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A B S T R A C T   

Background: Less than 10% of people who have pancreatic ductal adenocarcinoma (PDAC) will 
survive the malignancy for five years. The ion channel genes-related biomarker and predictive 
model were needed for exploitation. 
Methods: Differentially expressed ion channel genes (DEICGs) were detected in PDAC patients. GO 
and KEGG enrichment analysis was conducted on DEICGs. The prognostic genes were found using 
Cox regression analysis. After that, a risk model was created and examined. A nomogram was 
created based on independent predictive analysis. The molecular functions of two risk groups 
were explored. Immune checkpoint molecule expression was compared in two risk groups. We 
evaluated the possible cancer immunotherapy response in two risk groups using the TIDE method. 
We further examined how TRPV2 functions in PDAC as a potent oncogene and regulates the 
activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. 
Results: A total of twenty-four DEICGs were found. Next, we discovered that two DEICGs (TRPV2 
and GJB3) were connected to PDAC patients’ overall survival (OS). The risk model was created 
and validated, and a nomogram was used to forecast the overall survival of PDAC patients. The 
high-risk group considerably accumulated oncogenic pathways. Furthermore, we discovered a 
correlation between the expression of critical immunological checkpoints and the risk score. 
Furthermore, patients in the high-risk category had a lower chance of benefiting from immune 
therapy. The HPA database confirmed that TRPV2 is expressed as a protein. Lastly, TRPV2 
controls macrophage activity and acts as a potent oncogene in PDAC. 
Conclusion: Altogether, this study suggested that two ion channel genes, TRPV2 and GJB3, were 
potential biomarkers for the prognosis of PDAC and immunotherapy targets, and the research will 
be crucial for creating novel PDAC treatment targets and predictive molecular indicators.   

1. Introduction 

By 2030, pancreatic ductal adenocarcinoma (PDAC) is expected to rank second in the United States among cancer-related deaths. 
Currently ranked seventh globally, PDAC is expected to claim 75,000 lives from cancer. Even worse, in certain nations, the five-year 
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survival rate from this illness is only 9%, despite advancements in surgical methods, chemotherapeutic regimens, and the use of neo- 
adjuvant chemoradiotherapy [1]. Thus, to provide a foundation for clinical prognosis and treatment, it is imperative to identify 
prognostic indicators for PDAC and investigate the molecular targets of immunotherapy. 

Membrane proteins called ion channels facilitate ions’ passage across biological membranes [2]. According to specific research, ion 
channels are essential for regulating cell volume, immunological response, muscular contraction, hormone production, gene 
expression, and cell proliferation. Ion channels are involved in many different biological processes, which explains why the number of 
human disorders linked to ion channel failure has increased throughout the past few years. Specifically, there is mounting evidence 
that both voltage- and ligand-gated ion channels play a role in the development and pathophysiology of various human malignancies 
[3]. Angiogenesis, tumor development, metastasis, and vascular permeability are all associated with transient receptor potential (TRP) 
channels [4]. Numerous ligand-gated channels, including nicotinic acetylcholine receptors, influence the growth of tumor cells, their 
programmed cell death, and the formation of new blood vessels [5]. Ion channel genes are involved with pancreatic cancer in earlier 
research. For example, a high level of MCOLN1 was linked to poor clinical-pathological characteristics and a low survival rate in PDAC 
patients, indicating a potential function for MCOLN1 in PDAC tumor growth [6]. According to specific research, overexpressing 
TRPM2 in the PDAC cell line PANC-1 enhanced the potential of the cells to proliferate, invade, and spread [7]. 

An approach to cancer treatment known as “cancer immunotherapy” targets the patient’s immune system [8]. It functions by 
inducing the immune system to identify and combat cancerous cells [9]. Cancer immunotherapy comes in various forms, such as 
immune checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines [10–12]. These therapies are actively being studied and 
developed because they have demonstrated encouraging outcomes in treating various cancer types [13]. However, the interconnection 
between ion channels and immunotherapy in PDAC has yet to be explored. 

