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Dark matter in a deep-sea vent and in human mouth
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Summer used to be a slow time for genomics news. This
year, even the summer heat failed to stem the influx of
new completely sequenced microbial genomes. The latest
list (Table 1) includes genomes from a number of environ-
mental bacteria (Chen et al., 2007; Nakagawa et al.,
2007), four methanogenic archaea, as well as the finished
genome of the red alga Cyanidioschyzon merolae, the
first 100% complete eukaryotic genome (Nozaki et al.,
2007). However, this time the most striking news comes
from an unfinished genome, the genome sequence of the
first representative of the enigmatic TM7 phylum (Hugen-
holtz et al., 2001). So far, no member of this widespread
phylum has been isolated in pure culture and the genome
sequence, even an incomplete one, provides the first
glimpse into the physiology of this biological ‘dark matter’
(Marcy et al., 2007).

The TM7 phylum was identified based on the compari-
son of 16S rRNA genes in samples from a variety of
terrestrial (peat bog, activated sludge) and aquatic envi-
ronments. Fluorescence in situ hybridization revealed cells
forming long, thick (up to 50 ¥ 4 mm) filaments (Hugenholtz
et al., 2001). Similar sequences were subsequently
detected in deep-sea hydrothermal sediment, humic lake,
hypersaline wastewater and even in a marine sponge
(Lopez-Garcia et al., 2003; Lefebvre et al., 2006; Newton
et al., 2006; Thiel et al., 2007). Members of TM7 were also
detected in human oral cavity and oesophagus, often
associated with necrotizing ulcerative gingivitis, halitosis
and periodontitis (Paster et al., 2002; Brinig et al., 2003;
Kazor et al., 2003; Pei et al., 2004). Still, no representative
of the TM7 was ever obtained in a pure culture. Genome
sequencing of TM7 was made possible by capturing indi-
vidual cells in a specially designed microfluidic device,
followed by DNA amplification and sequencing (Marcy

et al., 2007). Although the genome size and the number of
encoded proteins could not be reliably estimated, the
genome assembly produced a total of 2.86 Mb containing
3245 predicted genes. Some of the predicted genes did not
have known homologues, while those that did had rela-
tively low sequence identity to genes from known phyla.
These observations further confirmed that the analyzed
genes came from a representative of a new phylum.
Mapping the predicted genes onto the metabolic pathway
map suggested that the TM7 isolate was able to perform
glycolysis, the tricarboxylic acid cycle, nucleotide biosyn-
thesis and some amino acid biosyntheses. Obviously,
the incomplete genome did not allow identification of the
missing pathways that might give some clues to the
reasons why members of TM7 refuse to grow in pure
culture. Anyway, this work represents a significant step
towards characterization of these fascinating organisms.

Another major news was successful transformation of
Mycoplasma capricolum cells with full-length chromo-
somal DNA from Mycoplasma mycoides by a group at the
J. C. Venter Institute (Lartigue et al., 2007). The efficiency
of transformation (referred to as ‘genome transplantation’
by the authors) reached one recipient per 150 000 cells.
This is a significant technical accomplishment that opens
new possibilities for gene manipulation in the framework
of the so-called ‘synthetic biology’.

As mentioned above, scientists at the University of
Tokyo, Japan, revised the previously reported genomic
sequence of the hot-spring red alga C. merolae (Matsuzaki
et al., 2004), filled all of the 46 remaining gaps, sequenced
the 34 remaining chromosomal ends, and reported the first
eukaryotic nuclear-genome sequence that is 100% com-
plete (Nozaki et al., 2007). The total genome of C. merolae
is 16 728 945 nucleotides (nt) in size and consists of 20
linear chromosomes with a total of 16 546 747 nt, circular
chloroplast genome of 149 987 nt, and a circular mitochon-
drial genome of 32 211 nt. Each chromosome encodes
between 102 and 484 proteins, for a total of 4775, the
chloroplast DNA encodes 208 and the mitochondrial DNA
encodes 34 proteins. The small size of the C. merolae
protein set, coupled with the fact that only a small fraction
(~0.5%) of these 5017 genes contain introns, makes this
thermophilic (45°C) alga a perfect model organism for
studying all kinds of eukaryotic proteins.
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Table 1. Recently completed microbial genomes (June–August 2007).

