CDH1 loss promotes diffuse-type gastric cancer tumorigenesis via epigenetic reprogramming and immune evasion

- Gengyi Zou,^{1,†} Yuanjian Huang,^{1,2,†} Shengzhe Zhang,¹ Kyung-Pil Ko,¹ Bong Jun Kim,¹ Jie
- ⁵ Zhang,¹ Melissa P. Pizzi,³ Yibo Fan,³ Sohee Jun,¹ Na Niu,⁶ Huamin Wang,⁷ Shumei
- 6 Song,³ Jaffer A. Ajani,³ Jae-II Park^{1,4,5}
- ⁷ ¹Department of Experimental Radiation Oncology, Division of Radiation Oncology, The
- 8 University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- ⁹ ²Department of General Surgery, The First Affiliated Hospital of Nanjing Medical
- 10 University, Nanjing, Jiangsu 210029, China
- ¹¹ ³Department of GI Medical Oncology, The University of Texas MD Anderson Cancer
- 12 Center, Houston, TX 77030, USA
- ¹³ ⁴Graduate School of Biomedical Sciences, The University of Texas MD Anderson
- 14 Cancer Center, Houston, TX 77030, USA
- ¹⁵ ⁵Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer
- 16 Center, Houston, TX 77030, USA
- ¹⁷ ⁶Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
- ¹⁸ ⁷Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas
- 19 MD Anderson Cancer Center, Houston, TX 77030, USA
- ²⁰ [†]These authors contributed equally.
- ²¹ [‡]Correspondence: Jae-II Park (jaeil@mdanderson.org)
- 22 Tel: 713-792-3659; Fax: 713-794-5369

- ²³ Keywords: CDH1, E-Cadherin, gastric cancer, gastric organoids, diffuse-type gastric
- adenocarcinoma, immune landscape remodeling, immune evasion, single-cell
- transcriptomics, cancer subtyping, EZH2

27 Abstract

28

29	Diffuse-type gastric adenocarcinoma (DGAC) is lethal cancer often diagnosed late and
30	resistant to therapeutics. Although hereditary DGAC is mainly characterized by
31	mutations in the CDH1 gene encoding E-cadherin, the impact of E-cadherin
32	inactivation on sporadic DGAC tumorigenesis remains elusive. We found that CDH1
33	inactivation occurs only subset of DGAC patient tumors. Unsupervised clustering of
34	single-cell transcriptomes of DGAC patient tumors identified two subtypes of DGACs:
35	DGAC1 and DGAC2. The DGAC1 is mainly characterized by CDH1 loss and exhibits
36	distinct molecular signatures and aberrantly activated DGAC-related pathways. Unlike
37	DGAC2 lacking immune cell infiltration in tumors, DGAC1 tumor is enriched with
38	exhausted T cells. To demonstrate the role of CDH1 loss in DGAC tumorigenesis, we
39	established a genetically engineered murine gastric organoid (GOs; Cdh1 knock-out
40	[KO], Kras ^{G12D} , Trp53 KO [EKP]) model recapitulating human DGAC. In conjunction with
41	Kras ^{G12D} , Trp53 KO (KP), Cdh1 KO is sufficient to induce aberrant cell plasticity,
42	hyperplasia, accelerated tumorigenesis, and immune evasion. Additionally, EZH2 was
43	identified as a key regulon promoting CDH1 loss-associated DGAC tumorigenesis.
44	These findings underscore the significance of comprehending the molecular
45	heterogeneity of DGAC and its potential implication for personalized medicine to DGAC
46	patients with CDH1 inactivation.

47

48 Introduction

49

50	Gastric adenocarcinoma (GAC) is the 4 th most common cause of cancer deaths
51	worldwide ¹ . GAC is mainly divided into intestinal-type gastric adenocarcinoma (IGAC,
52	50%), diffuse-type gastric adenocarcinoma (DGAC, 30%), and mixed 2 . DGAC is
53	histologically characterized by poor differentiation, loss of cell adhesion proteins,
54	fibrosis, and infiltration. Unlike IGAC, DGAC is relatively more often observed in
55	younger, female, and Hispanic population than in older, male, and non-Hispanic ones $^{3-}$
56	⁶ . While the incidence of IGAC has declined due to H. Pylori (HP) therapy and lifestyle
57	improvements over the past few decades, the number of DGAC cases has remained
58	constant or has risen ^{7,8} .

⁵⁹DGAC tends to metastasize to the peritoneal cavity, which makes it difficult to ⁶⁰diagnose early by imaging. In addition, isolated tumor cells or small clusters of tumor ⁶¹cells infiltrate in unpredictable patterns. Thus, DGAC is often detected at a late stage, ⁶²leading to a poor prognosis. For such patients, curative resection is not possible. ⁶³Systemic therapy is the main option for potentially prolonging survival and improving ⁶⁴symptoms ^{9,10}. Despite the distinct features of DGAC in both a molecular basis ⁶⁵and therapy resistance, the first-line treatment options are not specific for DGAC¹¹⁻¹³. ⁶⁶Systemic therapy with targeted therapy has shown limited benefits^{14,15}. In parallel, ⁶⁷immune checkpoint inhibitors (ICIs) have been used recently. The advent of first-⁶⁸generation ICIs that target Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and

69	Programmed death-ligand (PD-L1) has brought a paradigm shift in the treatment of
70	various advanced cancers ¹⁶ . Nivolumab (PD-1 inhibitor) can be either combined with
71	chemotherapy as first-line treatment or used as monotherapy as later-line treatment in
72	Asia ^{17,18} . Pembrolizumab (PD-1 inhibitor) showed a promising outcome treating GAC
73	with high microsatellite instability or high tumor mutational burden ¹⁹ . However, DGAC
74	imposes major difficulty in the clinic and available therapies perform poorly. Generally,
75	DGAC has immunosuppressed stroma and is genomically stable ^{20,21} . Tumor
76	microenvironment (TME) of DGAC often expresses the second generation of
77	checkpoints such as T-cell immunoglobulin mucin receptor 3 (TIM3) and its ligand
78	galectin-9, which induce immune landscape remodeling for immune evasion ^{22,23} . Given
79	the limited therapeutic options for DGAC, it is imperative to understand the biology of
80	DGAC, which may establish a groundwork for developing new targeted therapies for
81	DGAC. Furthermore, for maximizing therapeutic efficacy, it is crucial to identify patients
82	who can most benefit from specific treatment options. Nevertheless, to date, DGAC
83	patient stratification by molecular signatures has not been achieved.

Hereditary DGAC, as a minor proportion of DGAC (1–3%), is mainly
characterized by germline mutations in the *CDH1* gene that encodes E-cadherin ²⁴.
However, other than Hereditary DGAC, the role of CDH1 loss in DGAC tumorigenesis is
unclear. Cell-to-cell adhesion is a crucial phenomenon for maintaining tissue
morphogenesis and homeostasis, as well as for regulating cell differentiation, survival,
and migration. E-cadherin mediates cell-to-cell adhesion, which is essential for
determining the proliferation specificity and differentiation of epithelial cells and

91	preventing invasion ²⁵ . To understand the impact of CDH1 loss on DGAC
92	tumorigenesis, we analyzed single-cell transcriptomes of 20 DGAC patient tumor
93	samples and identified two subtypes of DGACs exhibiting specific molecular
94	signatures including E-cadherin loss and immune landscape remodeling. To further
95	verify our in-silico analysis, we generated and characterized a genetically engineered
96	gastric organoid model that recapitulates E-cadherin inactivation-associated DGAC
97	tumorigenesis. This study stratifies DGAC patients by single-cell transcriptomics, and
98	elucidates the unexpected role of E-cadherin loss in cell plasticity, transcriptional
99	reprogramming, and immune evasion, providing novel insights into E-cadherin loss-
100	associated DGAC tumorigenesis.

102 **Results**

103

104 CDH1 inactivation in DGAC

105	To explore the role of CDH1 in DGAC, we examined the genetic alterations, mRNA
106	expression, and protein levels of CDH1 in DGAC. 25% of tumor cells from the DGAC
107	patients showed CDH1 gene alterations, including mutations and deep deletions (Fig.
108	1A). We also assessed the CDH1 protein expression in the tissue microarray of 114
109	DGAC patients' tumor samples (patient information was listed in Table S4).
110	Immunohistochemistry (IHC) showed that 37.72% of DGAC patients were CDH1
111	negative, 37.72% exhibited low CDH1 expression, and 24.56% displayed high CDH1
112	expression (Fig. 1B, which was also quantified with histochemical scoring assessment
113	(H-score) of each slide (Fig. 1C). Next, we determined the transcriptional signature of
114	DGAC at the single-cell transcriptomics level by analyzing single-cell RNA-seq (scRNA-
115	seq) datasets of 20 stage IV DGAC patients' tumor samples (Fig. 1D, Table S5) ²⁶ . After
116	data integration and normalization, a total of 27 cell clusters was generated according
117	to distinctive gene expression patterns (Fig. 1E, fig. S1A, B, Table S6). We re-
118	clustered the datasets as the mega clusters according to Leiden-based UMAP (Fig.
119	1F). To conduct the precise subtyping of DGAC, we reanalyzed the scRNA-seq
120	datasets with only epithelial cells (Fig. 1G, fig. S1C, Table S7). An unsupervised pair-
121	wise correlation analysis showed that the combined datasets of 20 DGAC patients
122	were divided into two major subtypes (DGAC1 and DGAC2) (Fig. 1H). The

123	transcriptional signature of DGAC1 epithelial cell clusters was highly distinct from that
124	of DGAC2 (Fig. 1I, fig. S1D, Table S8). In line with the heterogeneity of CDH1's
125	genomic alterations and expression in DGAC patients (Fig. 1A, B), the DGAC1 subtype
126	exhibited a significantly lower expression of CDH1 compared to DGAC2 (Fig. 1J, K),
127	indicating that the unsupervised pair-wise subtyping can also stratify DGAC patients by
128	CDH1 expression. We also identified the molecular signatures of DGAC1 and DGAC2
129	(Fig. 1L). The DGAC1 tumors were enriched with the expression of TXNIP (thioredoxin
130	interacting protein), EVL (Ena/Vasp-Like), TSC22D3 (TSC22 Domain Family Member 3;
131	also known as glucocorticoid-induced leucine zipper, GILZ) genes (Fig. 1L). A high
132	level of TXNIP expression is associated with significantly shorter survival of patients
133	with non-small cell lung cancer and invasive growth of hepatocellular carcinoma ^{27,28} . It
134	has also been reported that decreased TXNIP RNA expression is associated with poor
135	prognosis of patients with clear cell renal cell carcinoma ²⁹ . EVL belongs to the
136	Ena/VASP (Enabled/vasodilator-stimulated phosphoprotein) family of proteins, which
137	have a range of roles in regulating the actin cytoskeleton ³⁰ . Studies has shown that
138	EVL is upregulated in breast cancer ³¹ . Meanwhile, the upregulation of TSC22D3 can
139	subvert therapy-induced anticancer immunosurveillance ³² . In addition, we also
140	identified the molecular signatures of DGAC2 (SPINK1, IFI27, and TSPAN8) (Fig. 1L).
141	These results identify two distinct subtypes of DGACs by distinct molecular signatures
142	and CDH1 expression.

