and F/A-PLGA@DOX/
SPIO and DOX at preset concentrations. The fluorescence
absorption value of each pore was measured regularly over
2 h and, in the meantime, a fluorescence microscope (EVOS
FL Auto, Life Technologies, Walsham, MA, USA) was used to
monitor the fluorescence signal intensity of the cells. After
the ratio of absorption between the two groups was calcu-
lated, we analyzed the ROS change within the cells under
the impact of F/A-PLGA@DOX/SPIO and DOX (see the
detailed experimental methods in the literature [Fan
et al., 2013]).

2.11. Western blot analysis

The effects of related proteins associated with different sig-
naling pathways on the expression levels were determined
by Western blot analysis (Chen & Wong, 2009a).

2.12. Tumor model

Male BALB/c nude mice (3–4weeks old, weighing 13–15 g)
were purchased from Beijing HFK Bioscience. All animal
experiments were authorized by the Ethical Committee of
Jinan University. We used precooled PBS to dilute and adjust
A549 cell density to 3� 107 cells/mL and injected 0.2mL
cells per mouse into the right-rear leg of the BALB/c nude
mice (4–5weeks old). One week later, tumors were formed
with a transverse diameter of 5–8mm. We observed the
tumor-forming process daily and recorded the body weight
of the nude mice and the size of tumors.

2.13. In vivo MR R2� imaging

When the diameter of the A549 subcutaneously implanted
tumor was approximately 8–10mm, we selected 12 tumor-
bearing mice and dividing them into three groups with four
in each group. Each group experienced MR base scanning
before drug delivery. A group was injected with either SPIO
(5mg/kg), F/A-PLGA@SPIO (5mg/kg), or F/A-PLGA@DOX/SPIO
(5mg/kg), all by means of caudal vein drug delivery. We
used a GE 1.5 T clinical MR system (Signa HDxt, Milwaukee,
WI) and animal-specific mouse coils to conduct T2WI and R2�
scanning over three consecutive days on the subcutaneously
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implanted tumors of the 12 nude mice. Checking points
were the base before the drug and 1, 4, 12, 24, 48, and 72 h
after the drug.

2.14. In vivo assessment of therapy effect

When the volume of the A549 subcutaneously implanted
tumor was approximately 100mm3 (with the short diameter
being 4–6mm and the long diameter being 6–8mm), we
selected 32 tumor-bearing mice and divided them into four
groups. Group 1 was injected with normal saline as a control,
Group 2 was injected with DOX at a concentration of 2mg/
kg, Group 3 was injected with F/A-PLGA@DOX/SPIO at a con-
centration of 1mg/kg (low dose), and Group 4 was injected
with F/A-PLGA@DOX/SPIO at a concentration of 2mg/kg
(high dose), all using the caudal vein drug delivery method.

The experimental nude mice were given drugs intraven-
ously every two days for a total of 28 days and 14 doses.
During the experiment, the body weight and tumor size of
the mice were measured and recorded daily. Tumor volume
change (%) was evaluated after the experiment and tumor
growth-time and body weight-time curves of nude mice
were drawn. Observation indicators included: (1) tumor volu-
me¼ ab2/2, (where a is the long diameter of the tumor and
b is the short); (2) relative tumor volume (RTV) based on the
measurement results, RTV¼Vt/V0 (where V0 is the measured
tumor volume of sub-caged drug delivery and Vt is the
tumor volume at each measurement); (3) evaluation index of
anti-tumor activity, relative tumor proliferation rate, T/C
(%)¼ TRTV/CRTV � 100 (where TRTV is the RTV of the treat-
ment group and CRTV is the RTV of model contrast group);
(4) evaluation index of anti-tumor activity, tumor growth
inhibition rate (%)¼ (average tumor weight of model con-
trast group - average tumor weight of the treated group)/
average tumor weight of model contrast group� 100).

2.15. In vivo IVIM-DWI MRI

The experimental nude mice were routinely scanned by T2WI
and intra-voxel incoherent motion diffusion-weighted imag-
ing (IVIM-DWI) over 28 days. Six-time points, the base before
receiving the drug, the 3rd, 7th, 14th, 21st, and 28th day
after receiving the drug, were taken.

2.16. Hematological and histological analysis

After MR R2� scanning, the 12 nude mice were executed and
all their tumor tissue, heart, liver, spleen, kidneys, and lungs
were removed, paraffin-embedded, sectioned, and Prussian
blue stained. Twenty-eight days after the curative effect ana-
lysis, approximately 2mL of blood was drawn from the live
eye of the nude mice and about 500 lL of serum was
obtained by centrifugation. The serum was sent to the blood
test center of the First Affiliated Hospital of Jinan University.
Then, all the nude mice were executed, and three nude mice
were randomly selected from each group to have their
tumors removed and fixed for pathological examination.
Pathological examination indicators include H&E staining

and immunohistological examination. Immunohistological
examination indicators include: (1) Ki67 (antigen identified by
monoclonal antibody, cell proliferation index), (2) CD31
(platelet endothelial cell adhesion molecule-1, PECAM-1/
CD31), (3) VEGF (vascular endothelial growth factor), and (4)
TUNEL (TdT-mediated dUTP nick-end labeling, in situ end
transferase labeling technology) expression levels.