Species name Taxonomy
GenBank
accession

Genome
size, bp

Proteins
(total)

Sequencing
centrea Reference

New organisms
Cyanidioschyzon merolae Eukaryota,

Rhodophyta
AP006483–
AP006502

16 546 747
(total)

4775 Univ. Tokyo Nozaki et al. (2007)

Methanococcus aeolicus Euryarchaeota CP000743 1 569 500 1490 JGI Unpublished
Methanococcus vannielii Euryarchaeota CP000742 1 720 048 1678 JGI Unpublished
Candidatus Methanoregula boonei Euryarchaeota CP000780 2 542 943 2450 JGI Unpublished
Kineococcus radiotolerans Actinobacteria CP000750

CP000752
4 761 183

12 917
4497 JGI Unpublished

Bacteroides vulgatus Bacteroidetes CP000139 5 163 189 4065 WashU Xu et al. (2007)
Flavobacterium psychrophilum Bacteroidetes AM398681 2 861 988 2412 INRA –

Jouy-en-Josas
Duchaud et al. (2007)

Parabacteroides distasonis Bacteroidetes CP000140 4 811 379 3850 WashU Xu et al. (2007)
Alkaliphilus metalliredigens Firmicutes CP000724 4 929 566 4625 JGI Unpublished
Bacillus amyloliquefaciens Firmicutes CP000560 3 918 589 3693 U. Göttingen Chen et al. (2007)
Clostridium beijerinckii Firmicutes CP000721 6 000 632 5020 JGI Unpublished
Clostridium kluyveri Firmicutes CP000673

CP000674
3 964 618

59 182
3913 U. Göttingen Unpublished

Ochrobactrum anthropi a-Proteobacteria CP000758–
CP000763

5 205 777
(total)

4799 JGI Unpublished

Parvibaculum lavamentivorans a-Proteobacteria CP000774 3 914 745 3636 JGI Unpublished
Sinorhizobium medicae a-Proteobacteria CP000738–

CP000741
6 817 576 6213 JGI Unpublished

Xanthobacter autotrophicus a-Proteobacteria CP000781 5 308 934
316 164

5035 JGI Unpublished

Janthinobacterium sp. Marseille b-Proteobacteria CP000269 4 110 251 3697 CNRS-Marseille Audic et al. (2007)
Actinobacillus succinogenes g-Proteobacteria CP000746 2 319 663 2079 JGI Unpublished
Klebsiella pneumoniae g-Proteobacteria CP000647 5 694 894 5187 WashU Unpublished
Marinomonas sp. MWYL1 g-Proteobacteria CP000749 5 100 344 4439 JGI Unpublished
Anaeromyxobacter sp. Fw109-5 d-Proteobacteria CP000769 5 277 990 4466 JGI Unpublished
Campylobacter curvus e-Proteobacteria CP000767 1 971 264 1931 JCVI Unpublished
Campylobacter hominis e-Proteobacteria CP000776 1 711 273 1682 JCVI Unpublished
Nitratiruptor sp. SB155-2 e-Proteobacteria AP009179 1 877 931 1857 JAMSTEC Nakagawa et al. (2007)
Sulfurovum sp. NBC37-1 e-Proteobacteria AP009179 2 562 277 2466 JAMSTEC Nakagawa et al. (2007)
Fervidobacterium nodosum Thermotogae CP000771 1 948 941 1750 JGI Unpublished
Thermosipho melanesiensis Thermotogae CP000716 1 915 238 1879 JGI Unpublished
New strains
Methanococcus maripaludis C7 Euryarchaeota CP000745 1 772 694 1788 JGI Unpublished
Mycobacterium tuberculosis F11 Actinobacteria CP000717 4 424 435 3941 Broad Institute Unpublished
Bacillus cereus ssp. cytotoxis