143

144 Molecular characterization of DGAC subtypes

Next, we characterized the molecular subtypes of DGAC. Given that CDH1 loss 145 confers the epithelial-mesenchymal transition (EMT) process, we checked the EMT 146 scores based on the established gene set (Table S9). DGAC1 showed a higher EMT 147 score compared to DGAC2 (Fig. 2A, fig. S2A). Extensive genomic analyses of GAC have found that DGACs display distinct activation of signaling pathways different from IGACs ³³. scRNA-seq-based signaling scoring showed that FGFR2 and PI3K/AKT/mTOR pathways were activated in DGAC1 (Fig. 2B, C, fig. S2B, C), while RHOA, MAPK, HIPPO, WNT, and TGF-β pathways were activated in DGAC2 (Fig. 2D-H, fig. S2D-H). In addition, we analyzed the copy number variation (CNV) of DGACs by using normal stomach samples as a reference. We combined 29 scRNA-seq online 154 datasets of normal stomach samples (Normal) with the previous 20 DGAC patients ³⁴ (Fig. 2I). Except for the endothelial cell markers, the same marker panel was utilized as 156 the previous DGAC subcategory process to annotate the cells into epithelial cells, myeloid cells, B cells, plasma cells, T cells, effector T cells, naïve T cells, exhausted T 158 cells, fibroblasts, and endothelial cells (fig. S1A, S3A). Leiden-based UMAP exhibited the same cell types as the DGAC stratification analysis (Fig. 2J, K, fig. S2B, Table S10), except that the endothelial cell cluster appeared due to the normal tissue (fig. S3A). According to the previously identified DGAC subgroups, we separated the UMAP 162 as Normal, DGAC1, and DGAC2 (Fig. 2L, fig. S3C). Although the epithelial cells were defined as EPCAM high clusters among all groups, epithelial cells from the Normal group 164 were clearly isolated from the major epithelial cell population of the merged datasets (Fig. 2K, L). CNV patterns were somewhat different between DGAC1 and DGAC2 (Fig. 166

2M). The higher CNV scores were observed in DGACs compared to the Normal (Fig.
 2N, O). These results indicate the heterogeneity of DGAC with differentially activated
 signaling pathways.

170

171 Immune landscape remodeling with T cell exhaustion in DGAC1

Having determined the molecular signatures of DGAC tumor cells, we next analyzed TME. Intriguingly, scRNA-seq-based immune cell profiling showed that compared to DGAC2 where immune cells barely existed, DGAC1 was highly enriched with immune 174 cells, including T cells, B cells, and myeloid cells (Fig. 3A-C, fig. S4), Additionally, we examined cellular networks among all cell clusters (DGAC1 vs. DGAC2) using a 176 CellChat package that infers cell-to-cell functional interaction based on ligand-receptor expression ³⁵. Compared to DGAC2, DGAC1 showed relatively more inferred 178 interactions among different cell types (Fig. 3D). According to the differential number of interactions, the interactions between fibroblast and epithelial and endothelial cells 180 were decreased, while widespread increased interactions were found in DGAC1 181 compared to DGAC2 (Fig. 3E). Notably, exhausted T cells, as a receiver, showed the most increased interactions compared with other cell types in DGAC1 (Fig. 3F). fGSEA (fast GeneSet Enrichment Analysis) identified the pathways that are enriched in DGAC1 with six gene sets, including GOBP (Gene sets derived from the Gene Ontology 185 Biological Process), and five canonical pathways gene sets (REACTOME, WP, 186 BIOCARTA, PID, and KEGG) (fig. S5, S6). Except for REACTOME (fig. S5B), T cell-

188	related immune response pathways were enriched in DGAC1 based on the other five
189	gene sets (fig. S5A, C, S6A-C). Consistent with the Cell Chat prediction and fGSEA
190	results, DGAC1 showed the significant upregulation of T cell exhaustion markers
191	(LAG3, TIGIT, CTLA4, and HAVCR2) and the increased T cell exhaustion score,
192	compared to DGAC2 (Fig. 3G, I-K). Similarly, immune checkpoints-related genes
193	(CTLA4, PDCD1, PDCD1LG2, and CD274) and their score were markedly upregulated
194	in DGAC1 over DGAC2 (Fig. 3H, I, L, M). In addition to T cell analysis, we also
195	examined myeloid-derived suppressor cells (MDSC) and macrophage polarization. We
196	observed MDSC score was also increased in DGAC1 compared to DGAC2 while no
197	obvious changes of macrophage polarization between DGAC1 and DGAC2 (fig. S7).
198	These results suggest that compared to DGAC2, the DGAC1 subtype exhibits distinct
199	immune remodeling featured by T cell exhaustion and increased expression of the
200	genes associated with immune checkpoints.

201

202 *Cdh1* KO induces hyperplasia in the murine GOs

To validate the in silico results, we utilized murine GOs that enable multiple genetic
engineering with immediate phenotype analyses. *Cdh1* deficiency results in early-stage
DGAC phenotype in a mouse model ^{36,37}. Nevertheless, other genes need to be
included to recapitulate DGAC tumorigenesis. The genes encoding the receptor
tyrosine kinase (RTK)-RAS signaling pathway and the *TP53* gene were profoundly
altered in DGAC ^{22,38}. *KRAS* and *TP53* were genetically altered in 13.19% and 36.11%

209	of DGAC cases, respectively, as per cBioportal analysis (Fig. 4A). Therefore, we
210	genetically manipulated three genes (Cdh1, Trp53, and Kras) in GOs. Briefly, from the
211	Cdh1 wild type (WT) and Kras ^{LSL-G12D/+} ; Trp53 ^{fl/fl} mice, gastric epithelial cells were
212	isolated to culture them into GOs (Fig. 4B). Subsequently, using the Cre-LoxP
213	recombination and CRISPR-based genetic manipulation, we established two lines of
214	GOs carrying Kras ^{G12D/+} and Trp53 deletion in combination with Cdh1 KO (KP:
215	<u>K</u> ras ^{G12D/+} ; Tr <u>p</u> 53 KO [KP], Cdh1/ <u>E</u> -Cadherin KO; <u>K</u> ras ^{G12D/+} ; Tr <u>p</u> 53 KO [EKP]) (Fig. 4B).
216	Genetic modifications were validated by PCR-based genotyping and genomic DNA
217	sequencing and immunofluorescence (IF) staining (fig. S8, Fig. 4G). Meanwhile, we
218	monitored their sizes and numbers by macroscopic analyses during passages to
219	maintain the stable culture process during passages (Fig. 4C, D). Unlike WT GOs
220	growing as a single layer of epithelial cells, KP and EKP GOs displayed multilayered
221	epithelium (Fig. 4E). Notably, compared to WT and KP, EKP GOs exhibited abnormal
222	morphology such as vacuolization and cell adhesion loss along with cell hyperplasia
223	(Fig. 4E). Additionally, EKP GOs were hyperproliferative compared to WT and KP GOs,
224	assessed by immunostaining of MKI67, a cell proliferation marker (Fig. 4F, H). These
225	results suggest that in conjunction with <i>Trp53</i> KO and <i>Kras^{G12D}</i> , <i>Cdh1</i> loss is sufficient
226	to induce hyperplasia.

227

228 Cdh1 loss induces aberrant gastric epithelial cell plasticity

We next interrogated the mechanism of Cdh1 loss-associated DGAC tumorigenesis by multiplex scRNA-seq of WT, KP, and EKP GOs (fig. S9A). Each group was tagged with 230 two CMO (Cell Multiplexing Oligo) tags, then pooled together with the same number of cells after being counted. All datasets were integrated with the Harmony algorithm ³⁹ to 232 minimize the batch effect (fig. S9B). WT, KP, and EKP GOs were merged well in a batch-based UMAP (Fig. 5A). To identify the gene signature of each cell cluster, we 234 generated a heatmap to calculate the top 5,000 highly variable genes (fig. S9C). Each UMAP and heatmap represented the different cell distribution among three types of 236 GOs (Fig. 5B, C, fig. S9D-F) with distinct marker gene expression shown in the dot plot (Fig. 5D, Table S11). Notably, Aquaporin 5 (Aqp5), a gastric tissue stem cell 238 marker ⁴⁰, was decreased in EKP compared to WT and KP (Fig. 5C). Next, we determined the pathological relevance of GO models to human GAC by assessing the 240 expression of genes related to Mucins, cell stemness, and clinical GAC markers. The dot plots showed that compared to KP GOs, mucinous markers (especially, Muc1) were highly upregulated in the EKP GOs (Fig. 5E, I). Consistent with cell proportion results, the EKP GOs showed a relatively higher expression of Mki67 compared to WT and KP (Fig. 5F, K, L). The pathological diagnostic markers of human GAC include KRT7, KRT20, and CDX2 (GAC markers); MUC1, MUC2, MUC5AC (diagnostic 246 differentiation markers); SOX2 and SOX4 (undifferentiation or stemness markers). Among all panels, the expressions of *Krt7*, *Muc1*, and *Sox4* were markedly increased in EKP GOs compared to other GOs (Fig. 5G, J, fig. S10).

250	To determine the pathological relevance of EKP GOs with human DGAC, we
251	utilized a single-cell inferred site-specific omics resource (Scissor) analysis 41 and
252	assessed the transcriptomic similarity between of EKP GOs and the bulk RNA-seq data
253	of patients diagnosed with DGAC from the TCGA database. While as a reference, the
254	transcriptional signature of WT GOs was matched with that of normal stomach tissue,
255	EKP GOs displayed similar transcriptional features to that of DGAC (Fig. 5H), indicating
256	that EKP GOs are similar to the subtype of human DGAC at the level of gene
257	expression.

Having observed the significant impact of Cdh1 loss on hyperplasia (Mki67+ cell cluster) and gastric tissue stem cell marker expression (Agp5+ cell cluster), we investigated the cellular mechanism of cell transformation provoked by Cdh1 loss. We 260 analyzed WT, KP, and EKP GO scRNA-seq datasets for the cell lineage trajectory 261 inference by using the CytoTRACE algorithm ⁴². While Aqp5^{high} cell cluster served as a 262 cellular origin in WT and KP GOs, Miki67^{high} cells became the primary cellular origin of 263 EKP GOs (Fig. 5M-O), which was consistent with the cell proportion results (Fig. 5C). 264 In addition to Mki67, Hmgb2I, and Pclaf, additional markers for proliferating cells were 265 significantly increased in the proliferating cell clusters of EKP GOs, compared to those 266 of KP GOs (Fig. 5P). These results suggest that CDH1 inactivation is sufficient to 267 induce aberrant cell lineage commitment with the generation of the distinct 268 hyperplastic cellular origin.

270

271 Cdh1 KO induces immune evasion of tumor cells

Having determined distinct immune remodeling with T cell exhaustion in the DGAC1 subtype where CDH1 is downregulated (Fig. 3), we asked whether genetic ablation of 273 CDH1 contributes to immune evasion of DGAC. To test this, we established KP and 274 EKP GO-derived cell lines in 2D culture with minimum growth factors (culture medium: DMEM Complete Medium with 10% fetal bovine serum and 1% penicillinstreptomycin) for allograft transplantation (Fig. 6A). Unlike WT GOs that failed to grow 277 in 2D culture, both KP and EKP cells grew in 2D culture and were maintained well at multiple passages. Then, KP and EKP cell lines derived from C57BL/6 strain were used for transplantation into C57BL/6 mice. The morphological characteristics of KP and 280 EKP cells exhibited notable differences. KP cells exhibited a compact and tightly packed phenotype, forming densely clustered colonies, while EKP cells displayed a 282 more loosely-arranged and dispersed morphology, lacking the cohesive structure of KP cells (Fig. 6B). Of note, there was no significant difference in cell proliferation between KP and EKP cells (Fig. 6C). However, transplantation results showed that tumor incidence and volume of EKP tumors was markedly higher than KP tumors 286 (tumor incidence rates: EKP [91.7%] vs. KP [16.7%]) (Fig. 6D-F). Histologically, EKP tumors exhibited poorly differentiated tumor cells, the feature of DGAC (Fig. 6G) with 288 increased cell proliferation (Fig. 6H, M) and CDH1 loss (Fig. 6I). Compared to KP tumors, EKP tumors showed relatively increased numbers of immune cells expressing 290 PDCD-1 and TIM3 (also called HAVCR2), while cells expressing CD3, a marker for T cells, remained similar (Fig. 6J-L, N-P). These results suggest that CDH1 is a

gatekeeper restricting the immune evasion of DGAC, confirming immune landscape
 remodeling associated with the DGAC1 subtype where CDH1 is inactivated.