2.17. Statistical analysis

Statistical analysis was performed using SPSS 18.0 statistical
software, and all experiments were carried out at least in
triplicate. The data were expressed as mean± standard devi-
ation. The differences between the control and experimental
groups were analyzed using a two-tailed Student’s t-test.
One-way analysis of variance (ANOVA) was used in multiple
group comparisons. Differences with p< .05 (�) or p< .01
(��) are indicated.

3. Results and discussion

3.1. Rational design and characterization of F/A-
PLGA@DOX/SPIO NPs

F/A-PLGA@DOX/SPIO NPs were successfully prepared and
characterized by TEM, Zetasizer particle sizing, and FT-IR.
Figure 1(a) and Figure S1 have shown the appearance of F/
A-PLGA@DOX/SPIO. According to the Nano-ZS particle ana-
lyzer (Malvern Instruments Limited, Malvern, UK), the particle
diameter and zeta electric potential of PLGA were 85 nm
(PDI¼ 0.261 ± 0.006) and �19.0mV, respectively. DOX and
SPIO were wrapped in PLGA through solvent evaporation
method, then on its surface modified CS and targeting mole-
cules FA and ACPP. After that, its particle diameter was
260 nm (PDI¼ 0.254 ± 0.017) and zeta electric potential was
þ28.7mV (Figure 1(b,c)). FT-IR (Equinox 55, Bruker, Billerica,
MA, USA) was used to test the chemical construction and
coupled type of the F/A-PLGA@DOX/SPIO. From the results
in Figure 1(d) and Figure S3, in the spectrum of the oleic
acid-modified SPIO, the peak at 1453.8 cm�1 was assigned to
–CH=CH– in the oleic acid. In the spectrum of CS-PLGA@
DOX/SPIO, the –CH=CH– peak was red-shifted to 1464.
9 cm�1. The peak at 1101.9 cm�1 in the spectrum of CS-
PLGA@DOX/SPIO was assigned to –C–O–C from the PLGA.
The peaks at 1293.7 cm�1 and 1735.5 cm�1 were assigned to
=C–O–C and the fused aromatic ring from DOX, respectively.
In the spectrum of CS-FA, the peak at 1561.6 cm�1 belonged
to the primary amino groups of CS. The peaks at 1701.
1 cm�1 belonged to the carboxylic groups from FA. The peak
appeared at 1648.7 cm�1 was assigned to the newly formed
amino groups between CS and FA. In the spectrum of CS-
ACPP, the amide groups from ACPP and the new amide
groups generated between CS and ACPP appeared at 1543.
1 cm�1 and 1654.9 cm�1. In the spectrum of F/A-PLGA@DOX/
SPIO, the peaks at 1553.4 cm�1 and 1652.0 cm�1 were
assigned to the amide groups from CS-FA and CS-ACPP. The
peak at 1105.6 cm�1 was assigned to the –C–O–C from
PLGA. The peak at 1735.5 cm�1 was assigned to the =C–O–C
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from DOX. These results commonly demonstrated the struc-
ture of as-prepared F/A-PLGA@DOX/SPIO. As shown in Figure
S4, chemical shifts of d 7.65 and 6.94 represent hydrogen
from 17/19 and 16/20 of low-field benzene ring, respectively;
d 8.66 represents hydrogen in the 8-bit carbon of the pteri-
dine ring, suggestive of the successful linkage with FA.
Meanwhile, PLGA was well connected in accordance with
chemical shifts of d 0.86 (–CH3) and 1.24/1.48 (–CH2–). CS
was connected in accordance with chemical shifts of d 3.60/
3.66 representing hydrogen in a pyran ring and d 4.11(–OH).
d 3.93 and 3.42 (–CO–CH2–) were methylene hydrogen linked
to the carbonyl on ACPP, which showed that ACPP was suc-
cessfully connected. To sum up, the results of the 1H-NMR
proved that F/A-CS-PLGA can be successfully prepared. The
synthesized map of F/A-CS-PLGA can be seen in Figure S5.
Taken together, these results suggest that F/A-PLGA@DOX/

SPIO NPs has been successfully synthesized for future bio-
logical and medicinal applications.