The prognostic biomarker genes TRPV2 and GJB3, which are based on the ion channel gene, were screened, and a novel prognostic 
model was created to accurately predict the prognosis of PDAC patients. TRPV2 and GJB3 were further found as potent cancer 
immunotherapy determinants. 

2. Materials and methods 

2.1. Data source 

The Cancer Genome Atlas (TCGA) database extracted the transcriptome data of 172 pancreatic ductal adenocarcinoma (PDAC) 
tissues and 4 normal tissues with complete clinical information. The GSE78229 dataset’s transcriptome data and complete clinical 
information were obtained from the Gene Expression Omnibus (GEO) database. The dataset GSE782229 contained 49 PDAC samples 
with survival data. The HUGO Gene Nomenclature Committee (HGNC) database provided the list of 328 ion channel genes. 

2.2. Identification of differentially expressed ion channel genes (DEICGs) 

The ‘limma’ R package was utilized to extract the differentially expressed ion channel genes (DEICGs) (P-value <0.05, |log2 Fold 
Change (FC)| > 0.5) in the TCGA-PDAC dataset between normal and PDAC tissues [14,15]. 

2.3. Functional enrichment analysis 

GO (BP, CC, MF) and KEGG enrichment analyses were implemented on the Metascape website, and the functions of DEICGs were 
annotated. 

2.4. Construction and validation of the prognostic model 

We randomly split 172 samples from the TCGA-PDAC dataset into 69 testing and 103 training sets, with a 6:4 ratio. DEICGs that 
were substantially (P-value <0.2) correlated with the OS of the PDAC patients in the training sample were found using the univariate 
Cox regression model [16]. The potential DEICGs were then put through a stepwise multivariate regression analysis to assess how well 
they predicted patient survival [17,18]. The formula used to calculate the risk score was: Riskscore = β1X1 + β2X2+ … + βnXn. The 
gene expression level is represented by X1 in this formula, and the regression coefficient is denoted by β. Using the R software’s 
“survminer” package, the median risk score was calculated to divide patients into high- and low-risk groups. The OS between two risk 
groups was then assessed using the K-M survival curve and the log-rank test. Using the R software’s “survival ROC” package, the 
receiver operating characteristic (ROC)’s area under the curve (AUC) was determined. The R software’s “pheatmap” package also 
depicted the risk plot. The GSE78229 dataset’s patients (49 samples) served as the validation set, and the testing and validation sets 
underwent the same process to verify the risk model. 

2.5. Independent prognostic analysis and construction of a nomogram 

Using the TCGA-PDAC dataset, univariate and multivariate Cox regression analyses were used to find independent prognostic 
predictors. Next, using the R packages “rms” and “nomogramEx,” a nomogram with the risk score and clinicopathological parameters 
was created. Using the R package “regplot,” we created calibration curves (1, 3, and 5 years) to confirm the nomogram’s correctness. 
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2.6. Gene set enrichment analysis 

Using the R software’s “clusterProfiler” package, KEGG-based GSEA was conducted to examine the various signaling pathways that 
separate the low- and high-risk groups in the TCGA-PDAC dataset [19,20]. 

2.7. Evaluation of immunotherapy efficiency 

There was a comparison of immune checkpoint molecule expression in two risk groups. The Tumor Immune Dysfunction and 
Exclusion (TIDE) is a computational technique to predict possible responsiveness to cancer immunotherapy [21]. 

2.8. Verification of gene expression 

The prognostic gene’s protein expression was compared using the Human Protein Atlas (HPA) database. 

2.9. Experimental validation 

The SW1990 and THP-1 cell lines were purchased from iCell (Shanghai, China, http://www.icellbioscience.com/search) as pre
viously described [22]. SiRNA sequences of TRPV2: Forward GCCGGATCCAAACCGATTTGA; Forward GCTGGAGATCATTGCCTTTCA; 
Forward GCTGGCTGAACCTGCTTTACT. Please see the supplementary materials for the detailed methods. 