295

296 *Cdh1* depletion-activated EZH2 regulon promotes gastric tumorigenesis

Since CDH1 loss induced cell lineage plasticity and transcriptional reprogramming, we sought to identify key transcriptional regulatory modules (regulons) activated by Cdh1 298 depletion. We integrated the scRNA-seq datasets of WT, KP, and EKP into batch-299 based and regulon pattern-based UMAPs (Fig. 7A). In the regulon activity-based 300 UMAP, six major transcriptional clusters (0~5) were identified (Fig. 7A). With the 301 separated UMAP, we observed that WT and KP shared somewhat similar 302 transcriptional landscape. However, EKP exhibited distinct features with an increased 303 cluster 5 (Fig. 7B). To pinpoint essential regulons, we created an unbiased workflow 304 (Fig. 7C). Based on the Z score of each regulon, we identified 32 regulons specific to 305 EKP transcriptional profile, compared to those of WT and KO (Fig. 7D). Additionally, 306 regulon specificity score (RSS) analysis showed the top 20 regulons specific to EKP 307 (Fig. 7E). RSS-based top 20 regulons belonged to Z score-based regulons (Fig. 7F, 308 Table S12). Both RSS and Z-score were used to guantify the activity of a gene or set 309 of genes. Z-score was used to quantify the level of gene expression in a particular sample, while RSS was used to quantify the specificity of a gene set to a particular regulatory network or module ⁴³. According to TCGA-based upregulation in DGAC patients compared to normal stomach tissues, 13 regulons (Brca1, E2f1, E2f3, E2f7,

314	E2f8, Ezh2, Gabpa, Gtf2b, Gtf2f1, Hmga2, Pole4, Sox4, and Tfdp1) were selected (fig.
315	S11A). Next, we examined the regulons' expression in organoids datasets. Compared
316	to WT and KP, the expression of Ezh2, Gtf2b, Pole4, and Sox4 was obviously
317	increased in EKP GOs with over 40% fractions of clusters (Fig. 7G). According to the
318	regulon activity-based UMAP, Ezh2 displayed the highest score in EKP compared to
319	WT and KP GOs (Fig. 7H, fig. S11B). To assess the pathological relevance of EZH2 to
320	DGAC, we analyzed the expression of downstream target genes of EZH2 in the DGAC
321	datasets (Table S9). Compared to DGAC2 (CDH1 high), the EZH2 target gene score
322	was indeed relatively higher in DGAC1 (CDH1 loss) (Fig. 7I, J). EZH2 is a histone
323	methyltransferase catalyzing the methylation of histone H3 lysine 27 (H3K27) to
324	generate H3K27me3, which is associated with gene repression ⁴⁴ . Consistent with
325	EZH2 regulon activation by Cdh1 KO, H3K27Me3 was also increased in EKP tumors
326	compared to KP, while no significant difference in H3K27Ac expression (Fig. 7K). Next,
327	we treated EKP cells with GSK343, a specific inhibitor of EZH2 methyltransferase 45 .
328	EKP cells were more sensitive to GSK343 compared with KP for in vitro cell growth
329	(Fig. 7L). Additionally, allograft transplantation experiments showed the growth
330	inhibitory effect of GSK343 on EKP tumorigenesis (Fig. 7M-O). These results identify
331	EZH2 as a key regulon contributing to tumorigenesis of CDH1 inactivation-associated
332	DGAC.

334 **Discussion**

335

The impact of CDH1 loss on sporadic DGAC tumorigenesis remains unknown. Singlecell transcriptomics-based unsupervised clustering identified two subtypes of DGAC: DGAC1 (CDH1-negative or downregulated) and DGAC2 (CDH1-positive). Unlike DGAC2 lacking tumor-infiltrated immune cells, the DGCA1 subtype is enriched with exhausted T cells. Single-cell transcriptomics and transplantation assays showed that *Cdh1* KO induces aberrant cell plasticity, hyperplasia, accelerated tumorigenesis, and immune evasion. Moreover, EZH2 regulon specifically activated by CDH1 loss promotes DGAC tumorigenesis.

Patient stratification is crucial for improving therapeutic efficacy. Despite several studies classifying GAC patients ^{21,46-49}, such subtyping did not consider single-cell level cellular convolution, which might be insufficient to represent the full spectrum of DGAC features. Our stratification approach was based on the high dimensional transcriptional signatures at the single-cell level, immune cell profiling, and cellular network, which may complement limitations from the bulk analyses and likely better stratify DGAC patients. Indeed, our unsupervised subtyping by tumor cell transcriptome well matched with distinct immune cell properties (Fig. 3A-C). Furthermore, the application of CellChat and fGSEA analysis led to the identification of T cell-related immune profiling as the dominant feature in DGAC1 (Fig. 3D-F, fig. S5, S6). Interestingly, T cell exhaustion and immune checkpoint-related genes were notably enriched in DGAC1 compared to DGAC2 (Fig. 3G-M), confirmed by the 356 transplantation experiments (Fig. 6). These results strongly suggest that DGAC1 patients might benefit from T cell-based ICIs. Conversely, DGAC2 patients might be ICI non-responders since T cells barely exist in the tumors (Fig. 3).

360

Understanding the biology of cancer immune evasion is also imperative for improving cancer treatment. To date, how DGAC tumor cells evade immune surveillance remains elusive. Transplantation assays showed that CDH1 loss is

sufficient for immune evasion of DGAC (Fig. 6). In line with this, EKP allografts
 displayed increased expression of PDCD1 and TIM3 (Fig. 6K-L), also identified as
 molecular signatures of DGAC1 (Fig. 3G-M). These tantalizing results suggest a new
 role of CDH1 in restricting the immune evasion of tumor cells beyond its canonical role
 in cell-cell adhesion.

Previously, two distinct molecular subtypes of GAC were introduced: mesenchymal phenotype (MP) and epithelial phenotype (EP) ^{49,50}. Since only the DGAC1 subtype is linked with CDH1 downregulation and EMT (**Fig. 2A**), the DGAC1 subtype might belong to the MP subtype, which is associated with poor survival and chemotherapy resistance ⁵⁰. Unlike DGAC1, DGAC2 does not show CDH1 loss and EMT. Instead, DGAC2 is associated with RHOA activation (**Fig. 2D**), which might explain how the DGAC2 subtype also exhibits diffuse-cell morphology without CDH1 loss. It should be noted that among several genetic mutations in GAC, including DGAC and intestinal-type gastric cancer (IGC), the *CDH1* (20-30%) and *RHOA* (15-25%) mutations are dominantly found in DGAC but IGC ^{38,51,52}.

380

369

E-cadherin mediates cell-cell interaction via homophilic interaction with other Ecadherin proteins from neighboring cells. The cytoplasmic domain of E-cadherin is physically associated with Catenin proteins (α , β , γ , and p120) and actin cytoskeleton, which plays a pivotal role in maintaining epithelial cell polarity and integrity ⁵³. Unexpectedly, scRNA-seq analyses of GOs showed that Cdh1 loss aberrantly alters cell plasticity, cellular origin (from Aqp5+ to proliferating cells) (**Fig. 5M**), and cell differentiation status (**Fig. 5N, O**) with distinct transcriptional signatures (**Fig. 5E-G**). Furthermore, CDH1 loss activates EZH2 regulon and EZH2 blockade suppresses EKP tumor growth (**Fig. 7**). Therefore, it should be determined whether EZH2-induced transcriptional reprogramming mediates CDH1 loss-induced aberrant cell plasticity.

391

³⁹² EZH2 modulates gene expression in various ways: gene repression via PRC2-³⁹³ dependent histone methylation, PRC2-dependent non-histone protein methylation, or

gene activation via transcriptional activator complex. The detailed mechanisms of how 394 EZH2 is engaged in CDH1 loss-associated DGAC tumorigenesis remain to be determined. Nonetheless, given that an EZH2 inhibitor (tazemetostat) is clinically 396 available, targeting EZH2 would be a viable option for the DGAC1 subtype in addition to T cell-based ICIs. The use of epigenetic modulators has been found to enhance the 398 infiltration of effector T cells, suppress tumor progression, and improve the therapeutic 399 effectiveness of PD-L1 checkpoint blockade in prostate or head and neck cancer ^{54,55}. 400 Additionally, pharmacological inhibition of EZH2 has been shown to inhibit tumor 401 growth and enhance the efficacy of anti-CTLA-4 treatment in bladder cancer ⁵⁶. Given 402 the enriched expression of immune checkpoints in DGAC1 (Fig. 3H, M), a combination 403 404 therapy involving EZH2 inhibitors and ICIs may hold potential benefits for DGAC1 patients. 405

406

The remaining question is how CDH1 loss activates the EZH2 regulon.
Mesenchymal cells re-wire PI3K/AKT signaling to stimulate cell proliferation ⁵⁷.
Additionally, it was shown that PI3K/AKT signaling is required for EZH2 activity in *KRAS*^{G12D} mutant cells ⁵⁸. Thus, it is plausible that EMT-activated PI3K/AKT signaling
might activate EZH2. Consistent with this, compared to DGAC2, the DGAC1 subtype
shows high scores for EMT and PI3K/AKT/MTOR pathways, and EZH2 downstream
target gene expression (Fig. 2A, C, 7I, J).

414

Limitations of scRNA-seq include relatively shallow sequencing depth and restricted information not overcoming intra-tumoral heterogeneity. Thus, increasing the number of scRNA-seq datasets and spatial transcriptomics should follow in future studies. Furthermore, although this is the first stratification of DGAC by single-cell transcriptome, the pathological relevance of CDH1 status (or alternative molecular signatures; **Fig. 1L**) with ICI response remains to be clinically demonstrated.

421

422 Together, our study stratifies DGAC patients by integrative single-cell 423 transcriptomics with experimental validation and unravels an unexpected role of E-

- cadherin in restricting transcriptional reprogramming and immune evasion of DGAC,
- which provides new insight into the biology of DGAC tumorigenesis and helps improve
- immunotherapy efficacy.

428 **Author contributions**

- G.Z., Y.H., and J.-I.P. conceived and designed the experiments. G.Z., Y.H., S.Z., K.-
- P.K., K.-B.K., J.Z., and S.J. performed the experiments. G.Z., Y.H., S.Z., K.-P.K., K.-
- B.K., S.S., J.A.A., and J.-I.P. analyzed the data. M.P.P., Y.F., S.S., and J.A.A. provided
- the sequencing files and clinical data for human scRNA-seq analyses. N.N. and H.W.
- read and analyzed the stained slides. G.Z., Y.H., S.Z., K.-P.K., K.-B.K., and J.-I.P.
- 434 wrote the manuscript.
- 435
- 436

437 **Acknowledgments**

- We are grateful to Pierre D. McCrea, Malgorzata Kloc, Rachael Miller, and Adriana
- Paulucci for their insightful comments. This work was supported by the Cancer
- Prevention and Research Institute of Texas (RP200315 to J.-I.P.). The core facilities at
- 441 MD Anderson (DNA Sequencing and Genetically Engineered Mouse Facility) were
- supported by National Cancer Institute Cancer Center Support Grant (P30 CA016672).
- This work was performed at the Single Cell Genomics Core at BCM partially supported
- by NIH-shared instrument grants (S10OD023469, S10OD025240) and P30EY002520.