NVH 391-98
Firmicutes CP000764

CP000765
4 087 024

7 135
3844 JGI Lapidus et al. (2007)

Clostridium botulinum A str.
ATCC 19397

Firmicutes CP000726 3 863 450 3552 Los Alamos Unpublished

Clostridium botulinum A str. Hall Firmicutes CP000727 3 760 560 3407 Los Alamos Unpublished
Clostridium botulinum F str.

Langeland
Firmicutes CP000728

CP000729
3 995 387

17 531
3659 Los Alamos Unpublished

Staphylococcus aureus ssp.
aureus JH1

Firmicutes CP000736
CP000737

2 906 700
30 429

2780 JGI Unpublished

Staphylococcus aureus ssp.
aureus str. Newman

Firmicutes AP009351 2 878 897 2614 Juntendo Univ. Unpublished

Coxiella burnetii Dugway 7E9-12 g-Proteobacteria CP000733 2 158 758
54 179

2125 JCVI Unpublished

Haemophilus influenzae PittEE g-Proteobacteria CP000671 1 813 033 1623 Allegheny Institute Unpublished
Haemophilus influenzae PittGG g-Proteobacteria CP000672 1 887 192 1670 Allegheny Institute Unpublished
Pseudomonas aeruginosa PA7 g-Proteobacteria CP000744 6 588 339 6286 JCVI Unpublished
Shewanella baltica OS185 g-Proteobacteria CP000753 5 229 686 4394 JGI Unpublished

CP000754 83 224
Yersinia pseudotuberculosis IP

31758
g-Proteobacteria CP000720

CP000719
CP000718

4 723 306
153 140
58 679

4324 JCVI Unpublished

Campylobacter jejuni ssp. doylei
269.97

e-Proteobacteria CP000768 1 845 106 1731 JCVI Unpublished

a. Sequencing centre names are abbreviated as follows: Allegeny Institute, Allegheny-Singer Research Institute, Pittsburgh, PA, USA; CNRS-
Marseille, CNRS – UPR2589, Institut de Biologie structurale et Microbiologie, Marseille, France; INRA – Jouy-en-Josas, Unité Virologie et
Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France; JAMSTEC, Japan Agency for Maine-Earth
Science and Technology, Natsushima-cho, Yokosuka, Japan; JCVI, J. Craig Venter Institute, Rockville, MD, USA; JGI, US Department of Energy
Joint Genome Institute, Walnut Creek, CA, USA; Juntendo Univ., Department of Bacteriology at Juntendo University, Bunkyo-ku, Tokyo, Japan; Los
Alamos, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA; U. Göttingen, Göttingen Genomics Laboratory at the
Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany; Univ. Tokyo, Department of Biological Sciences, Graduate
School of Science, University of Tokyo, Tokyo, Japan; WashU, Washington University School of Medicine, St. Louis, MO, USA.
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For the past 8 years, Deinococcus radiodurans
remained the only highly radioresistant bacterium with a
completely sequenced genome, which severely limited the
use of comparative genomics to analyze the resistance
mechanisms. The scientists at the US Department of
Energy Joint Genome Institute (JGI) have now completed
genome sequencing of another radioresistant bacterium,
Kineococcus radiotolerans, which opens the possibility for
meaningful genome comparisons. Kineococcus radiotol-
erans is an aerobic actinobacterium isolated from a highly
radioactive waste at the Savannah River Technology
Center in Aiken, South Carolina (Phillips et al., 2002). Like
D. radiodurans, this bacterium is highly resistant both
to the ionizing g-radiation and to desiccation. Cells of
K. radiotolerans produce an orange carotenoid pigment
and move by means of polar flagella. The genome
encodes all key components of the chemotaxis machinery,
including 22 methyl-accepting chemotaxis sensor pro-
teins, by far the largest number found in any actinobacte-
ria. The high resistance of K. radiotolerans to dessication
suggests that related bacteria might be widespread in arid
desert environments.