2.10. Statistical analysis 

The R project was used for all analyses, and the Wilcoxon and Kruskal-Wallis tests were used to compare the data from various 
groups. P-values of less than 0.05 were deemed statistically significant in all analyses. 

Fig. 1. Identification of DEICGs in PDAC. (A)Volcano plot of all DEICGs. The orange dot represents up-regulated genes, the green dot represents 
down-regulated genes, and the grey dot represents unchanged genes. DEICGs: differentially expressed ion channel genes. (B) Heat maps of DEICGs. 
Functional and pathway enrichment analysis of DEICGs. (C–D) Contains 10 GO terms and 2 KEGG pathways. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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3. Results 

3.1. The DEICGs expression profile in PDAC 

We delineated the expression pattern of 328 ion channel genes in normal and PDAC samples in the TCGA-PDAC dataset. 24 DEICGs, 
including 17 up-regulated and seven down-regulated genes, were screened and listed in Supplementary Table 1. The DEICGs 
expression profile was shown in a volcano map and a heatmap (Fig. 1A-B). 

3.2. Functional enrichment based on DEICGs 

Next, DEICGs were enriched in 10 GO pathways and 2 KEGG pathways (Fig. 1C-D). These DEICGs were mainly joined in some 
biological processes, such as membrane potential regulation and ion transmembrane transport, etc. Meanwhile, these DEICGs were 
enriched in NOD-like receptor signaling and cardiac conduction pathways. 

3.3. Construction and internal validation of the ICGs-related prognostic risk model 

Two datasets comprising 103 cases for training and 65 patients for testing were created from the 172 PDAC patients. Next, utilizing 
24 DEICGs from the training group, a univariate Cox regression analysis was conducted to identify prognoses-related genes. In the 
training set, 10 of the 24 DEICGs were found to be strongly correlated with patients’ overall survival (P-value < 0.2) (Table 1). A 
stepwise multivariate Cox regression analysis was performed on the 10 DEICGs. As predictive genes, two DEICGs (TRPV2 and GJB3) 
were found (Fig. 2A), along with each regression coefficient. To assess patients’ prognoses more accurately, we created a prognostic 
risk model as “0.2874 × expression of GJB3 and 0.4332 × expression of TRPV2”. Based on the median value of the risk score in the 
training and testing sets, the patients were categorized into two risk groups to evaluate the availability of the prognostic model. A K-M 
survival analysis was then carried out. The findings revealed that compared to low-risk scores, those with high-risk scores had 
noticeably worse survival rates (Fig. 2B, F). In the training set, the 1-, 3-, and 5-year OS AUC values were 0.627, 0.785, and 0.717, 
respectively, showing a respectable accuracy (Fig. 2C). Concurrently, the testing set’s 1-, 3-, and 5-year OS AUC values were 0.622, 
0.749, and 0.751, respectively, indicating a robust predictive ability for the risk score (Fig. 2G). Fig. 2D, E, 2H, and 2I showed the 
TRPV2 and GJB3 expression heatmap in the training set and testing set. The heatmap data indicated the high-risk group had high 
expression levels of the dangerous ICGs, TRPV2 and GJB3. Besides, with increasing risk ratings, patients faced more significant 
mortality risks, according to the survival status distribution map. 

3.4. External validation of the ICGs-related prognostic risk model 

To test the model accuracy externally, we employed a cohort of 49 PDAC patients from the GEO dataset GSE78229, which is in
dependent. In the validation set, high-risk patients showed worse OS (Fig. 3A), consistent with the TCGA cohorts. As a result, according 
to Fig. 3B, the 1-year AUC value is 0.647, and the 3-year AUC value is 0.678. Fig. 3C-D displayed the survival status based on patients 

Table 1 
Univariate Cox regression analysis.  