446 **Methods**

447 448

456

449 **Mice**

All mouse experiments were approved by the MD Anderson Institutional Animal Care

- and Use Committee and performed under MD Anderson guidelines and the
- Association for Assessment and Accreditation of Laboratory Animal Care international
- 453 standards. Compound transgenic mice *Kras^{LSL-G12D/+}*; *Trp53^{fl/fl}* (KP) mice have been
- ⁴⁵⁴ previously described ⁵⁹. C57BL/6 mice were purchased from the Jackson Laboratory
- 455 (Maine, USA).

457 Gastric organoids generation

The protocol for generating gastric organoids (GOs) was previously described ⁶⁰. The mice were sacrificed, and the mouse stomach was collected, and the forestomach was 459 removed. Then, the reserved stomach tissue was cut through the lesser curvature, and 460 the stomach was rinsed with ice-cold PBS with 1% penicillin/streptomycin to remove 461 blood. The tissue samples were carefully immersed in chelating buffer (sterile distilled 462 water with 5.6 mmol/L Na₂HPO₄, 8.0 mmol/L KH₂PO₄, 96.2 mmol/L NaCl, 1.6 mmol/L 463 KCl, 43.4 mmol/L sucrose, 54.9 mmol/L D-sorbitol, 0.5 mmol/L DL-dithiothreitol, pH 7) 464 in a 10 cm dish, then the tissue was transferred to a dry dish. The epithelial layer was 465 peeled and minced into pieces using forceps. Minced epithelial pieces were placed 466 into 10 mL cold chelating buffer, followed by robust pipetting up and down to rinse the 467 tissue until the supernatant was clear. A 20 mL chelating buffer was prepared with 10 468 mM EDTA under room temperature, and the tissue was incubated in there for 10 min. 469 The tissue was tenderly pipetted gently once up and down, and the pieces were 470 allowed to settle. The tissue was then moved to the clean bench. Most of the water 471 was removed, and the tissue pieces were carefully placed in the middle of a sterile 10 472 cm dish. A glass microscopy slide was put on top of the tissue and pressure was 473 added upon the slide until the tissue pieces seemed cloudy. The cloudy tissue pieces 474 were then flushed from the slides in 30 mL of cold Advanced DMEM/F12. The large 475 tissue fragments were allowed to sediment by gravity. The cloudy supernatant was 476 transferred to two 15 ml tubes. The tubes were then centrifuged for 5 min at 200 g and 477 4°C. The supernatant was carefully removed and resuspended with Matrigel-medium 478 mixture (12 µL Matrigel mix with 8 µL GOs culture medium/well). Approximately 40 479 glands per 20 µL Matrigel-medium mixture per well of a 48-well plate were seeded. The 480 plate was steadily transferred to the incubator to let it solidify for 10 minutes. Then, 500 481 µL of GOs culture medium was added to cover the dome, and the plate was incubated 482 at 37 °C with 5% CO2. The medium was changed every 2 days. 483

484

Gastric organoids culture

Table S1 was referred to for the culture medium ingredient. The organoids were
passaged using the following steps: 1. The culture medium was discarded. 2. The
Matrigel was scraped with a pipette tip and dissociated by pipetting. 3. The organoids
were collected from three wells (48-well) in the 15 mL tube with cold medium. 4. The
supernatant was discarded after centrifugation at 1000 RPM and 4°C. 5. The

dissociated organoids were washed with 13 mL of cold 1'PBS, centrifuged (1000 RPM, 491 4 min), and the supernatant was removed. 6. The organoids were resuspended in 1 mL of Trypsin-EDTA (0.05%). 7. The sample was transferred to a 1.7 mL Eppendorf tube, 493 then pipetted up and down. 8. The sample was incubated in a 37 °C with 5% CO2 incubator for 30 min to 45 min. 9. The tube was vibrated every 10 min. 10. The organoid structure was further broken down by pipetting up and down. **11.** The sample 496 was checked under the microscopy to ensure the organoids digested into cells. 12. 497 The sample was passed through the 35 µm cell strainer. 13. The Trypsin was 498 inactivated with 10% FBS medium and pipetted vigorously. 14. The sample was 499 collected in the 15 mL tube and centrifuged for 4 min at 1000 RPM. 15. The supernatant was aspirated and the cells were resuspended with GOs culture medium. 16. The cells were counted, viability was checked, and the appropriate number of cells was calculated. 17. Every 8 µL of cell suspension was mixed with 12 µL of Matrigel as a mixture and seeded in the 48-well plate. 18. The plate was transferred to the incubator and allowed to solidify for 10 minutes. 19. 500 µL of GOs culture medium was added to cover the dome and incubated at 37 °C with 5% CO2. 20. The medium 506 was changed every 2 days.

The organoids were cryopreserved as follows: The organoids were dissociated following above **organoid passaging (step1-15)** protocol. The cells were then added with 10% volume of DMSO and transferred to the cryovials.

511

12 CRISPR/Cas9-based gene knockout in GOs

Knockout (KO) of *Cdh1* was performed by CRISPR/Cas9 genome editing using
pLentiCRISPRv2 (Addgene plasmid #52961) according to Zhang laboratory's protocol
⁶¹. Five single guide RNA (sgRNA) targeting *Cdh1* were designed using CRISPick
(https://portals.broadinstitute.org/gppx/crispick/public) and cloned into a
pLentiCRISPRv2-puro vector. An empty sgRNA vector was used as a negative control.
The five targeting sequences against *Cdh1* were: #1: 5'-ATGAT GAAAA CGCCA
ACGGG-3', #2: 5'-ACCCC CAAGT ACGTA CGCGG-3', #3: 5'-TTACC CTACA TACAC
TCTGG-3', #4: 5'-AGGGA CAAGA GACCC CTCAA-3', and #5: 5'-CCCTC CAAAT
CCGAT ACCTG-3'. sgRNA 1# (5'-ATGAT GAAAA CGCCA ACGGG-3') was
successfully knock out *Cdh1* in GOs. See Table S2 for primer sequence to validate *Cdh1* knockout efficiency.

524

Lentivirus production and transduction

The HEK293T cells were co-transfected with 5 μ g of constructs, 5 μ g of plasmid Δ 8.2 (Plasmid #8455, Addgene), and 3 μ g of plasmid VSVG (Plasmid #8454, Addgene) in a 10 cm dish. The cells were incubated at 37°C, and the medium was replaced after 12 h. The virus-containing medium was collected 48 h after transfection. The organoids were dissociated following the **organoid passaging protocol (step 1-14)**, and the supernatant was aspirated, leaving the pellet. For transduction, 20 μ L of cell suspension was used. The amount of polybrene (8 μ g/mL) was calculated and mixed with virus-containing medium before adding to the cells. The polybrene containing virus medium was added to the cell pellet, and the cell suspension was transferred to a

1.7 mL Eppendorf Tube. The tube was centrifuged at 600 g at 37 °C for 1 h. Without disturbing the cell pellet, the tube was incubated in the 37 °C incubator for 4 h. The supernatant was then removed, and the cell pellet was resuspended with the required volume of GOs culture medium (8 μ L for one well of 48-well plate) and placed on ice for cool down. The appropriate volume of pre-thawed Matrigel (12 μ L for one well of 48well plate) was added to the tube, and the dome was seeded in the middle of a 48-well plate. The plate was then incubated for 10 min at 37 °C with 5% CO2. GOs culture medium was added to the well. After 48 h, the infected organoids were selected with 2 μ g/mL puromycin.

545 Adenovirus transduction

We used Adeno-Cre virus to treat *Kras*^{LSL-G12D/+}; *Trp53*^{fl/fl} organoids. The protocol was previously described ⁶². The cells were first dissociated from GOs as described in the **organoid passaging protocol (step 1-14)**. The cell number was counted, and the ratio of adenovirus: organoid cell was 1000 PFU/µL:1 cell. The cell suspension, viruscontaining medium, and Matrigel were mixed, and the drop was placed in the center of the well. The cell suspension and virus-containing medium were mixed before adding GOs culture medium up to 8 µL. Then, 12 µL of Matrigel was added to the mixture on ice. The plate was incubated in the 37°C cell culture incubator for 15 min to allow the Matrigel to solidify. After 48 h, the infected organoids were treated with 10 µM Nutlin-3 to select Trp53 KO organoids. The primer sequence to validate *Trp53* KO and *Kras*^{G12D/+}

557

Organoid imaging and size measurement

After 7 days of organoid seeding in Matrigel, the size of the organoids was analyzed by measuring the volume under the microscope (ZEN software, ZEISS). To reduce the vulnerability of GOs, the measurements were conducted more than 3 passages after isolation from the knockout experiments. All experiments included more than 50 organoids per group.

564

Tissue microarray

DGAC cancer tissue microarray slides contained 114 patients' samples. Patients' information is shown in Table S4.

569 Histology and immunohistochemistry

All staining was performed as previously described ⁶³. For organoids staining, 7 days after seeding, GOs were collected by dissociating Matrigel mixture using ice-cold PBS and fixed in 4% paraformaldehyde at room temperature. For tumor tissue, excised tumors were washed with ice-cold PBS and fixed with formaldehyde at room temperature. After paraffin embedding, tumor tissue and organoid sections were mounted on microscope slides. For H&E staining, sections were incubated in hematoxylin for 3-5 min and eosin for 20-40 s. After washing with tap water, slides were dehydrated, and the coverslips were mounted with mounting media. For immunofluorescence staining, after blocking with 5% goat serum in PBS for 1 hr at room temperature, sections were incubated with primary antibodies (MKI67 [1:200],

CDH1 [1:200], CD3 [1:200], PDCD1 [1:200], TIM3 [1:200],) overnight at 4 °C and 580 secondary antibody (1:250) for 1 hr at room temperature in dark. Sections were mounted with ProLong Gold antifade reagent with DAPI (Invitrogen). For immunohistochemistry staining, after blocking with 5% goat serum in PBS for 1 hr at room temperature, sections were incubated with primary antibodies (CDH1 [1:200], H3K27Me3 [1:200], H3K27Ac [1:200]) overnight at 4 °C and secondary antibody (1:250) for 1 hr at room temperature in dark. Incubate the slides in the DAB solution until tissue 586 become brown and background still white. Observed under the microscope until the strongest signal shows and stop reaction with tap water wash. Used the same incubation time for same antibody on different slides. Sections were incubated in hematoxylin for 3-5 min and mounted with mounting media. Images were captured 590 with the fluorescence microscope (Zeiss; AxioVision). See Table S3 for antibody information.

2D culture 594

The organoids were dissociated following the organoid passaging protocol (step1-595 14). The supernatant was aspirated and then resuspended with DMEM + 10% FBS 596 with 10 µM Y-27632, and the organoids were seeded on a 24-well plate. Cells were passaged every 3-5 days. After the third passage, Y-27632 was removed from the 598 culture medium. DMEM supplemented with 10% FBS and 10% DMSO was used to

- freeze cells and store them in liquid nitrogen.