The transverse relaxation rate (r2) is often used to meas-
ure the contrast radiography performance of MRIs. As shown
in Figure 1(e,f), the dispersion of F/A-PLGA@DOX/SPIO at dif-
ferent concentrations was determined. It turned out that the
transverse relaxation time (1/T2) of F/A-PLGA@DOX/SPIO
increased linearly with Fe concentration. The transverse
relaxation rate (r2) of SPIO was 86.258mM�1s�1 while that of
F/A-PLGA@DOX/SPIO was 156.63mM�1s�1; performance of
F/A-PLGA@DOX/SPIO was higher than commercialized SPIO
(Wang et al., 2011; Li et al., 2015). The results indicate that
F/A-PLGA@DOX/SPIO significantly improved relaxation per-
formance, probably due to a large amount of SPIO tightly
wrapped in the center of the nanosystem. Studies have
shown that the relaxation rate of magnetic NPs is influenced
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Figure 1. Characterization of F/A-PLGA@DOX/SPIO NPs. (a) TEM image of F/A-PLGA@DOX/SPIO NPs. (b) Size distribution of PLGA, CS-PLGA@DOX/SPIO, and F/A-
PLGA@DOX/SPIO NPs. (c) Zeta potential of PLGA, CS-PLGA@DOX/SPIO, and F/A-PLGA@DOX/SPIO NPs. (d) FT-IR spectra of F/A-PLGA@DOX/SPIO, CS-FA, CS-ACPP,
and CS-PLGA@DOX/SPIO NPs. (e) T2 relaxation rate (r2) of SPIO and F/A-PLGA@DOX/SPIO NPs. (f) The concentration-dependent T2-weighted MR images of SPIO
and F/A-PLGA@DOX/SPIO NPs. (g) Change in particle size of SPIO, DOX, and F/A-PLGA@DOX/SPIO NPs in human serum and PBS. (h) Percentage of hemolysis
caused by SPIO, DOX, and F/A-PLGA@DOX/SPIO NPs after incubation with human erythrocytes for 1, 2, and 4 h, respectively. (i) Human erythrocyte agglutination
investigated by phase microscopy after 4-h incubation with SPIO, DOX, and F/A-PLGA@DOX/SPIO NPs, respectively. Values expressed as means ± SD of triplicate.
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by the macromolecule polymer layer wrapped around the
surface (Kim et al., 2009; Tong et al., 2010). Higher r2 causes
a remarkable increase in the relaxation rate of water protons
of F/A-PLGA@DOX/SPIO, which has great potential of being a
MRI T2 contrast medium.

3.2. Stability and hemocompatibility of NPs

The biological stability of the nanosystem is an important
parameter to see whether it can be applied in human clinical
trials (Service, 2003). A Nano-ZS particle analyzer (Malvern
Instruments Limited, Malvern, UK) was used to test plasma
stability of the F/A-PLGA@DOX/SPIO nanosystem. As shown
in Figure 1(g), after incubation in human serum and PBS (pH
7.4) for 72 h, there is no significant change in the particle
size of F/A-PLGA@DOX/SPIO. The F/A-PLGA@DOX/SPIO nano-
system is relatively stable, which can ensure more medicine
is targeted at tumor tissue, providing support for its future
applications in clinical trials and the medical field (Zeng
et al., 2015).

The hemolytic rates of SPIO, DOX, and F/A-PLGA@DOX/
SPIO were separately tested to assess their hemocompatibil-
ity. As illustrated in Figure 1(h), after 1-, 2-, and 4-h incuba-
tion with red blood cells, no obvious hemolysis (the rates are
less than 5%) had been found on SPIO, DOX, or F/A-
PLGA@DOX/SPIO; the hemolytic rate of F/A-PLGA@DOX/SPIO
was less than 1%. As shown in Figure 1(i) and Figure S6,
there was no significant change in the morphology of red
blood cells in SPIO and F/A-PLGA@DOX/SPIO treatment

groups, but a little damage in DOX treatment group. These
results indicated that no obvious hemolytic toxicity occurred
in the F/A-PLGA@DOX/SPIO nanosystem.

3.3. In vitro magnetic resonance imaging of NPs

In vitro cell MRI was used to study the imaging effect of
tumor cells after ingesting nanophase drugs. As shown in
Figure 2(a,b), as the iron concentration increased, T2-
weighted signals for both contrast agents gradually
decreased. Compared to SPIO of the same concentration, the
T2WI signal of F/A-PLGA@DOX/SPIO declined more distinct-
ively. The results showed that the F/A-PLGA@DOX/SPIO
nanosystem has strong targeting binding to A549 cells and
could mediate the entry of more NPs into A549 cells. SPIO
and F/A-PLGA@DOX/SPIO at the same concentration were
scanned at different times through the T2WI (Li et al., 2013;
Li et al., 2015). As shown in Figure 2(c,d), T2WI signal of the
two contrast media gradually decreased over time and T2WI
signal reduction of the F/A-PLGA@DOX/SPIO nanosystem was
more pronounced. These experiments demonstrated that F/
A-PLGA@DOX/SPIO can be an excellent MRI T2-negative con-
trast agent.

3.4. Selective cellular uptake and intracellular
trafficking of NPs

The cellular uptake efficiency of drugs is one of the most
crucial elements of anticancer activity. As shown in Figure