Gene HR HR.95L HR.95H Cox P value 

GJB3 1.33729 1.05171 1.700417 0.0177253 
MCOLN1 0.442868 0.219608 0.893098 0.0228532 
TRPV2 1.601132 1.044604 2.454158 0.0307548 
KCNN4 1.183696 0.984241 1.423569 0.0732539 
AQP5 1.130664 0.979798 1.30476 0.0928283 
AQP9 1.248074 0.915524 1.701419 0.1610051 
CLCN7 0.533481 0.2204 1.291298 0.1635774 
KCNK13 1.824279 0.765605 4.346882 0.1747619 
KCNK1 1.220253 0.912706 1.631432 0.1791161 
GJB5 1.15223 0.933102 1.422817 0.1879703 
VDAC1 1.235671 0.708988 2.15361 0.4553085 
CHRNA5 1.207642 0.72556 2.010032 0.4679565 
CLIC2 1.122822 0.77271 1.631569 0.5434631 
P2RX5 0.881997 0.582236 1.336089 0.5534626 
SCNN1G 0.893119 0.608602 1.310646 0.5635286 
KCNJ10 0.686698 0.151924 3.103885 0.625307 
TRPM2 1.112963 0.703615 1.760461 0.6473432 
LRRC8C 1.1428 0.643916 2.028203 0.6483565 
MCOLN2 0.896982 0.526288 1.528777 0.6894178 
HTR3A 1.066684 0.733008 1.552255 0.7359182 
P2RX7 1.070384 0.625848 1.830672 0.8038198 
KCNJ5 1.03124 0.735115 1.446653 0.8586267 
HVCN1 0.984177 0.642483 1.507596 0.9415668 
ITPR2 1.011512 0.712792 1.43542 0.9488938  
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with higher risk scores. The heatmap result indicated that TRPV2 and GJB3 were more expressed in the high-risk group. These findings 
further supported the accuracy of the ICGs-related risk model in predicting PDAC patients’ 1- and 3-year overall survival. 

3.5. Independent prognostic of the risk model and nomogram construction 

The risk score was then tested for independence from other clinical factors (age, gender, and stage) as a prognostic factor for PDAC 
patients using univariate and multivariate Cox regression analysis. The results of the univariate analysis showed that age and risk score 
were prognostic indicators (Fig. 3E). The risk score can be utilized independently to forecast a patient’s prognosis (Fig. 3F). 
Furthermore, the multivariate analysis revealed that age was a significant predictive factor as well. Then, using age and risk score, we 
created a nomogram to predict patients’ 1-, 3-, and 5-year OS (Fig. 3G). According to the calibration plots, the nomogram did an 
excellent job projecting the 1-, 3-, and 5-year survival probabilities for PDAC patients (Fig. 3H). 

Fig. 2. Construction and internal validation of the ICGs-related prognostic risk model. (A) The multivariate Cox regression analysis. TRPV2: p-value 
= 0.0479. GJB3: p-value = 0.0253. (B) The survival curves of the training set and the testing set were, respectively, high-risk group and low-risk 
group. The training set: p = 9e-05. (C) ROC curve of the training set AUC. The green line represents 1 year AUC, the orange line represents 3-year 
AUC, and the blue line represents 5-year AUC. 1 year AUC = 0.627, 3 years AUC = 0.785, 5 years AUC = 0.717. (D) The distribution of ranked risk 
scores and survival status of individual patients. (E) The heatmap of 2 prognostic genes expression in the training set. (F) The survival curves of the 
training set and the testing set were, respectively, high-risk group and low-risk group. The testing set: p = 0.03487. (G) ROC curve of the testing set 
AUC. 1 year AUC = 0.622, 3 year AUC = 0.749, 5 year AUC = 0.751. (H) The distribution of ranked risk scores and survival status of individual 
patients. (I) The heatmap of 2 prognostic genes expression in the testing set. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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3.6. GSEA for the two risk groups 

To investigate potential mechanisms underlying the prognostic gap, GSEA was utilized to examine the route enrichment between 
the high-risk and low-risk groups. The top eight significant pathways are shown in Fig. 4A. Notably, these pathways, including 
influenza A, microRNAs in cancer, NOD-like receptor signaling pathway, osteoclast differentiation, PI3K-AKT signaling pathway, 
proteoglycans in cancer, and staphylococcus aureus infection were more active in the high-risk group as ES values > 0. 