Although human intestine is not typically perceived as a
subject of environmental studies, scientists at the Wash-
ington University have embarked on an extensive project
aimed at characterizing the microbial diversity in the
human intestinal tract, the Human Gut Microbiome (see
http://genome.wustl.edu/hgm/HGM_frontpage.cgi). In the
previous column we have discussed completion of the
genome of the intestinal methanogenic archaeon Metha-
nobrevibacter smithii (Samuel et al., 2007). The same
group has now released complete genomes of two
members of the phylum Bacteroidetes that are promi-
nently represented in the distal gut of healthy humans,
Bacteroides distasonis (recently reclassified as Para-
bacteroides distasonis) and Bacteroides vulgatus (Xu
et al., 2007). This paper (which is freely available online)
describes a detailed comparison of P. distasonis and
B. vulgatus genomes with the previously sequenced
genomes of two other gut symbionts, Bacteroides fragilis
and Bacteroides thetaiotaomicron, and analyzes the role
of lateral gene transfer and gene duplication in the adap-
tation of Bacteroides spp. to the gut environment.

One more representative of the Bacteroidetes is the
widespread fish pathogen Flavobacterium psychrophilum,
whose genome description (Duchaud et al., 2007) was
published a month after the release of the genome
sequence of the closely related soil bacterium Flavobac-
terium johnsoniae. Flavobacterium psychrophilum infects
salmon and trout causing haemorrhagic septicaemia,
referred to as ‘rainbow trout fry syndrome’, in young fish
and severe necrotic lesions called ‘cold-water disease’ in
adult fish. In accordance with its name, F. psychrophilum
grows best at 15°C and is most deadly at temperatures in

the 3–15°C range. This bacterium is capable of forming
biofilms that can survive in stream water for several
months. Accordingly, the genome sequence revealed
a cluster of genes involved in the biosynthesis of
exopolysaccharides. It also encodes a protein similar to
cyanophicin synthase, suggesting that F. psychrophilum
is capable of storing amino acids, which could contribute
to its long-term survival outside of the fish host. The
F. psychrophilum genome encodes a number of virulence
factors, including various proteases, cytolytic toxins and
adhesive proteins. Analysis of these virulence factors and
other surface proteins should help identify potential
vaccine candidates to protect farmed salmon and rainbow
trout against infection by F. psychrophilum.

The current list (Table 1) includes 10 genomes of low
G+C Gram-positive bacteria (Firmicutes), two of which
represent the genus Bacillus, six come from the family
Clostridiaceae (including three environmental isolates
and three new strains of the food-borne pathogen
Clostridium botulinum) and the remaining two come from
new strains of the opportunistic pathogen Staphylococcus
aureus.

Bacillus amyloliquefaciens is an soil bacterium that
often colonizes plant rhizosphere, promoting plant growth
and suppressing plant pathogens. The plant growth-
promoting effect has been attributed to the extracellular
phytase activity (degradation of inositol hexaphosphate),
which provides the plant with phosphate (Idriss et al.,
2002). In addition to phytase, B. amyloliquefaciens
secretes numerous amylases, glucanases and proteases,
as well as antibacterial and antifungal compounds. The
sequenced strain FZB42 encodes several polyketide syn-
thases, two of which has been shown to be responsible
for the synthesis of the polyketide antiobiotics bacillaene
and difficidin (Chen et al., 2006).

Bacillus cereus ssp. cytotoxis is a food-borne pathogen,
whose genome revealed a significant degree of diver-
gence from the typical B. cereus (Lapidus et al., 2007).
Based on these comparisons, the authors suggest that
it should be reclassified as a new species Bacillus
cytotoxicus.