Figure 2. Selective cellular uptake and drug release of F/A-PLGA@DOX/SPIO NPs. T2-weighted imaging (a) and iron uptake curves (b) of the A549 cells after incu-
bation for 24 h with SPIO and F/A-PLGA@DOX/SPIO NPs at different Fe concentrations. T2-weighted imaging (c) and iron uptake curves (d) of the A549 cells after
incubation for 0, 2, 4, and 8 h with SPIO and F/A-PLGA@DOX/SPIO NPs at the same Fe concentration. Quantitative analysis of cellular uptake of DOX and F/A-
PLGA@DOX/SPIO NPs in A549 (e) and L02 (f) cells. (g) In vitro release profiles of DOX from F/A-PLGA@DOX/SPIO in PBS solution at pH 5.3, pH 7.4, and A549 cell
lysates, respectively. (h) Intracellular trafficking of F/A-PLGA@DOX/SPIO in A549 cells. A549 cells stained with Lyso-tracker (lysosome) and DAPI (nucleus) were
treated with F/A-PLGA@DOX/SPIO for different periods of time. Values expressed as means ± SD of triplicate.
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2(e), cellular uptake of F/A-PLGA@DOX/SPIO and DOX in
A549 cells accumulates over time. Compared to DOX, the
absorptivity of F/A-PLGA@DOX/SPIO in A549 cells increased
significantly over time. Nevertheless, the accumulation of F/
A-PLGA@DOX/SPIO and DOX in L02 cells was also time
dependent and its absorptivity increases slightly (Figure 2(f)),
though much less than its accumulation in A549 cells. This
means that the F/A-PLGA@DOX/SPIO nanosystem improved
the selectivity between normal cells and cancer cells.

Moreover, we explored the intracellular translocation of F/
A-PLGA@DOX/SPIO in living cells. F/A-PLGA@DOX/SPIO has an
advantage of location with green fluorescence when using a
fluorescence microscope to carry out real-time supervision
(Kwon et al., 2014). Lyso-tracker (green) and Hoechst 33342
(blue) were used to label the lysosomes and nucleus, respect-
ively. The transportation and absorption of F/A-PLGA@DOX/
SPIO in A549 cells were monitored in real time. As shown in
Figure 2(h), after 1 h of cell incubation by F/A-PLGA@DOX/
SPIO, a faint red fluorescent signal appeared in lysosomes.
After 2 h, more green and red fluorescent signals overlapped
in the lysosomes of A549 cells, which proved that many NPs
entered the cells and settled in the lysosomes. After 4 h, the
red signals in the lysosomes became stronger, and after 6 h,
the red fluorescent signals expanded throughout the cyto-
plasm. These results suggest that F/A-PLGA@DOX/SPIO is
mainly located in the lysosomes after entry the cell.

3.5. In vitro NPs drug release behavior

The therapeutic effect of drugs is also dependent on drug
release efficiency, so we evaluated the drug release efficiency
of NPs. Diverse solutions are used to simulate what NPs
encounter in vivo. PBS (pH¼ 5.3), PBS (pH¼ 7.4), and A549
cell lysates were put in an imitated interior medium consist-
ing of lysosomes, a hemato-microenvironment, and an intra-
cellular environment to test the release rate of DOX in
different media. As shown in Figure 2(g), the release profile
of F/A-PLGA@DOX/SPIO in PBS solution (pH¼ 7.4) was mod-
est and the release efficiency was only 18.2% after 72 h, indi-
cating that F/A-PLGA@DOX/SPIO is more stable in internal
blood circulation. However, the release efficiency of F/A-
PLGA@DOX/SPIO in cell lysates of PBS (pH¼ 5.3) and A549
cells increased significantly to 35.7% and 63.3%, respectively.
These results suggest that F/A-PLGA@DOX/SPIO can decom-
pose in low pH, so that the DOX in the NPs can be released.
Moreover, A549 cell lysates not only provide an acidic envir-
onment, but also contain hydrolytic enzymes, so it may be
more capable of simulating the cellular lysosome environ-
ment, and the release of DOX is more efficient. Taken
together, these data indicate that when F/A-PLGA@DOX/SPIO
is absorbed by the cells and DOX is released under the
action of lysosomes, an anticancer effect is exerted.

3.6. In vitro antitumor activity of F/A-PLGA@DOX/SPIO
NPs and its mechanism

To evaluate the antitumor activity of the F/A-PLGA@DOX/
SPIO nanosystem, MTT was used to detect the inhibiting

effects of DOX, FA-PLGA@DOX/SPIO, ACPP-PLGA@DOX/SPIO,
and F/A-PLGA@DOX/SPIO on A549 and L02 cells. As in Figure
3(a), DOX produces inhibiting effects on A549 cells
(IC50¼ 0.132 lM), but also had a toxic effect on L02 cells
(IC50¼ 0.097 lM). After being modified by FA and ACPP, F/A-
PLGA@DOX/SPIO exhibited a better anticancer effect and
lower toxic than DOX. F/A-PLGA@DOX/SPIO produced signifi-
cant higher antitumor activity in A549 cells, which
were about 1.9 times higher than DOX. By comparison, the
toxicity of L02 cells decreased using F/A-PLGA@DOX/
SPIO (IC50¼ 0.207) was 2.1 times lower than that of DOX
(IC50¼ 0.097).The SI of DOX was 0.73 while for F/A-
PLGA@DOX/SPIO was 3.00, with its toxicity much lower
than DOX.