3.7. Evaluation of immunotherapy efficiency between the two risk groups 

Immune checkpoint molecules offer a variety of therapeutic applications in immunotherapy and are necessary for immune function 

Fig. 3. Validation of the ICGs-related prognostic risk model via external cohort (A) The survival curves of high-risk group and low-risk group from 
GEO datasets. (B) ROC curve of the GEO datasets AUC. 1 year AUC = 0.647, 3 year AUC = 0.678, 5 year AUC = 0.551. (C) The survival status based 
on patients with increased risk scores. (D) The heatmap of the TRPV2 and GJB3 in the high-risk group. Independent prognostic of the risk model and 
nomogram construction (E) The univariate analysis. Age: p = 0.011. Risk score：<0.001. (F) The multivariate Cox regression analyses. Age: p =
0.011. Risk score：<0.001.(G) Using age and risk scores, a nomogram is constructed to predict patients’ OS for 1-, 3-, and 5 years. (H) The cali
bration plots. The blue line represents 1 year AUC, The red line represents 3 year AUC, The green line represents 5 year. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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[23]. Firstly, we explored the expression pattern of IDO1, CTLA4, PD-L1(CD274), HAVCR2, PD-1(PDCD1), and TIGIT in low- and 
high-risk groups. As shown in Fig. 4B, these immune checkpoint molecules were up-regulated in the high-risk group, promoting the 
development of PDAC. Then, we calculated and compared the TIDE scores in two risk groups. As revealed in Fig. 4C, the TIDE score of 
the high-risk group was higher than the low-risk group, indicating that ICB therapy in the high-risk group was poorly effective. 

3.8. Verification of prognostic genes in the HPA database 

As demonstrated in Fig. 4D, GJB3 was up-regulated in PDAC samples, while TRPV2 was down-regulated at the transcriptional level 
compared to normal samples. The HPA database was searched for associated gene immunohistochemistry results from normal and 
malignant tissues to confirm the expression of TRPV2 and GJB3 at the protein level. The transcriptional level was consistent with the 
outcome, demonstrating a significant decrease in TRPV2 protein expression in PDAC (Fig. 4E). Nonetheless, the HPA database did not 
have information on GJB3’s protein expression. 

3.9. Functional annotation of TRPV2 and GJB3 

As shown in Fig. S1A, cellular component organization, cell periphery, and molecular function were related to GJB3. As shown in 
Fig. S1B, leukocyte activation, cell periphery, and molecular transducer activity were related to TRPV2. 

3.10. Immune infiltration characteristics of TRPV2 and GJB3 

As shown in Fig. S2A, M0/M1 macrophages, Th1 cells, Tgd cells, iDC, Tregs, and resting NK cells were positively related to GJB3. As 
shown in Fig. S2B, DCs, neutrophils, macrophages, fibroblasts, CD4/CD8 T cells, and M1/M2 macrophages were positively related to 
TRPV2. 

3.11. Drug prediction on TRPV2 and GJB3 

As shown in Fig. 5, the drug prediction on TRPV2 (Fig. 5A-D) and GJB3 (Fig. 5E-H) was performed in GDSC1, GDSC2, CTRP, and 
PRISM databases. Patients with PAAD who exhibit high levels of TRPV2 are susceptible to some medications, including fumonisin B1, 
JAK3_7406_1434, Refametinib_1526, and selumetinib: PLX-4032. Furthermore, medications like ERK_2440_1713, flibanserin, sapi
tinib_1549, and PD-102807 are sensitive to patients with PAAD who have high GJB3 expression. 