Allograft assay

Five-week-old C57BL/6 mice were maintained in the Division of Laboratory Animal Resources facility at MD Anderson. 2D-cultured KP and EKP cells (1×10^6) were 604 injected subcutaneously into both flanks of mice. Tumor volume was calculated by measuring with calipers every 3-4 days (volume = $(length \times width^2)/2$). Mice were 606 euthanized, and tumors were collected at day 15. The excised tumors were photographed and paraffin-embedded for immunostaining. For GSK343 treatment, 2D-608 cultured EKP cells (1×10^6) were injected subcutaneously into both flanks of mice. After the tumors were palpable, we performed the first measurement with calipers. We 610 divided the mice into two groups of three mice each and administered DMSO and 611 GSK343 (20 mg/kg) intraperitoneally every other day. The initial tumor volumes 612 between the two groups were comparable. Tumor volume was calculated by 613 measuring with calipers every 3-4 days (volume = $(length \times width^2)/2$). Mice were 614 euthanized, and tumors were collected at day 20. 616

Cell proliferation assays 617

Cells (1×10^3) were seeded on a 60 mm dish, and the medium was replaced every 2 days. Cell proliferation was determined by crystal violet staining or Cell Counting Kit-8 619 (Dojindo Laboratories) according to the manufacturer's protocol. Plates were rinsed with $1 \times PBS$, fixed with 4% paraformaldehyde solution for 20 min, and stained with crystal violet solution (0.1% crystal violet, 10% methanol) for 20 min, followed by rinsing with tap water.

624

Gastric organoids library preparation for scRNA-seq

For scRNA-seq, organoids from WT, KP, and EKP were collected 7 days after seeding 626 and follow the organoid passaging (step1-14) protocol. After trypsin had been inactivated with 10% FBS DMEM, a single-cell suspension was collected by passing cells through a 70 µm cell strainer and followed by a 40 µm cell strainer. Each group was tagged with two CMO tags from the CellPlex kit (10× Genomics). The tagged cells of each group were pooled together with the same number of cells after being counted. Single cell Gene Expression Library was prepared according to Chromium Single Cell Gene Expression 3v3.1 kit with Feature Barcode technology for cell Multiplexing (10x Genomics). In Brief, tagged single cells, reverse transcription (RT) reagents, Gel Beads containing barcoded oligonucleotides, and oil were loaded on a Chromium controller (10x Genomics) to generate single cell GEMS (Gel Beads-In-636 Emulsions). Incubation of the GEM produced barcoded, full-length cDNA as well as barcoded DNA from the cell Multiplexing. Subsequently the GEMS are broken and pooled. Following cleanup using Dynabeads MyOne Silane Beads, full-length cDNA is amplified by PCR for library prep through fragmentation, end-repair, A-tailing, adaptor ligation and amplification, while the barcoded DNA from the cell Multiplexing is amplified for library prep via PCR to add sequencing primers. The cDNA library was sequenced on an Illumina NovaSeg platform (Novogene), mapped to the GRCm38/mm10 genome, and demultiplexed using CellRanger. The resulting count matrices files were analyzed in R (Seurat) or Python (Scanpy).

646

scRNA-seq - raw data processing, clustering, and annotation

We used Cell Ranger to perform demultiplexing and reads alignment of sequencing raw data for the scRNA-seg matrices generation. Ambient RNA and doublets were removed by SoupX ⁶⁴ and Scrublet ⁶⁵, respectively. Scanpy⁶⁶ was used for processing the scRNA-seq data. For the organoid dataset, cells with less than 50 genes expressed and more than 30% mitochondrial reads, 30% rpl reads, and 25% rps reads were removed. Genes expressed in less than 5 cells were removed. Then we normalized and log-transformed the gene expression for each cell. The percentages of mitochondrial reads, rpl reads, and rps reads were regressed before scaling the data. We reduced dimensionality and cluster the cells by Leiden (resolution=0.5). Cell lineages were annotated based on algorithmically defined marker gene expression for each cluster (sc.tl.rank genes groups, method='wilcoxon'). See Table S11, top 100 genes of each cluster were listed. For the DGAC dataset, cells with less than 100 genes expressed and more than 80% mitochondrial reads, 30% rpl reads, and 25% rps reads were removed. Genes expressed in less than 25 cells were removed. Normalization, log-661 transformation, regression, dimensionality reduction, and Leiden clustering 662 (resolution=1) were the same as the way we use in organoids. Cell lineages were annotated based on algorithmically defined marker gene expression for each cluster 664 (sc.tl.rank genes groups, method='t-test'). See Table S6, S7, and S8 for details, top 665 100 genes of each cluster or type were listed. For the DGAC dataset merged with 666 normal stomach dataset, cells with less than 100 genes expressed and more than 667 100% mitochondrial reads, 40% rpl reads, and 30% rps reads were removed. Genes

- expressed in less than 25 cells were removed. Normalization, log-transformation,
- regression, dimensionality reduction, and Leiden clustering (resolution=1) were the
- same as the way we use in organoids. Cell lineages were annotated based on
- algorithmically defined marker gene expression for each cluster
- (sc.tl.rank_genes_groups, method='t-test'). See Table S10 for details, top 100 genes of
- each cluster were listed. More information about the software and algorithms used in
- this study is shown in Table S13.
- 676

677 Cell lineage trajectory analysis

- ⁶⁷⁸ We use the CytoTRACE ⁴² kernel of CellRank ⁴² to predict a pseudotemporal ordering ⁶⁷⁹ of cells from initial states to terminal states for the organoid dataset. Briefly, scRNA-
- seq matrices were pre-processed in the same way as Scanpy did until the step of log-
- transformation. Then, CytoTRACE kernel was called to compute the cytotrace
- pseudotime and cell fate trajectories (n_pcs=30, n_neighbors=10). GPCCA estimator
- was initiated and the scRNA-seq matrices was performed a Schur decomposition.
- Next, the terminal (backward=False, n_states=3 and initial (backward=True,
- n_states=1) macro-states were optimized based on the best eigenvalues with high
- confidence (>0.95), respectively. Finally, the CellRank corrected and cytotrace
- ⁶⁸⁷ pseudotime directed PAGA ⁶⁷ were generated.
- 688

Proportion difference analysis

- 690 The cell number of each cluster were retrieved by Scanpy
- (adata.obs['leiden'].value_counts()). We analyzed and plotted the differences between
 clusters from the two datasets using the GraphPad Prism 9.4. Then we grouped each
- cell cluster from the integrated dataset and compared the cluster differences between the two datasets.
- 695

696 **Regulon analysis**

For the gene regulatory network inference in organoids, we used the pySCENIC package ⁶⁸ to compute the specific regulons for each cell cluster. The Loom file of each organoid dataset was used, and the regulon pattern-based UMAP was redrawn based on the AUCell scoring method ⁶⁹. Regulon specificity score (RSS) ⁷⁰ and Z score were used to determine how specific the regulon is for one certain cell cluster. More specific the regulon is, the higher RSS or Z score is for one certain cluster. Following the criteria that RSS and Z score should be high at the same time, we identified 20 regulons that specific to EKP. These processes were repeated five times in each organoid dataset (WT, KP, and EKP).

706

⁷⁰⁷ Scissor analysis

- To determine the pathology of murine organoids, we compared the transcriptomic
- similarity of the organoids scRNA-seq dataset and the bulk RNA-seq datasets of
- ⁷¹⁰ DGAC patients by Scissor package ⁴¹. The RNA-seq data of tumor and the adjacent
- normal samples of DGAC patients were downloaded from the GDC data portal (TCGA-
- STAD). The murine genes were converted to human homologs by biomaRt. The
- Scissor analysis was performed by using the Cox regression model (alpha = 0.32).

714

715 Cell-cell communication analysis

'CellChat' ⁷¹ package in R (https://www.r-project.org) was used to analysis the ligand receptor interaction-based cell-cell communication in scRNA-seq datasets. The
 integrated dataset was processed, clustered, and annotated using the scanpy package
 ⁷² in python, then transformed into .rds files. Transformed datasets were analyzed by
 CellChat with default parameters (p-value threshold = 0.05).

722 Pathway score analysis

Pathway score was analyzed by Scanpy ⁷² with the 'scanpy.tl.score_genes' function ⁶⁶.
 The analysis was performed with default parameters and the reference genes from the
 gene ontology biological process or the Kyoto Encyclopedia of Genes and Genomes
 database ^{73,74}. The gene list for the score analysis is shown in Table S9.

727

Human scRNA-seq data analysis

The scRNA-seq data set of 20 DGAC patients' samples (Patients information is shown

in Table S5) has been previous reported from our group and the detailed clinical and

- ⁷³¹ histopathological characteristics are described (EGAS00001004443) ²⁶. The scRNA-seq
- ⁷³² data set of the 29 normal adjacent stomachs (GSE150290) ³⁴ was extracted from the
- Gene Expression Omnibus (GEO) database and analyzed with Scanpy and Python ⁷².
- The 20 DGAC patients' datasets were integrated and clustered by Scanpy ⁷² for the
- ⁷³⁵ subclassification of DGACs based on CDH1 inactivation. The 20 DGAC patients'
- datasets and 29 normal adjacent stomachs were integrated and clustered in Scanpy
 for later infercnvpy analysis. "Harmony" ⁷⁵ algorithm was used to remove batch effects.
- Then, the dendrogram and correlation matrix heatmap were plotted with Scanpy ⁷². The
- Then, the dendrogram and correlation matrix heatmap were plotted with Scanpy '².
 dendrogram shows the distance of each dataset based on principal component
- analysis, and the correlation matrix heatmap shows Pearson correlation by a color
 spectrum.
- 741

743 Copy number variation analysis

To detect the genomic stability of groups DGAC1, DGAC2, and DGAC3, we performed

- copy number variations (CNVs) inference from the gene expression data using the
- Python package infercnvpy (https://icbi-lab.github.io/infercnvpy/index.html). We
- performed infercnvpy on DGAC1, DGAC2, and DGAC3 using the Normal group (29
- ⁷⁴⁸ human normal adjacent stomachs) as reference. The gene ordering file which is
- containing the chromosomal start and end position for each gene was created from the
- human GRCh38 assembly. The GRCh38 genomic positions annotated file was
- downloaded from <u>https://support.10xgenomics.com/single-cell-gene-</u>
- expression/software/downloads/latest. Infercnvpy was used to plot chromosome
 heatmap and CNV scores in the UMAP.
- 753

Gene set enrichment analysis (GESA)

- GSEA was conducted via the R package "fgsea" ⁷⁶ according to the DEG list generated
- by Scanpy. The enrichment value was calculated and plotted with the fgsea package
- 758 (permutation number = 2,000).

759

760 Public sequencing database

All TCGA cancer patients' sequencing data referenced in this study were obtained from

- the TCGA database at cBioPortal Cancer Genomics (<u>http://www.cbioportal.org</u>).
- 763

64 Data availability

scRNA-seq data are available via the GEO database (GSE226266; log-in token for

- 766 reviewers: **###).**
- 767

Code availability

- The code used to reproduce the analyses described in this manuscript can be
- accessed via GitHub (https://github.com/jaeilparklab/EKP_DGAC_project) and will also
- 771 be available upon request.
- 772

773 Statistical analyses

- GraphPad Prism 9.4 (Dogmatics) was used for statistical analyses. The Student's *t*-test
- was used to compare two samples. The one-way ANOVA was used to compare
- multiple samples. *P* values < 0.05 were considered statistically significant. Error bars
- indicate the standard deviation (s.d.) otherwise described in Figure legends.