Alkaliphilus metalliredigens, a member of the family
Clostridiaceae, has been isolated from leachate ponds at
the US Borax company in Boron, California, using an
enrichment for the ability to reduce Fe(III) in anaerobic
conditions at alkaline pH values (Ye et al., 2004). Alka-
liphilus metalliredigens is a strict anaerobe that could
tolerate up to 1.5% sodium tetraborate (Na2B4O7) and
grew using Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA or
Cr(VI) as electron acceptors; yeast extract or lactate
served as electron donors. Growth during iron reduction
occurred over the pH range of 7.5–11.0 with optimum at
pH 9.5, at temperatures ranging from 4°C to 45°C. These
properties make A. metalliredigens an attractive candi-
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date for bioremediation of metal-contaminated alkaline
environments.

Interestingly, another anaerobic iron-reducing bacterium
with a recently sequenced genomes belongs to an entirely
different phylogenetic lineage, the d-Proteobacteria.
Anaeromyxobacter strain Fw109-5 has been isolated from
an uranium-contaminated subsurface sediment in Oak
Ridge, Tennessee (van Landschoot and de Ley, 1983).
Although it is an anaerobe, it tolerates microaerophilic
conditions and uses acetate, lactate and pyruvate as elec-
tron donors and Fe(III) or nitrate as electron acceptors.

Clostridium beijerinckii strain NCIMB 8052 is also a
strict anaerobe of potential use in biotechnology. It is a
soil isolate that ferments a wide range of carbohydrates
(pentoses, hexoses, starch and others) to acetate,
butyrate, lactate and other products, including valuable
solvents acetone, butanol and isopropanol. Analysis of
C. beijerinckii genome and its comparison with the
genome of the closely related solventogenic bacterium
Clostridium acetobutylicum is expected to provide insight
into the mechanisms of solventogenesis and pave way to
designing more efficient producers of acetone and
butanol suitable for industrial use.

The g-proteobacterium Actinobacillus succinogenes,
isolated from the bovine rumen (Guettler et al., 1999),
is yet another microorganism with potential use in
biotechnology. It metabolizes a wide range of sugars
(including glucose, fructose, xylose, lactose, and cello-
biose), producing succinate, which is a precursor for a
number of useful chemical compounds (Zeikus et al.,
1999).

The g-proteobacterium Klebsiella pneumoniae is best
known as an opportunistic human pathogen that causes
pneumonia and urinary tract infections in hospital settings
and in immunocompromised patients. However, it is a
widespread environmental organism, commonly found in
soil and water habitats. Distinctive features of Klebsiella
cells include an extracellular polysaccharide capsule and
the ability to fix nitrogen. The sequenced genome comes
from a multiple antibiotic-resistant strain Klebsiella pneu-
moniae ssp. pneumoniae MGH 78578 that was isolated in
1994 from a pneumonia patient.

The g-proteobacterium Marinomonas sp. strain MWYL1
was isolated near the North Norfolk, England, from the
root surface of the salt marsh grass Spartina anglica. This
grass, as well as some microalgae, produces the osmo-
protective compound dimethylsulfoniopropionate, which
Marinomonas sp. MWYL1 can use as sole carbon source.
Metabolism of dimethylsulfoniopropionate produces dim-
ethylsulfide, which is released into the air (Ansede et al.,
2001) and represents a major contribution to sulfur cycling
in the marine environment. Products of dimethylsulfide
oxidation in the atmosphere act as cloud condensation
nuclei and are largely responsible for forming the cloud

cover over the oceans, affecting the climate wordwide
(Simó, 2001). The mechanism of dimethylsulfide forma-
tion was recently resolved (Todd et al., 2007); genome
analysis of Marinomonas MWYL1 could clarify the regu-
lation of this process.