Fig. 4. Functional annotation of the risk groups. GSEA between the high-risk and low-risk groups. Evaluation of immunotherapy efficiency between 
the two risk groups (A) Differential expression of immune checkpoints. Blue group represent high-risk, Yellow group represent low-risk. (B) The 
TIDE score of the two risk groups. The expression of prognostic genes in the HPA Database (A) Expression of biomarkers in tumor and normal 
tissues. Blue group represent normal tissue, Yellow group represent tumor tissue. (B) Immunohistochemistry in the HPA database. (For interpre
tation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.12. Immunotherapy prediction on TRPV2 and GJB3 

As shown in Fig. S2C, NT5E, CD276, TNFSF9, CCL20, CCL13, CXCL8, IL10RB, LGALS9, and TGFB1 were positively related to GJB3. 
As shown in Fig. S2D, CCL18, CCL5, CCL13, HAVCR2, CSF1R, TIGIT, TNFSF4, CD80, and IL2RA were positively related to TRPV2. As 
shown in Fig. 6, TRPV2 could predict immunotherapy response in Hugo, Homet, Cho, and VanAllen cohorts (Fig. 6A). TRPV2 was 
associated with significantly worse survival in Cho and Nathanson cohorts (Fig. 6B). Besides, GJB3 could predict immunotherapy 
response in Lausss, Homet, Gao, Amato, Wolf, and Nathanson cohorts (Fig. 6C). 

3.13. Mutation characteristics of TRPV2 and GJB3 

As shown in Fig. 7, TRPV2 could predict a gain of 12p13.33, 12p11.21, 12q15, and 17q12 while a loss of 1p36.11. Besides, GJB3 
could predict a loss of 17p12, 17q22, 19p13.3, and 19p13.2. 

3.14. In vitro validation on TRPV2 

qPCR assay was conducted for optimal siRNA targets (Fig. 8A). CCK8 assay for TRPV2 showed that PDAC cells in two siRNA groups 
had inhibited proliferation ability (Fig. 8B). EdU assay for TRPV2 showed that PDAC cells in two siRNA groups had inhibited pro
liferation ability (Fig. 8C-D). Transwell assay for TRPV2 showed that PDAC cells in two siRNA groups had inhibited migration ability 
(Fig. 8E-F). The co-culture Transwell assay for TRPV2 showed that macrophages in two siRNA groups had inhibited migration ability 
(Fig. 8G-H). 

4. Discussion 

One of the most deadly tumors in the world, pancreatic ductal adenocarcinoma (PDAC), still has no proven treatment. The leading 
causes of PDAC’s poor overall prognosis are early distant metastases, delayed diagnosis, and inadequate treatment plans [24]. Ion 
channels are essential to the development of cancer and are involved in numerous physiological processes. Ion channel genes are 
involved with pancreatic cancer in earlier research. 

This study used mRNA expression data and 328 ion channel genes between normal and PDAC samples in the TCGA-PDAC dataset to 
analyze genes associated with PDAC prognosis. Functional enrichment informed that these DEICGs were mainly joined in membrane 
potential regulation, ion transmembrane transport, etc. Meanwhile, these DEICGs were enriched in the NOD-like receptor signaling 
and cardiac conduction pathways. Zhao et al. [25] revealed that Artesunate induces apoptosis of lung cancer cells by decreasing 
mitochondrial membrane potential dose-dependently. Using bis (thiourea) derivatives of 1, 2-phenylenediamine scaffolds, Nasim and 
colleagues synthesized Cl─ ion transporters. They discovered that Cl─ transport activity was inversely proportional to IC50 values of 
various cancer cell lines, indicating that Cl─ ion activity can affect cancer cell apoptosis. Hao Yang et al. [26] prepared a compound 
with hepatocellular carcinoma cell targeting by adding galactose gA peptide to the N-terminal. The conjugates form monomolecular 
transmembrane channels on the cell membrane, which can transport monovalent cations and induce apoptosis of cancer cells. 