778

780 **References**

- Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* **71**, 209-249 (2021). https://doi.org:10.3322/caac.21660
- Iyer, P., Moslim, M., Farma, J. M. & Denlinger, C. S. Diffuse gastric cancer:
 histologic, molecular, and genetic basis of disease. *Transl Gastroenterol Hepatol*5, 52 (2020). https://doi.org:10.21037/tgh.2020.01.02
- Chen, Y. C. *et al.* Clinicopathological Variation of Lauren Classification in Gastric Cancer. *Pathol Oncol Res* 22, 197-202 (2016). <u>https://doi.org:10.1007/s12253-</u>015-9996-6
- Korivi, B. R. *et al.* Intestinal and diffuse gastric cancer: a retrospective study
 comparing primary sites. *Clin Imaging* 56, 33-40 (2019).
 https://doi.org:10.1016/j.clinimag.2019.03.002
- Nie, R. C. *et al.* Clinicopathological Characteristics and Prognostic Value of
 Signet Ring Cells in Gastric Carcinoma: A Meta-Analysis. *J Cancer* 8, 3396-3404
 (2017). https://doi.org:10.7150/jca.21017
- Sanjeevaiah, A., Cheedella, N., Hester, C. & Porembka, M. R. Gastric Cancer:
 Recent Molecular Classification Advances, Racial Disparity, and Management
 Implications. *J Oncol Pract* 14, 217-224 (2018).
- 799 https://doi.org:10.1200/JOP.17.00025
- Henson, D. E., Dittus, C., Younes, M., Nguyen, H. & Albores-Saavedra, J.
 Differential trends in the intestinal and diffuse types of gastric carcinoma in the
 United States, 1973-2000: increase in the signet ring cell type. *Arch Pathol Lab Med* 128, 765-770 (2004). <u>https://doi.org:10.5858/2004-128-765-DTITIA</u>
- 804 8 van der Kaaij, R. T. *et al.* A population-based study on intestinal and diffuse type
 805 adenocarcinoma of the oesophagus and stomach in the Netherlands between
 806 1989 and 2015. *Eur J Cancer* **130**, 23-31 (2020).
- 807 <u>https://doi.org:10.1016/j.ejca.2020.02.017</u>
- Ajani, J. A. *et al.* Gastric Cancer, Version 2.2022, NCCN Clinical Practice
 Guidelines in Oncology. *J Natl Compr Canc Netw* 20, 167-192 (2022).
 https://doi.org:10.6004/jnccn.2022.0008
- Muro, K. *et al.* Pan-Asian adapted ESMO Clinical Practice Guidelines for the
 management of patients with metastatic gastric cancer: a JSMO-ESMO initiative
 endorsed by CSCO, KSMO, MOS, SSO and TOS. *Ann Oncol* **30**, 19-33 (2019).
 https://doi.org:10.1093/annonc/mdy502
- 11 Garcia-Pelaez, J., Barbosa-Matos, R., Gullo, I., Carneiro, F. & Oliveira, C.
 Histological and mutational profile of diffuse gastric cancer: current knowledge
 and future challenges. *Mol Oncol* **15**, 2841-2867 (2021).
 https://doi.org:10.1002/1878-0261.12948
- Hironaka, S. *et al.* Randomized, open-label, phase III study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe
 peritoneal metastasis after failure of prior combination chemotherapy using
 fluoropyrimidine plus platinum: WJOG 4007 trial. *J Clin Oncol* **31**, 4438-4444
 (2013). https://doi.org:10.1200/JCO.2012.48.5805

824	13	Sym, S. J. et al. Salvage chemotherapy with biweekly irinotecan, plus 5-
825		fluorouracil and leucovorin in patients with advanced gastric cancer previously
826		treated with fluoropyrimidine, platinum, and taxane. Am J Clin Oncol 31 , 151-
827		156 (2008). https://doi.org:10.1097/COC.0b013e31815878a2
828	14	Selim, J. H., Shaheen, S., Sheu, W. C. & Hsueh, C. T. Targeted and novel
829		therapy in advanced gastric cancer. Exp Hematol Oncol 8. 25 (2019).
830		https://doi.org:10.1186/s40164-019-0149-6
831	15	Korfer, J., Lordick, F. & Hacker, U. T. Molecular Targets for Gastric Cancer
832		Treatment and Future Perspectives from a Clinical and Translational Point of
833		View. Cancers (Basel) 13 (2021). https://doi.org:10.3390/cancers13205216
834	16	Mazzarella, L. et al. The evolving landscape of 'next-generation' immune
835		checkpoint inhibitors: A review. <i>Eur J Cancer</i> 117 , 14-31 (2019).
836		https://doi.org:10.1016/j.ejca.2019.04.035
837	17	Boku, N. et al. Nivolumab in previously treated advanced gastric cancer
838		(ATTRACTION-2): 3-year update and outcome of treatment beyond progression
839		with nivolumab. Gastric Cancer 24, 946-958 (2021).
840		https://doi.org:10.1007/s10120-021-01173-w
841	18	Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus
842		chemotherapy alone for advanced gastric, gastro-oesophageal junction, and
843		oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label,
844		phase 3 trial. Lancet 398, 27-40 (2021). https://doi.org:10.1016/S0140-
845		<u>6736(21)00797-2</u>
846	19	Wainberg, Z. A. et al. Efficacy of Pembrolizumab Monotherapy for Advanced
847		Gastric/Gastroesophageal Junction Cancer with Programmed Death Ligand 1
848		Combined Positive Score >/=10. Clin Cancer Res 27, 1923-1931 (2021).
849		https://doi.org:10.1158/1078-0432.CCR-20-2980
850	20	Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying Cancers Based
851		on T-cell Infiltration and PD-L1. Cancer Res 75, 2139-2145 (2015).
852		https://doi.org:10.1158/0008-5472.CAN-15-0255
853	21	Ge, S. et al. A proteomic landscape of diffuse-type gastric cancer. Nat Commun
854		9, 1012 (2018). <u>https://doi.org:10.1038/s41467-018-03121-2</u>
855	22	Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes
856		associated with distinct clinical outcomes. Nat Med 21, 449-456 (2015).
857		https://doi.org:10.1038/nm.3850
858	23	Lei, Z. et al. Identification of molecular subtypes of gastric cancer with different
859		responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 145 ,
860		554-565 (2013). https://doi.org:10.1053/j.gastro.2013.05.010
861	24	Hansford, S. et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1
862		Mutations and Beyond. JAMA Oncol 1, 23-32 (2015).
863		https://doi.org:10.1001/jamaoncol.2014.168
864	25	van Roy, F. & Berx, G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life
865		Sci 65, 3756-3788 (2008). https://doi.org:10.1007/s00018-008-8281-1

866	26	Wang, R. et al. Single-cell dissection of intratumoral heterogeneity and lineage
867		diversity in metastatic gastric adenocarcinoma. Nat Med 27, 141-151 (2021).
868		https://doi.org:10.1038/s41591-020-1125-8
869	27	Gunes, A. et al. Thioredoxin interacting protein promotes invasion in
870		hepatocellular carcinoma. Oncotarget 9 , 36849-36866 (2018).
871		https://doi.org:10.18632/oncotarget.26402
872	28	Li, Y. et al. Hypoxia induced high expression of thioredoxin interacting protein
873		(TXNIP) in non-small cell lung cancer and its prognostic effect. Asian Pac J
874		Cancer Prev 16, 2953-2958 (2015).
875		https://doi.org:10.7314/apjcp.2015.16.7.2953
876	29	Gao, Y. et al. Decreased expression of TXNIP predicts poor prognosis in
877		patients with clear cell renal cell carcinoma. Oncol Lett 19 , 763-770 (2020).
878		https://doi.org:10.3892/ol.2019.11165
879	30	Mascarenhas, J. B. et al. EVL is a novel focal adhesion protein involved in the
880		regulation of cytoskeletal dynamics and vascular permeability. Pulm Circ 11,
881		20458940211049002 (2021). https://doi.org:10.1177/20458940211049002
882	31	Hu, L. D., Zou, H. F., Zhan, S. X. & Cao, K. M. EVL (Ena/VASP-like) expression is
883		up-regulated in human breast cancer and its relative expression level is
884		correlated with clinical stages. Oncol Rep 19 , 1015-1020 (2008).
885	32	Yang, H. et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-
886		induced antitumor immunity. <i>Nat Med</i> 25 , 1428-1441 (2019).
887		https://doi.org:10.1038/s41591-019-0566-4
888	33	Ooki, A. & Yamaguchi, K. The dawn of precision medicine in diffuse-type gastric
889		cancer. Ther Adv Med Oncol 14 , 17588359221083049 (2022).
890		https://doi.org:10.1177/17588359221083049
891	34	Kim, J. et al. Single-cell analysis of gastric pre-cancerous and cancer lesions
892		reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis Oncol 6,
893		9 (2022). <u>https://doi.org:10.1038/s41698-022-00251-1</u>
894	35	Jin, S. et al. Inference and analysis of cell-cell communication using CellChat.
895		Nat Commun 12 , 1088 (2021). <u>https://doi.org:10.1038/s41467-021-21246-9</u>
896	36	Mimata, A., Fukamachi, H., Eishi, Y. & Yuasa, Y. Loss of E-cadherin in mouse
897		gastric epithelial cells induces signet ring-like cells, a possible precursor lesion
898		of diffuse gastric cancer. Cancer Sci 102 , 942-950 (2011).
899		https://doi.org:10.1111/j.1349-7006.2011.01890.x
900	37	Hayakawa, Y. et al. Mist1 Expressing Gastric Stem Cells Maintain the Normal
901		and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem
902		Cell Niche. Cancer Cell 28, 800-814 (2015).
903		https://doi.org:10.1016/j.ccell.2015.10.003
904	38	Cancer Genome Atlas Research, N. Comprehensive molecular characterization
905		ot gastric adenocarcinoma. <i>Nature</i> 513 , 202-209 (2014).
906	00	nttps://doi.org:10.1038/nature13480
907	39	Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
908		WITH Harmony. INat IVIEthods 16, 1289-1296 (2019).
909		<u>nttps://aoi.org:10.1038/s41592-019-0619-0</u>

910	40	Tan, S. H. et al. AQP5 enriches for stem cells and cancer origins in the distal
911		stomach. Nature 578, 437-443 (2020). https://doi.org:10.1038/s41586-020-
912		<u>1973-x</u>