As in Figure 3(b,c), F/A-PLGA@DOX/SPIO had a dosage-
dependent growth inhibition of A549 and L02 cells in this
experiment. Specifically, F/A-PLGA@DOX/SPIO increased the
toxicity of DOX to A549 cells. It is noteworthy that F/A-
PLGA@DOX/SPIO significantly reduced the toxicity of DOX to
L02 cells. At the same time, the IC50 of F/A-PLGA@DOX/SPIO
to L02 cells was much larger than A549 cells, which meant
that the F/A-PLGA@DOX/SPIO nanosystem improved the
selectivity of medicine between normal cells and tumor cells.
This may be because FA can specifically recognize FR-a,
which is overexpressed on the surface of malignant tumor
cells (Campbell et al., 1991; Franklin et al., 1994). ACPP is a
polypeptide with a response to tumor microenvironments
and specialty in recognizing matrix metalloproteinases MMP-
2/MMP-9 in various malignant tumor cells (Xia et al., 2013)
for cell penetration. These results indicate that targeting dec-
oration improves the absorption efficiency of cancer cells
and makes F/A-PLGA@DOX/SPIO selective between normal
cells and cancer cells.

In this study, we successfully prepared FR functionalized
F/A-PLGA@DOX/SPIO to specifically recognize FR-a with over-
expression on the surface of A549 cells, thereby increasing
the active targeting of nanocarriers. For further validation,
we examined the expression level of the FA receptors in
A549, HeLa, A375, and L02 cells using Western blotting. As
shown in Figure S7, FR-a in the membrane sheet of A549
cells had a higher expression that was conducive to the
active targeting of F/A-PLGA@DOX/SPIO to A549 cells.

3.7. Induction of cell apoptosis by F/A-PLGA@DOX/
SPIO NPs

Antitumor drugs generally inhibit cancer cell proliferation by
inducing apoptosis and cycle arrest, eventually leading to
tumor cell death (Huang et al., 2013). As shown in Figure
3(d), after treated with DOX, FA-PLGA@DOX/SPIO, ACPP-
PLGA@DOX/SPIO, and F/A-PLGA@DOX/SPIO, the sub-G1
phase A549 cells increased from 2.7% to 7.8%, 10.7%, 20.1%,
and 24.3%, respectively. These results showed that F/A-
PLGA@DOX/SPIO may inhibit cell proliferation by inducing
apoptosis. Compared to non-targeted or single-targeted NPs,
dual-targeted NPs better promoted apoptosis. This may be
because FA and ACPP dual-modified NPs can more easily
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pass through the cell membrane to enhance anticancer activ-
ity and induce cell apoptosis.

Numerous studies have shown that overaccumulation of
reactive oxygen species (ROS) leads to denaturation of cellu-
lar proteins or DNA damage through activation of p53
involved in the induction of apoptotic signaling by many
anticancer chemotherapeutics (Pelicano et al., 2004; He et al.,
2015; Li et al., 2016b; Zanganeh et al., 2016). ROS is a by-
product of normal cellular aerobic metabolism, mainly
including hydrogen peroxide (H2O2), superoxide (O2

�),
hydroxyl radical (.OH), and singlet oxygen (1O2). As shown in
Figure 3(e,f), A549 cells showed various degrees of intracellu-
lar ROS increase regulation after being treated with F/A-
PLGA@DOX/SPIO and DOX. F/A-PLGA@DOX/SPIO and DOX
could significantly induce the production of ROS in A549
cells and maintain production at an elevated level following
the increase to its maximum in 15min. However, compared
with F/A-PLGA@DOX/SPIO, DOX with the same concentration
caused significantly lower amount of intracellular ROS pro-
duction. Related studies have shown that doxorubicin-

induced apoptosis is more likely caused by excessive intracel-
lular accumulation of ROS (Wang et al., 2004; Olson et al.,
2010; Huang et al., 2013). It was suggested that F/A-
PLGA@DOX/SPIO can induce apoptosis by promoting the
overproduction of ROS in A549 cells.

3.8. In vivo MR R2� imaging of A549 tumor-
bearing mice

As shown in Figure S8, the conventional T2WI signals for the
three groups of nude mice with subcutaneous tumors were
relatively uniform. The tumors were mainly composed of par-
enchyma components with no obvious cystic necrosis. At
present, the application of the MR R2� imaging sequence,
which is a reliable and noninvasive tool to evaluate the iron
content in living tissues, can sensitively detect changes of
magnetic environment caused by the change of iron content
in the body. It has been confirmed that there is a high cor-
relation between iron content in the tissue and R2� value
(Wood et al., 2005; Idilman et al., 2016; Li et al., 2016c). As