Then, combined with clinical survival information, TRPV2 and GJB3 were revealed as potential prognostic markers associated with 
patient survival. TRPV2 reportedly mediates cell survival, proliferation, and metastasis [27]. TRPV2 with altered expression profile 
showed oncogenic ability in leukemia and bladder cancer [28]. In patients with multiple myeloma, TRPV2 was associated with bone 
tissue damage and led to poor prognosis [29]. In prostate cancer, TRPV2 was linked to resistance to castration and tumor metastasis 
[30]. Some research has reported a significant correlation between GJB3 and survival rate in breast cancer patients with bone 
metastasis. GJB3 was a potential marker or molecular target for melanoma [31]. These results imply that GJB3 and TRPV2 primarily 
function as oncogenes, accelerating the growth of tumors. Similarly, our findings also demonstrated that GJB3 was up-regulated in 
PDAC samples while TRPV2 was down-regulated at the transcriptional level compared to normal samples. Regretfully, more research 
is needed to determine its precise process. 

We developed a predictive risk model to assess patient prognosis more accurately since we discovered TRPV2 and GJB3 as 
promising prognostic markers. As confirmed by internal and external cohorts, the results indicated that patients with low-risk scores 
had much higher survival rates than those with high-risk scores. TRPV2 and GJB3 were also strongly expressed in high-risk groups and 
were linked to a bad prognosis. After confirming that the risk score was unrelated to age, gender, and stage, among other clinical 
factors, multivariate Cox regression analysis revealed that risk scores may be used independently to predict PDAC patients’ prognosis. 
Additionally, we created a nomogram to forecast the chance of 1-, 3-, and 5-year survival for patients with PDAC. 

Besides, TRPV2 and GJB3 may be involved in developing patients’ diseases and affect their prognosis by participating in micro
RNAs in cancer, NOD-like receptor signaling pathway, osteoclast differentiation, P13K-AKT signaling pathway, and proteoglycans in 
cancer, as illustrated in the results section. A systematic expression analysis of 217 mammalian miRNAs from 334 samples—including 
several human cancers—was disclosed by Lu et al. They discovered that malignancies generally have lower levels of miRNAs than 
normal tissues [32]. Subsequent studies have also confirmed that reduced miRNA can lead to tumorigenesis in most cases. Still, some 
miRNA upregulation can lead to the occurrence of cancer, including miR-21 [33], miR-155 and miR-17~19b [34], and miR-106b-5p 

Fig. 5. Drug prediction on TRPV2 and GJB3. The drug prediction on TRPV2 and GJB3 was performed in GDSC1, GDSC2, CTRP, and 
PRISM databases. 
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[35]. Hu et al. reported that PC cells and tissues have significant levels of NLRP3 expression. Knocking down NLRP3 can inhibit cell 
proliferation and invasion, reverse EMT, increase e-CAD, and reduce Vimentin, suggesting that NLRP3 may play an essential role in 
tumor progression [36]. Xu et al. [37] found that the PI3K/Akt/mTOR signaling pathway may have a role in treating pancreatic cancer. 
Li et al. [38] showed that PI3K/Akt signaling pathway contributed to tumor progression of pancreatic cancer. 