The four sequenced members of the e-subdivision
of the Proteobacteria nicely represent the diversity of
this group. Campylobacter curvus and Campylobacter
hominis are gastric pathogens closely related to the
better-known Campylobacter jejuni, whose genome was
recently re-annotated (Gundogdu et al., 2007). In con-
trast, Nitratiruptor sp. strain SB155-2 and Sulfurovum sp.
strain NBC37-1 have been isolated from the deep-sea
vents in the Iheya North hydrothermal field, Japan. These
bacteria are chemolithoautotrophs that use hydrogen,
sulfide, elemental sulfur or thiosulfate as electron donors
and oxygen or nitrate as electron acceptors. They are
representative of the microbial ‘dark matter’ in the vicinity
of the vents, where e-proteobacteria comprise a signifi-
cant fraction of the total microbial population (Nakagawa
et al., 2005). Surprisingly, genome comparisons showed
that vent bacteria share with pathogenic e-proteobacteria
a number of genes that had been previously identified as
virulence factors (Nakagawa et al., 2007). These include
genes responsible for N-linked glycosylation, hydroge-
nase and several other genes. The authors suggest that
Campylobacter- and Helicobacter-like pathogens evolved
from free-living e-proteobacteria, similar to Nitratiruptor
sp. and Sulfurovum sp.

For the past several years, the early branching bacterial
phylum Thermotogales was represented by a single com-
plete genome of Thermotoga maritima (Nelson et al.,
1999). With an increased focus on microbial diversity, JGI
has recently launched a new project aimed at obtaining
genome sequences of seven more representatives of this
interesting phylum. The genome of Thermotoga petro-
phila, the first one generated by this project, was released
earlier this year. The JGI has now released genomes of
two more members of the Thermotogales, Fervidobacte-
rium nodosum strain Rt17-B1, isolated from a hot spring
in New Zealand, and Thermosipho melanesiensis strain
BI429, which was isolated from the gills of a deep-sea
vent hydrothermal mussel, Bathymodiolus brevior, from
the Lau Basin in the South-western Pacific Ocean
(Antoine et al., 1997). Comparison of the genomes of
hot-spring and marine isolates of Thermotogales is
expected to shed light on the mechanisms of survival
in high-pressure marine environments and allow
re-assessing the degree of lateral gene transfer from
archaea, which in T. maritima was estimated to reach
20% of all genes (Nelson et al., 1999).

In other genomics news, Jon Hobman, Charles Penn
and Mark Pallen of the University of Birmingham have
stirred the pot by publishing a paper with the provocative
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title ‘Laboratory strains of Escherichia coli: model citizens
or deceitful delinquents growing old disgracefully?’, which
states, inter alia, that ‘that microbiology’s chief idol has
feet of clay’ (Hobman et al., 2007). Despite somewhat
hyped rhetoric, this paper makes a number of valid points,
mentioning that E. coli K-12 has undergone numerous
passages on rich media and cycles of mutagenesis and is
hardly representative of either the ancestral E. coli or the
current environmental and ‘enteropathogenic, enterotoxi-
genic, enteroinvasive, enterohaemorrhagic, enteroaggre-
gative and diffusely adherent’ strains. In what might be
particularly relevant to the subject of this journal, the
authors warn against ‘assuming that any models of global
regulation or metabolic flux can be generalized to E. coli
in a state of nature’, look forward to obtaining hundreds, if
not thousands, of genome sequences of naturally occur-
ring relatives of E. coli K-12 and welcome ‘the bright new,
pluralist, genome-saturated “eco-evo” future of E. coli ’.
Thus, aside from the title (and section subtitles), there
seems to be very little in this paper to argue about.
However, from the genome analysis point of view, it
appears that the authors have overlooked a major draw-
back in our description(s) of E. coli K-12, namely the fact
that at least one-third of its genes still have unknown
(or poorly characterized) function (Riley et al., 2006). For
example, considering the very similar sets of signal trans-
duction proteins encoded in E. coli K-12 and in all other
E. coli genomes sequenced to date, one has to conclude
that we still have only a vague understanding of the func-
tions of its 30 histidine kinases, 29 diguanylate cyclases
and/or c-di-GMP-specific phosphodiesterases and two
predicted Ser/Thr protein kinases (M.Y. Galperin, in
preparation). Escherichia coli K-12 still represents our
best hope to achieve a complete understanding of the
genome of a free-living bacterium and deserves to be
treated as such.