Figure 3. Induction of cell apoptosis by F/A-PLGA@DOX/SPIO NPs. (a) Proliferative inhibition of F/A-PLGA@DOX/SPIO against A549 and L02 cells for 72 h. A549
cells (b) and L02 cells (c) were treated with different concentrations of DOX, FA-PLGA@DOX/SPIO, ACPP-PLGA@DOX/SPIO, and F/A-PLGA@DOX/SPIO for 72 h. The
cell viabilities were examined by MTT assay. (d) Flow cytometric analysis of A549 cell cycle distribution. (e) Overproduction of ROS in A549 cells detected by DHE
fluorescence intensity. (f) Changes of ROS level in A549 cells incubated with DOX or F/A-PLGA@DOX/SPIO NPs for different periods of time. Values expressed as
means ± SD of triplicate. �p< .05 vs. control. ��p< .01 vs. control.
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Figure 4. MR R2�imaging of A549-bearing mice after injecting contrast agents. (a) MR R2� maps of A549-bearing mice after injecting SPIO, F/A-PLGA@SPIO, and
F/A-PLGA@DOX/SPIO NPs at different times. (b) Broken line chart of the changing trend of tumor R2� value for each group at different times. (c) Percentage of
relative change of tumor R2� value for each group at different times. The tumor sites are circled by dashed lines. Values expressed as means ± SD of triplicate.
(d) Prussian blue staining analysis of the major organs collected from different treatments of A549-bearing mice after 72 h. Tumor, heart, liver, lung, spleen, and
kidney (original magnification: 40�).
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shown in Figure 4(a), the larger the orange-red region of the
tumor becomes, the higher the R2� value of the tumor tissue
will be. In Figure 4(b), compared to SPIO, the R2� value of
tumors of the F/A-PLGA@SPIO and F/A-PLGA@DOX/SPIO NPs
groups increased significantly at 1 h and 4h, with R2� value
decreasing slower at 48 h and 72 h than for the SPIO group.
The R2� value of the tumors in the F/A-PLGA@SPIO NPs
group peaked at 12 h and 24 h, and the R2� value in the F/A-
PLGA@DOX/SPIO NPs group peaked at 24h; both were
higher than the SPIO group. Results for F/A-PLGA@DOX/SPIO
pharmacokinetics are shown in Figure S9 and Table S1. The
nanosystem could significantly prolong the half-life (t1=2b),
plasma drug content (AUC0–48h), and maximum plasma con-
centration (Cmax) of the drug in vivo while reducing the in
vivo clearance rate (Cl), indicating that F/A-PLGA@DOX/SPIO
has a relatively high plasma circulation time. According to
Kuhlpeter et al. (2007), lung cancer cells were treated with
two contrast agents, pure SPIO and receptor targeting
marker SPIO; the latter had a higher R2� value. Pure SPIO
was retested by the reticuloendothelial system, with the
majority accumulated in the liver and spleen, while NPs with
targeting structure were left in the tumor for a longer time.
The surface functional modification of FA and ACPP can
improve the active recognition of NPs and is more conducive
to drug absorption in tumors. As shown in Figure 4(c), the
R2� values of the F/A-PLGA@SPIO and F/A-PLGA@DOX/SPIO
NPs group at each time relatively were higher than SPIO
group. The total range increase of R2� value of the pure
SPIO group for each scan was lower than that of the tar-
geted contrast agent group and its excretory phase was sig-
nificantly earlier than that of the targeted contrast
agent group.

As shown in Figure S10, the total tread of R2� tumor-to-
muscle contrast ratio and the tumor R2� value of each
groups is basically paralleled. The R2� tumor-to-muscle con-
trast ratio of the targeted contrast agent groups at each
time was relatively higher than SPIO group. Meanwhile, the
F/A-PLGA@DOX/SPIO group had a high R2� tumor-to-muscle
contrast when compared with the SPIO group and there
were statistically significant differences of R2� tumor-to-
muscle contrast ratio between two groups.

3.9. Pathological Prussian blue staining analysis

Prussian blue staining, as shown in Figure 4(d), revealed that
there were more blue dye particles in the tumor, liver, and
spleen of the mice. The positive staining rate of tumor tissue
in the F/A-PLGA@SPIO and F/A-PLGA@DOX/SPIO NPs groups
was significantly higher than in the SPIO group, while the
positive staining rate in the liver and spleen tissues was sig-
nificantly lower than in SPIO group. Prussian blue staining
was used to carry out a qualitative analysis on the nanosys-
tem in the nude mice tumors and the distribution of iron in
various tissues and organs to further verify the results of the
MR R2� imaging.

3.10. In vivo therapeutic effects of F/A-PLGA@DOX/SPIO

Body weight-time curves of nude mice in each group are
shown in Figure 5(a). DOX (2mg/kg) group showed a signifi-
cant decrease in body weight 10 days after administration,
with an average body weight of 17.02 g after 28 days which
were significantly lower than the other groups. In vivo tumor
growth-time curves are shown in Figure 5(b). After 28 days of
administration, the tumor volume of the F/A-PLGA@DOX/
SPIO (1mg/kg) and F/A-PLGA@DOX/SPIO (2mg/kg) groups
was significantly smaller than that of the DOX (2mg/kg)
group. Tumor growth inhibition rate is shown in Figure 5(c)
and the relative tumor growth rate is shown in Figure 5(d).
Figure 5(e,f) shows the size and morphology of the nude
mice as well as the size and shape of the dissected tumor.
The tumor volume of the F/A-PLGA@DOX/SPIO (2mg/kg)
group was significantly smaller than that of other groups.
The above results confirmed that the F/A-PLGA@DOX/SPIO
nanosystem had better inhibitory effects on tumor growth
that DOX.