Pancreatic cancer, one of the most deadly and aggressive solid malignancies, is characterized by subtle clinical symptoms, a quick 
course, a dismal prognosis, and a high death rate. The five-year survival rate for PDAC is as low as 9%, even with advancements in 
surgical skills, chemotherapy regimens, and the advent of neoadjuvant chemoradiotherapy. Furthermore, immunotherapy has recently 
gained a lot of attention as the hottest cancer treatment option. However, the majority of patients do not benefit. Thus, tailored therapy 
for patients with HNSCC may be possible through the identification of valuable markers that aid in predicting a patient’s response to 
treatment. The expression of immune checkpoint molecules in the high-risk groups, such as IDO1, CTLA4, PD-L1(CD274), HAVCR2, 
PD-1(PDCD1), and TIGIT, was shown to be up-regulated in the TRPV2/GJB3-based prognostic model. This accelerated tumor 
development and had an impact on prognosis. Immunotherapy has made significant progress in recent years and has become a 
promising treatment option for various diseases, including cancer. Immunotherapy has shown great potential in improving patient 
outcomes and has sometimes led to long-lasting remissions. It is an exciting field of research and continues to evolve with discoveries 
and advancements [39]. PD-1/PD-L1 ICB can reverse the immunosuppressive microenvironment in patients, thereby significantly 
improving prognosis [40]. In the context of immunotherapy, ion channels have been found to have potential connections. For example, 
specific ion channels have been implicated in regulating immune cell activation and migration. Modulating the activity of these ion 
channels may enhance the effectiveness of immunotherapy treatments. One specific example is the role of potassium channels in T-cell 
activation. T cells are crucial in the immune response. It has been demonstrated that potassium channels govern T-cell activation via 
influencing these cells’ membrane potential and calcium signaling. Modulating the activity of potassium channels could enhance T-cell 
activation and improve the efficacy of immunotherapy [41]. We calculated that the high-risk group had a higher TIDE score, indicating 
that it was less effective at receiving ICBs. Therefore, we speculate that TRPV2 and GJB3 can be used as molecular targets for potential 
immunotherapy. Notably, our findings further proved this speculation. TRPV2 and GJB3 were related to the expression levels of 
multiple immune checkpoints. Besides, TRPV2 and GJB3 could predict immunotherapy responses in multiple immunotherapy cohorts. 

Fig. 6. Immunotherapy prediction on TRPV2 and GJB3. Immunotherapy response predictions of TRPV2 in Hugo, Homet, Cho, and VanAllen co
horts. The survival curves of TRPV2-based groups in Cho and Nathanson cohorts. The survival curves of GJB3-based groups in Lausss, Homet, Gao, 
Amato, Wolf, and Nathanson cohorts. 

Fig. 7. Mutation characteristics of TRPV2 and GJB3.  
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Fig. 8. Experimental validation on TRPV2. A. qPCR assay for optimal siRNA targets. B. CCK8 assay for TRPV2. C. EdU assay for TRPV2. D. Sta
tistical analysis of EdU assay for TRPV2. E. Transwell assay for TRPV2. F. Statistical analysis of Transwell assay for TRPV2. G. Co-culture Transwell 
assay for TRPV2. H. Statistical analysis of Co-culture Transwell assay for TRPV2. 
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TRPV2 has been found to regulate immune cell activation and migration, and its expression has been associated with the efficacy of 
immunotherapies such as checkpoint inhibitors [42]. GJB3 is involved in the activation and proliferation of T cells. It has also been 
found to regulate immune cell infiltration into tumors [43]. 

Our in vitro validation laid a solid foundation for the tumor-promotive role of TRPV2. TRPV2 may encourage PDAC migration and 
multiplication. In addition, TRPV2 could promote the recruitment of macrophages. It is possible that TRPV2 may interact with other 
molecules or signaling pathways involved in macrophage activation or function. 

5. Conclusion 

In summary, we have discovered for the first time the ion channel genes TRPV2 and GJB3 linked to the prognosis of PDAC in this 
investigation. We created the nomogram and the related risk model. Further research and clinical validation are necessary to validate 
our conclusion fully. To be more precise, an outside group is required to verify the model and the ion channel genes TRPV2 and GJB3. 
Furthermore, future in vitro and in vivo studies will examine the precise processes by which the ion channel genes TRPV2 and GJB3 
impact immunotherapy. Consequently, we will keep an eye on these genes’ future functions. 
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