In addition to the deliberately provocative comment on
E. coli, Mark Pallen got involved in another controversy,
this time through no fault of his own. About a year ago,
Pallen teamed up with Nick Matzke, an evolutionary
biologist at the National Center for Science Education
in Oakland, California (http://www.natcenscied.org/), to
produce a wide-ranging analysis of the evolution of
bacterial flagella and refute the claims of proponents
of the ‘intelligent design’ on the ‘irreducible complexity’
of that organelle [Pallen and Matzke, 2006; see also the
Panda’s Thumb weblog (http://www.pandasthumb.org/)
and the paper by Scott and Matzke (2007) on the
history of the ‘intelligent design’ movement]. In April
2007, Renyi Liu and Howard Ochman also published
a paper (freely available online) aimed at refuting the
‘intelligent design’ views on flagellar origin. Liu and
Ochman (2007a) compared flagellar proteins from various
bacterial genomes using pairwise BLAST searches with the

BLAST2SEQ program (Tatusova and Madden, 1999) and
detected a certain degree of sequence similarity between
nearly all types of proteins. Although in many cases the
similarity levels were not statistically significant (unless
the low-complexity filtering was deliberately switched off),
Liu and Ochman interpreted their results as an evidence
of common origin (= homology) between all flagellar pro-
teins, even those that had been known to have different
three-dimensional structures and were obviously non-
homologous. Those shaky BLAST results were presented
in a form of a ‘network of relationships among flagellar
core proteins’, which conveyed an aura of infallibility
that must have swayed gullible reviewers and editors
of PNAS. This paper attracted a positive comment
in ScienceNOW (Cutraro, 2007) but was met with
a barrage of criticism, including numerous postings on
the Panda’s Thumb website and T. taxus blog (http://
ttaxus.blogspot.com/2007/05/jcvi-evolutionary-genomics-
journal-club.html) suggesting that what is true in the paper
by Liu and Ochman (2007a) is not new, and what is new
is not true. In addition, a recent paper by Doolittle and
Zhaxybayeva (2007) questioned the validity of the phylo-
genetic analysis in that paper. In response, Liu and
Ochman published a correction, admitting switching off
the low-complexity filter and using a more permissive
9 ¥ 10-4 cut-off E-value instead of the 10-4 value given in
the original publication, but claiming that ‘These errors
do not affect the conclusions of the article’ (Liu and
Ochman, 2007b). This story is interesting not only
because PNAS has published a deeply flawed paper,
something that has happened previously in other presti-
gious journals, particularly when dealing with ‘hot’ topics.
Rather, this case illustrates the caveats of automated
sequence analysis, which can only be trusted if the results
pass a ‘sanity check’ by a well-trained biologist. Unfortu-
nately, perfunctory sequence analysis has already caused
a number of major blunders (Iyer et al., 2001) and is likely
to generate many more. [Full disclosure: the author was
the editor of the original BLAST2SEQ paper (Tatusova and
Madden, 1999) and is one of the authors of a paper on the
possible origin of flagellar ATPases (Mulkidjanian et al.,
2007)].

Finally, Minoru Kanehisa and colleagues at the Univer-
sity of Kyoto reported an analysis of 191 completely
sequenced genomes, aimed at answering a key question:
are there any additional directly encoded unusual amino
acids besides selenocysteine and pyrrolysine? As these
two amino acids (respectively, the 21st and 22nd ones)
are both encoded by stop codons, the genomes were
inspected for the conservation patterns in the vicinity of
the predicted stop codons (Fujita et al., 2007). This search
failed to find new conserved contexts, which suggested
that the 23rd amino acid either has a very limited phylo-
genetic distribution or does not exist at all.
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