H&E and immunohistochemistry analysis are shown in
Figure 5(g). H&E staining showed that the tumor tissue of
control group was relatively dense with obvious mitotic
phases. Increased necrosis was observed in both F/A-
PLGA@DOX/SPIO (1mg/kg) and F/A-PLGA@DOX/SPIO (2mg/
kg) groups, especially for the latter. CD31 is commonly
expressed in vascular endothelial cells and used to assess
tumor angiogenesis (Piali et al., 1995). The CD31-positive
staining rate of tumors in the F/A-PLGA@DOX/SPIO (2mg/kg)
group was significantly lower than the other groups. Ki67
can accurately reflect cell proliferation activity and has been
widely used to determine the degree of malignancy of
tumors (Lu et al., 2016). The Ki67-positive staining rate of
tumors in the F/A-PLGA@DOX/SPIO (2mg/kg) group was sig-
nificantly lower than that of other groups. VEGF is secreted
by various tumor cells and is the strongest and most specific
angiogenic factor that induces tumor vascularization (Dvorak
et al., 1995; Fan et al., 2008). The VEGF-positive staining rate
of tumors in the F/A-PLGA@DOX/SPIO (2mg/kg) group was
significantly lower than that of other groups. DNA fragmen-
tation is an important factor that leads to apoptosis and cell
cycle arrest (Kilarkaje et al., 2014). In this study, TUNEL was
used to determine whether F/A-PLGA@DOX/SPIO could
induce tumor cell apoptosis. When tumor cells undergo
apoptosis, nuclear pyknosis occurs, and nuclei are lysed into
fragments of varied sizes to form apoptotic bodies. Cells are
observed under a fluorescence microscope to show green
fluorescence. As shown in Figure 5(g), almost no green fluor-
escence was observed in tumor cells of the control group
after TUNEL staining. In the DOX (2mg/kg) group, only a
small amount of scattered green fluorescence can be seen in
the tumor cells. Tumor cells in the F/A-PLGA@DOX/SPIO
(1mg/kg) and F/A-PLGA@DOX/SPIO (2mg/kg) groups
showed irregular distribution of green fluorescence, espe-
cially in the F/A-PLGA@DOX/SPIO (2mg/kg) group.
Overlapping TUNEL and DAPI staining images shows TUNEL-
specific green fluorescence overlapped with blue fluores-
cence, resulting in a blue-green color. The above results
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further verified that the F/A-PLGA@DOX/SPIO nanosystem
has a better inhibitory effect on tumor growth than DOX.

3.11. Evaluation of therapeutic effects by IVIM-DWI MRI

The MRI can give precise and accurate positioning and quan-
titative analysis on lesions from the molecular level while
demonstrating the anatomy of the tissue, which is suitable
for dynamic detection and evaluation of efficacy. As shown
in Figure S11, T2WI had clear tumor boundaries with uniform
signals within 7 days. The tumor was mainly composed of
solid components. Seven days later, tumors showed various
degrees of necrosis, hemorrhage, and steatosis with a visible,
irregular high–low mixed signal area. In recent years, related
studies have used quantitative parameters of IVIM-DWI, in
which the slow ADC value represents pure water diffusion,
to distinguish tumor necrosis from viable tissue by slow
apparent diffusion coefficient (ADC) value and dynamically
monitor changes caused by drug-induced cell density of
tumors to make an early prediction for treatment method

and drug efficacy (Bozkurt et al., 2011; Joo et al., 2014; Cui
et al., 2015; Joo et al., 2016; Lam et al., 2016).

As shown in Figure 5(h), the red area of the tumors in the
F/A-PLGA@DOX/SPIO (1mg/kg) and F/A-PLGA@DOX/SPIO
(2mg/kg) groups was relatively large, indicating that tumor
cell density decreased with the enlargement of necrosis. In
Figure 5(i), there was no significant increase in the slow ADC
value of each group within 7 days. From day 7 to day 28, the
slow ADC value of each group showed different degrees of
upward trend. The slow ADC value of the control group
showed a slow upward trend throughout the 28 days and
was lower than that of the other groups, while the slow ADC
value of the F/A-PLGA@DOX/SPIO (2mg/kg) group increased
most obviously. The slow ADC values of the DOX (2mg/kg),
F/A-PLGA@DOX/SPIO (1mg/kg), and F/A-PLGA@DOX/SPIO
(2mg/kg) groups did not change significantly within 7 days,
which was mainly due to cytotoxic edema. DOX caused
tumor cells to be swollen and the diffusion of intracellular
and extracellular water molecules was limited; however, the
effect of DOX existed a time delay. From day 7 to day 28,
with the delay of DOX treatment, tumor necrosis and