- Sun, D. *et al.* Identifying phenotype-associated subpopulations by integrating
 bulk and single-cell sequencing data. *Nat Biotechnol* 40, 527-538 (2022).
 <u>https://doi.org:10.1038/s41587-021-01091-3</u>
- Gulati, G. S. *et al.* Single-cell transcriptional diversity is a hallmark of developmental potential. *Science* 367, 405-411 (2020).
 https://doi.org:10.1126/science.aax0249
- 43 Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. *Genome Res* **26**, 920 990-999 (2016). <u>https://doi.org:10.1101/gr.200535.115</u>
- Lee, M. G. *et al.* Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. *Science* **318**, 447-450 (2007). https://doi.org:10.1126/science.1149042
- 45 Verma, S. K. *et al.* Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2. *ACS Med Chem Lett* **3**, 1091-1096 (2012). <u>https://doi.org:10.1021/ml3003346</u>
- 46 Tong, M. *et al.* Phosphoproteomics Enables Molecular Subtyping and Nomination of Kinase Candidates for Individual Patients of Diffuse-Type Gastric Cancer, *iScience* **22**, 44-57 (2019), https://doi.org;10.1016/j.jscj.2019.11.003
- 47 Kim, S. K. *et al.* Identification of a molecular signature of prognostic subtypes in
 diffuse-type gastric cancer. *Gastric Cancer* 23, 473-482 (2020).
 https://doi.org:10.1007/s10120-019-01029-4
- Fukamachi, H. *et al.* A subset of diffuse-type gastric cancer is susceptible to
 mTOR inhibitors and checkpoint inhibitors. *J Exp Clin Cancer Res* 38, 127
 (2019). <u>https://doi.org:10.1186/s13046-019-1121-3</u>
- 49 Wang, R. *et al.* Multiplex profiling of peritoneal metastases from gastric
 adenocarcinoma identified novel targets and molecular subtypes that predict
 treatment response. *Gut* 69, 18-31 (2020). <u>https://doi.org:10.1136/gutjnl-2018-</u>
 318070
- Oh, S. C. *et al.* Clinical and genomic landscape of gastric cancer with a
 mesenchymal phenotype. *Nature Communications* 9, 1777 (2018).
 https://doi.org:10.1038/s41467-018-04179-8
- 51 Kakiuchi, M. *et al.* Recurrent gain-of-function mutations of RHOA in diffuse-type
 gastric carcinoma. *Nat Genet* 46, 583-587 (2014).
 https://doi.org:10.1038/ng.2984
- Wang, K. *et al.* Whole-genome sequencing and comprehensive molecular
 profiling identify new driver mutations in gastric cancer. *Nat Genet* 46, 573-582
 (2014). <u>https://doi.org:10.1038/ng.2983</u>
- McCrea, P. D. & Park, J. I. Developmental functions of the P120-catenin subfamily. *Biochim Biophys Acta* **1773**, 17-33 (2007).
 https://doi.org:10.1016/j.bbamcr.2006.06.009

953	54	Jadhav, R. R. et al. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as
954		resource cells during chronic viral infection and respond to PD-1 blockade. Proc
955		Natl Acad Sci U S A 116 , 14113-14118 (2019).
956		https://doi.org:10.1073/pnas.1903520116
957	55	Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells
958		through epigenetic remodeling. Science 372 (2021).
959		https://doi.org:10.1126/science.aba1786
960	56	Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion.
961		Nat Rev Immunol 15, 486-499 (2015). https://doi.org:10.1038/nri3862
962	57	Salt, M. B., Bandyopadhyay, S. & McCormick, F. Epithelial-to-mesenchymal
963		transition rewires the molecular path to PI3K-dependent proliferation. Cancer
964		Discov 4, 186-199 (2014). https://doi.org:10.1158/2159-8290.CD-13-0520
965	58	Riquelme, E. et al. Modulation of EZH2 Expression by MEK-ERK or PI3K-AKT
966		Signaling in Lung Cancer Is Dictated by Different KRAS Oncogene Mutations.
967		Cancer Res 76 , 675-685 (2016). <u>https://doi.org:10.1158/0008-5472.CAN-15-</u>
968		<u>1141</u>
969	59	Kim, M. J. et al. PAF remodels the DREAM complex to bypass cell quiescence
970		and promote lung tumorigenesis. <i>Mol Cell</i> 81 , 1698-1714 e1696 (2021).
971	~~	https://doi.org:10.1016/j.molcel.2021.02.001
972	60	Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and
973		their responses to bacterial infection. Gastroenterology 148 , 126-136 e126
974	01	(2015). <u>https://doi.org:10.1053/j.gastro.2014.09.042</u>
975	61	Ran, F. et al. Genome engineering using the CRISPR-Casy system. Nature
976	60	protocols 8 , 2281-2308 (2013).
977	62	KO, K. P., Zhang, J. & Park, J. I. Establishing transgenic munne esophageai
978		organolds. STAR Protoc 3, 101317 (2022).
979	62	Imps.//doi.org.10.1016/j.xpr0.2022.101317
980	03	Julig, T. S. <i>et al.</i> Deregulation of Chap-controlled Cytoskeleton Initiates
981		https://doi.org/10.1038/c/1556.018.0215.7
982	64	Voung M D & Bebiati S SounX removes ambient BNA contamination from
900	04	droplet-based single-cell RNA sequencing data. <i>Gigascience</i> 9 (2020)
904		https://doi.org/10.1093/gigascience/giaa151
986	65	Wolock S. L. Lopez B & Klein A M Scrublet: Computational Identification of
987	00	Cell Doublets in Single-Cell Transcriptomic Data, Cell Syst 8, 281-291 e289
988		(2019), https://doi.org:10.1016/i.cels.2018.11.005
989	66	Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
990		expression data analysis. Genome Biology 19 , 15 (2018).
991		https://doi.org:10.1186/s13059-017-1382-0
992	67	Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory
993		inference through a topology preserving map of single cells. Genome Biol 20, 59
994		(2019). https://doi.org:10.1186/s13059-019-1663-x

995	68	Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene
996		regulatory network analysis. Nat Protoc 15, 2247-2276 (2020).
997		https://doi.org:10.1038/s41596-020-0336-2
998	69	AUCell: Identifying cells with active gene sets,
999		< <u>https://bioconductor.org/packages/release/bioc/vignettes/AUCell/inst/doc/AU</u>
1000		<u>Cell.html</u> > (2022).
1001	70	Suo, S. et al. Revealing the Critical Regulators of Cell Identity in the Mouse Cell
1002		Atlas. <i>Cell Rep</i> 25 , 1436-1445 e1433 (2018).
1003		https://doi.org:10.1016/j.celrep.2018.10.045
1004	71	Jin, S. et al. Inference and analysis of cell-cell communication using CellChat.
1005		Nature communications 12 , 1-20 (2021).
1006	72	Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
1007		expression data analysis. <i>Genome Biol</i> 19 , 15 (2018).
1008		https://doi.org:10.1186/s13059-017-1382-0
1009	73	Kanehisa, M. Toward pathway engineering: a new database of genetic and
1010		molecular pathways. S <i>ci. Technol. Jap.</i> 59 , 34-38 (1996).
1011	74	Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene
1012		Ontology Consortium. <i>Nat Genet</i> 25 , 25-29 (2000).
1013		https://doi.org:10.1038/75556
1014	75	Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
1015		with Harmony. <i>Nature method</i> s 16 , 1289-1296 (2019).
1016	76	Korotkevich, G. et al. Fast gene set enrichment analysis. BioRxiv, 060012 (2021).
1017		
1018		

Figure Legends

-1	$\cap \cap \cap$	
	020	

Figure 1. CDH1 inactivation in DGAC patient tumors

- A. Genetic alteration of the CDH1 based on the cBioPortal stomach cancer datasets (http://www.cbioportal.org). DGAC, diffuse-type gastric adenocarcinoma; SRCC, signet ring cell carcinoma; TAC, tubular adenocarcinoma; STAD, stomach adenocarcinoma; MAC, mucinous adenocarcinoma; PAC, papillary adenocarcinoma.
- **B, C.** IHC staining of CDH1 in 114 DGAC patient tumor samples. The representative images are shown (B). Quantification of H score of CDH1 expression (C). *P* values were calculated using the one-way ANOVA; error bars: standard deviation (SD). Clinical information of 114 DGAC patients was showed in Table S4.
- D. Merged batch-based integrated UMAPs of 20 DGAC patients; integration
 package: Harmony. Clinical information of 20 DGAC patients was showed in
 Table S5.
- **E.** Merged Leiden-based integrated UMAP of 20 DGAC patients. Dashed line circle: epithelial cells. Epi: Epithelial cells; Myeloid: myeloid cells; Effector T: effector T cells; Naïve T: Naïve T cells; Exhausted T: Exhausted T cells.
- F. Merged cell type-based UMAP of 20 DGAC patients. All cells were re-clustered according to the Leiden clusters and gathered as mega clusters. Dashed line circle: epithelial cells.
- **G.** Epithelial cells were clustered by Leiden.
- H. Correlation matrix plot of epithelial cells showing pair-wise correlations among all samples above. The dendrogram shows the distance of each dataset based on principal component analysis, and the Pearson correlation is displayed with a color spectrum. Groups of patients were categorized by dendrogram and correlation.
- **I.** Merged and separated UMAPs of DGAC1 and DGAC2.
- J. Feature plots of epithelial cells displaying *CDH1* expression.
- **K.** Dot plots of epithelial cells of *CDH1* expression in different DGAC groups and individual patients.
 - L. Molecular signatures of DGAC1 and DGAC2 patients. Dot plots of epithelial cells of each gene in different subtypes and individual patient.

Figure 2. Molecular characterization of DGAC subtypes

A-H. Dot plots of EMT (A), FGFR2 (B), PI3K_AKT_MTOR (C), RHOA (D), MAPK (E), HIPPO (F), WNT (G), and TGFBETA (H) scores in two DGAC types. *P* values

1057 1058	were calculated by using a <i>t</i> -test. The genes included in each score are listed in Table S9.
1059	 Merged batch-based UMAP of 29 adjacent normal stomach tissue (Normal tissue)
1060	and 20 DGAC patients. Total cell numbers are 90455. Integration package:
1061	Harmony.
1062	J. Merged Leiden-based integrated UMAPs of 29 adjacent normal stomach tissue
1063	(Normal tissue) and 20 DGAC patients. Epi: Epithelial cells; Myeloid: myeloid
1064	cells; Effector T: effector T cells; Naïve T: Naïve T cells; Exhausted T: Exhausted
1065	T cells. Top 100 genes of each cluster were showed in Table S10.
1066	K. Merged cell type-based UMAP of 29 Normal tissue and 20 DGAC patients. All
1067	cells were re-clustered according to the Leiden clusters and gathered as mega
1068	clusters. Dashed line-circle: epithelial cells.
1069	L. Separated UMAPs of Normal tissue and two types of DGACs. Dashed line-circle:
1070	epithelial cells.
1071	M. CNV scores projected into the UMAP of the scRNA-seq dataset from adjacent
1072	normal stomach tissue, DGAC1, and DGAC2. Red: copy number gain (CNG);
1073	blue: copy number loss (CNL).
1074	N. Leiden-based CNV plot showing the distribution of genomic alterations (gains
1075	and loss) in DGAC1 and DGAC2 compared with adjacent normal stomach tissue
1076	(Normal). Dark blue: CNV score low; yellow: CNV score high.
1077 1078 1079	O. Statistics analysis of CNV score among Normal, DGAC1, and DGAC2. P values were calculated using the one-way ANOVA; error bars: SD.
1080	Figure 3. Comparative analyses of immune landscapes of DGAC subtypes
1081	A-B. Leiden-based and cell type-based UMAPs of DGAC1 and DGAC2.
1082	C. Absolute and relative cell proportions of individual patients and DGAC subtypes.
1083	Patients list was ranked by the DGAC group that they belong.
1084	D. Total cell-cell interactions (upper) and interaction strength (lower) from DGAC1
1085	and DGAC2 were analyzed by using the CellChat package. More interactions
1086	were found in DGAC1.
1087 1088 1089 1090 1091 1092	E-F. Differential number of interactions between DGAC1 and DGAC2 using circle plots (E) and heatmap (F). Red (or blue) colored edges (E) and squares (F) represent increased (or decreased) signaling in the DGAC1 compared to DGAC2. The interaction between fibroblast and epithelial cells, and endothelial cells were decreased in DGAC1 compared to DGAC2, while the interaction of other cell types were increased.
1093 1094	G-H. Dot plots of exhausted T cell score (markers are included in that score: <i>LAG3</i> , <i>TIGIT</i> , <i>CTLA4</i> , and <i>HAVCR2</i>) and immune checkpoint score (markers are

included in that score: *CTLA4*, *PDCD1*, *PDCD1LG2*, and *CD274*). Genes that included in score analysis were showed in Table S9.