Figure 5. In vivo therapeutic effects of F/A-PLGA@DOX/SPIO NPs in A549-bearing mice. Body weight (a) and tumor volume (b) changes of A549 tumor-bearing
mice following different treatments. The tumor growth inhibitory rate (c) and relative tumor proliferation rate (d) of different groups of A549 tumor-bearing mice
at 28 days. Photographs of size and morphology of tumors (e) and tumor gross specimens (f) from different groups of mice 28 days after the treatment (scale:
1 cm). Bars with different characteristics are statistically different at the p< .05 level. �p< .05 vs. control. ��p< .01 vs. control. (g) H&E, immunohistochemically
analysis, and TUNEL staining in tumor sections from different treatment groups. Original magnification of H&E, CD31, and TUNEL: 20�; original magnification of
Ki67 and VEGF: 40�. (h) MR slow ADC maps of A549-bearing mice after different treatment groups at different times. Tumor sites are circled by dashed lines.
(i) Broken line chart of the changing trend of tumor slow ADC value for each group at different times. Values expressed as means ± SD (n� 15).
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apoptosis gradually increased, and the degree of diffusion of
water molecules was limited. The slow ADC value of each
group slowly grew during this stage. According to a research
by Chiaradia et al. (2014), as the extent of necrosis in the
lesion of liver cancer increased, the slow ADC value also
increased. Zhu et al. (2016) used IVIM-DWI to evaluate

chemotherapeutic effects in cervical cancer patients, with the
slow ADC value gradually increasing throughout the chemo-
therapy cycle. These experimental results are consistent with
the results of this study. In summary, through the slow ADC
value of IVIM-DWI, one can dynamically monitor intracellular
tumor cell density and necrosis range to detect and evaluate

Figure 6. Toxicity assessment of F/A-PLGA@DOX/SPIO. (a) Hematological analysis of normal and different treatments of nude mice after 28 days. Serum biochemis-
try indexes including blood glucose (GLU), low-density lipoprotein cholesterol (LDL-C), total protein (TP), aspartate aminotransferase (AST), blood urea nitrogen
(BUN), uric acid (UA), creatine kinase (CK), creatinine (CREA), serum total cholesterol (CHOL), triglyceride (TG), and lactate dehydrogenase (LDH). Values expressed
as means ± SD of triplicate. Bars with different characters (a, b, c, and d) are statistically different at the p< .05 level. (b) Histology analysis of the major organs col-
lected from different treatments of A549 tumor-bearing mice after 28 days (original magnification: 20�).

DRUG DELIVERY 1823



the efficacy of the F/A-PLGA@DOX/SPIO nanosystem timely
and accurately.

3.12. In vivo toxicity evaluation

To further assess the potential in vivo toxicity of F/A-
PLGA@DOX/SPIO nanosystem, blood samples were drawn for
hematology analysis after the experiment. The results, shown
in Figure 6(a), indicated that tumor-bearing mice serum lipid
indicators (low-density lipoprotein cholesterol (LDL-C), trigly-
ceride (TG)), liver function indicator (aspartate aminotransfer-
ase (AST)), kidney function indicators (urea nitrogen (BUN),
creatinine (CREA), uric acid (UA)), and cardiac function indica-
tors (lactate dehydrogenase (LDH), creatine kinase (CK)) of
the DOX (2mg/kg) group were significantly higher than
those of the control, F/A-PLGA@DOX/SPIO (1mg/kg), and F/
A-PLGA@DOX/SPIO (2mg/kg) groups. The results show that
DOX had toxic side effects and that the liver, kidney, and
myocardial functions of tumor-bearing mice were severely
impaired. F/A-PLGA@DOX/SPIO nanosystem significantly alle-
viated the damages of the functions of liver, kidney, and
myocardium of tumor-bearing mice. Besides, as shown in
Figure 6(b), the tumor tissues and histological sections of
major organs of each group were stained with H&E, and
there was blood in the alveoli of the DOX (2mg/kg) group.
The glomerular structure was destroyed as well. No obvious
disease or inflammation was found in the main organs of the
F/A-PLGA@DOX/SPIO (1mg/kg) and F/A-PLGA@DOX/SPIO
(2mg/kg) groups. H&E staining and biochemical markers of
the blood further illustrated DOX damage to multiple organs.
However, the F/A-PLGA@DOX/SPIO nanosystem synthesized
in this study did not show any obvious side effects such as
organ damage, which decreased in vivo toxicity; thus, it is a
relatively safe and multifunctional nanosystem in vivo.

4. Conclusions

Herein, the multifunctional F/A-PLGA@DOX/SPIO nanosystem
has been rationally designed and found to exhibit good
tumor targeting capability while reducing toxicity to normal
tissues and organs. The F/A-PLGA@DOX/SPIO nanosystem
can induce apoptosis by accelerating the overproduction of
ROS in tumor cells. MR R2� imaging sequence is an imaging
method of tracing and measuring intracellular SPIO in tumor
cells for tumor-targeted imaging. In the nude mice model, F/
A-PLGA@DOX/SPIO nanosystem has good biocompatibility
and long plasma cycle time, making the release of DOX con-
trollable and sustainable, which is conducive to the selective
absorption of drugs within the tumor. The slow ADC value of
IVIM-DWI showed that the range of tumor necrosis in the F/
A-PLGA@DOX/SPIO group was larger than that of DOX alone.
Meanwhile, according to hematological and histological ana-
lysis, no significant damage or inflammation was observed in
major organs. In summary, F/A-PLGA@DOX/SPIO, a multifunc-
tional nanosystem, has exciting potential to be an efficient
and safe means for cancer treatment.
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