- **I.** Cell type-based UMAP of 20 DGAC patients.
- J-L. Feature plots of exhausted T cell score and immune checkpoint score in
 DGAC1 and DGAC2. *P* values were calculated using the Student's *t*-test; error
 bars: SD.
- **K, M.** Dot plot of exhausted T cell score-related (K) and immune checkpoint (M)related marker genes.
- 1103

Figure 4. Establishment of genetically engineered gastric organoids with CDH1inactivation

- **A.** Genetic alteration of the *KRAS*, and *TP53* genes based on the cBioportal.
- B. Illustration of the workflow for stomach tissue collection and dissociation, gene manipulation of the gastric organoids (GOs), GOs culture, and representative image of GOs. Three GO lines were generated, including WT, KP, and EKP. WT mice and KP mice were sacrificed to collect stomach tissue. After removing forestomach, stomach tissue was dissociated into single cell and culture as organoids. Adeno-Cre virus was used to treat *Kras^{LSL-G12D}; Trp53^{fl/fl}* organoids to generate KP organoids, followed by nutlin-3 selection. After selection, EKP organoids were generated using CRISPR-mediated *Cdh1* KO from KP GOs.
- C. Representative images of WT, KP, and EKP GOs at passage day 8. Scale bar:
 200 μm.
- **D.** Growth analysis for WT, KP, and EKP GOs in two passages at day 8 of each passage. P values were calculated using the one-way ANOVA; error bars: SD. ns: non-significant; **: P < 0.01; ***: P < 0.001. Numbers below each label represent the number of organoids.
 - **E.** Hematoxylin and eosin (H & E) staining of WT, KP, and EKP GOs.
- **F.** MKI67 staining of WT, KP, and EKP GOs (n=5).
- **G.** CDH1 staining of WT, KP, and EKP GOs.
- **H.** Statistics analysis of MKI67 staining (Figure 4F). *P* values were calculated using the one-way ANOVA; error bars: SD. The representative images are shown.
- 1126

Figure 5. scRNA-seq-based comparative analyses of genetically engineered GOs

- **A.** Batch-based UMAPs of WT, KP, and EKP GOs. The Harmony integration package was used to remove the batch effect.
- **B.** Leiden-based clustering UMAPs of WT, KP, and EKP GOs. Cell clusters were named by the top expressed genes.

1132 1133	C. Cell proportion analysis of WT, KP, and EKP GOs. Each color represents a different cell type. The color code is based on the cell types shown in Figure 5B.
1134 1135 1136 1137	D-G. Dot plot of marker genes (D), mucinous markers (E), and gastric epithelium stemness markers (F), and human DGAC-related diagnostic markers (G) in each cluster of WT, KP, and EKP GOs. <i>Krt7</i> , <i>Muc1</i> , and <i>Sox4</i> were enriched in EKP GOs.
1138 1139 1140	H. Batch-based and Scissor-based UMAP of WT and EKP GOs generated by Scissor package. TCGA datasets of normal stomach and DGAC patients were utilized.
1141 1142	I-L. Feature plots of significant up or down regulated markers (Muc1, Krt7, Mki67, and Aqp5) from Figure 5E-G.
1143 1144 1145	M. CytoTRACE–based cell lineage trajectory analysis of scRNA-seq datasets (WT, KP, and EKP GOs). Cells were clustered using the "Leiden" algorithm, the CytoTRACE and Scanpy packages (n_neighbors = 15, n_pcs = 50).
1146 1147	N. CytoTRACE pseudotime analysis of WT, KP, and EKP GOs. Cells-of-origin clusters were marked with larger dots in the lower panel.
1148 1149 1150	O. PAGA analysis of WT, KP, and EKP GOs was performed and visualized with CytoTRACE package. Cells-of-origin clusters were marked with red circle. Arrows represent the differentiation trajectory.
1151 1152	P. Feature plots of <i>Hmgb2</i> and <i>Pclaf</i> . P values were calculated by using Wilcoxon rank-sum.
1153	
1154 Fig	gure 6. CDH1 KO promotes KP-driven gastric tumorigenesis
1155	A. Illustration of the workflow for 2D culture and subcutaneous transplantation.
1156	B. Bright-field images of KP and EKP cells in low and high magnification.
1157	C. Crystal violet staining of KP and EKP GOs-derived cells.
1158 1159	D. Bright-field images of KP and EKP allograft tumors; tumor incidence of allograft tumors.
1160 1161	E, F. Plot for tumor mass (E) and tumor size (F) assessment of KP and EKP allografts.
1162	G. H & E staining of KP and EKP allograft tumors.
1163 1164 1165	 H-L. MKi67, E-Cadherin, CD3, PDCD1, and TIM3 staining of KP and EKP allograft tumors (n≥3). Left images: low magnification. Right images: high magnification. Scale bars were shown on the representative images.
1166 1167	M-P. Statistics analysis of MKi67, CD3, PDCD1, and TIM3 staining in Figure 6H, J-L. <i>P</i> values were calculated using Student's <i>t</i> -test; error bars: SD.
1168	

1169	Figure 7. CDH1 KO-activated EZH2 promotes gastric tumorigenesis
1170 1171	A. Integrated batch-based and regulon pattern-based UMAP for WT, KP, and EKP GOs. Six transcriptional modules were identified.
1172	B. Separated regulon patterns based UMAP for WT, KP, and EKP GOs.
1173	C. Flow chart of regulons selection process.
1174 1175	D. Regulons enriched in WT, KP, and EKP GOs, based on Z Score. 32 regulons were highly expressed in EKP samples compared to WT and KP.
1176 1177 1178	E. Regulons enriched in WT, KP, and EKP GOs, based on Regulon Specificity Score (RSS). The top 20 were selected by Z score. The whole regulon list based on RSS was showed in Table S12.
1179 1180	F. Venn diagram for the regulons from figure 7D and 7E. 20 regulons were overlapped.
1181 1182	G. Dot plot of the regulons (WT, KP and EKP GOs) increased in TCGA DGAC patients.
1183 1184	H. Regulon activity-based UMAP of Ezh2 in WT, KP, and EKP GOs. The cells with lighter color represent regulated by Ezh2.
1185 1186 1187	I-J. Dot plot and feature plots of EZH2 downstream target genes scores in the epithelial cells of DGAC1 and DGAC2. Gene list of EZH2 targeted genes was listed in Table S9.
1188 1189	K. The level of H3K27Ac and H3K27Me3 expression in KP and EKP allografts. Quantification was displayed.
1190	L. Crystal violet staining of KP and EKP cells after GSK343 (EZH2 inhibitor, 96 hrs).
1191 1192 1193 1194 1195 1196	M-O. Allograft transplantation of EKP cells followed by EZH2 inhibition. Bright-field images of EKP allograft tumors treated with DMSO and GSK343 (20 mg/kg) separately (M). Tumor mass of EKP allografts treated with DMSO and GSK343 (20 mg/kg) after mice scarification (N). Tumor growth curve of EKP allografts treated with DMSO and GSK343 (20 mg/kg) after cell subcutaneous transplantation (O).
1197	P values were calculated using Student's <i>t</i> -test; error bars: SD.
1198	
1199	
1200	

1201 Supplementary Figures

1202

Supplementary Figure S1. The way of clustering scRNA-seq datasets of 20 DGAC patients

- A. Dot plots of epithelial cell, myeloid cell, B cell, plasma cell, T cell, effector T cell, naïve T cell, exhausted T cell, fibroblast, and endothelial cell markers in merged
 20 DGAC patients scRNA-seq data.
- **B.** Leiden-based heatmap of all cells of merged datasets with annotation in 20 DGAC patients. Top 100 genes of each cluster were showed in Table S6.
 - **C.** Leiden-based heatmap of epithelial cells of merged datasets in 20 DGAC patients. Top 100 genes of each cluster were showed in Table S7.
 - **D.** Type-based heatmap of epithelial cells of merged datasets in 20 DGAC patients. Top 100 genes of each type were showed in Table S8.
- 1214

Supplementary Figure S2. DGAC specific pathway scores in DGAC subtypes.

A-H. Violin plots and feature plots of EMT, FGFR2, PI3K_AKT_MTOR, RHOA,
 MAPK, HIPPO, WNT, and TGFBETA score in DGAC1 and DGAC2. The genes
 that are included in each score are listed in Table S9. *P* values of each pathway
 between DGAC1 and DGAC2 were showed in Figure 2A-2H with dot plot.

Supplementary Figure S3. scRNA-seq analysis of 20 DGAC patients and 29 adjacent normal stomach tissue

- **A.** Dot plots of epithelial cell, myeloid cell, B cell, plasma cell, T cell, effector T cell, naïve T cell, exhausted T cell, fibroblast, and endothelial cell markers in merged 20 DGAC patients and 29 adjacent normal stomach tissue scRNA-seq data.
- B. Annotated Leiden-based integrated UMAPs of 20 DGAC patients and 29 adjacent normal stomach tissue. Epi: Epithelial cells; Myeloid: myeloid cells; Effector T: effector T cells; Naïve T: Naïve T cells; Exhausted T: Exhausted T cells; Endothelial: Endothelial cells.
- C. Type-based heatmap of all cells of merged datasets in 20 DGAC patients and 29 adjacent normal stomach tissue.
- 1232

Supplementary Figure S4. Individual cell type-based UMAP of each DGAC patient

- A-B. Individual cell type-based UMAP of the patients in DGAC1 and DGAC2.
 DGAC1 patients were enriched with stromal cells, mainly T cells. DGAC2
 patients were enriched with epithelial cells.
- 1237

Supplementary Figure S5. fGSEA analysis of DGAC1 compared with DGAC2 based on GOBP, REACTOME, and WP datasets.

- A-C. fGSEA analysis of DGAC1 compared with DGAC2 based on GOBP (A),
 REACTOME (B), and WP (C) datasets. GOBP: Gene ontology biological process;
 REACTOME: Reactome gene sets; WP: WikiPathways gene sets. Pathways
 related with immune response were enriched in DGAC1 based on GOBP and
 WP.
- 1245

Supplementary Figure S6. fGSEA analysis of DGAC1 compared with DGAC2 based on BIOCARTA, PID, and KEGG datasets.

- A-C. fGSEA analysis of DGAC1 compared with DGAC2 based on BIOCARTA (**A**), PID (**B**), and KEGG (**C**) datasets. BIOCARTA: BioCarta gene set; PID: PID gene sets; KEGG: KEGG gene sets. Pathways related with immune response were enriched in DGAC1 based on all three datasets.
- 1252

Supplementary Figure S7. Comparative analyses of the expression of macrophage polarization and myeloid-derived suppressor cell markers of Normal tissue and DGAC patients

A-B. Dot plot of macrophage polymerization markers in DGAC1 and DGAC2. No significant difference of M1 markers between DGACs. For M2 markers, except for VEGFA was enriched in DGAC1, there were no significant difference of other M2 markers between DGACs.

- C-D. Dot plot (C) and violin plot (D) of myeloid-derived suppressor cell (MDSC)
 score in DGAC1 and DGAC2. DGAC1 has higher MDSC score. *P* values were
 calculated by using a *t*-test. Gene list for calculate MDSC score was showed in
 Table S9.
- 1264

1265 Supplementary Figure S8. Validation of genetic engineering

Genotyping results of KP organoids. After adeno-Cre treatment, KP organoids lost *Trp53*, while KrasG12D was activated in KP organoids. After *Cdh1* CRISPR knock out (KO), we performed sanger sequencing to compare the sequence of *Cdh1* in WT and EKP. The five targeting sequences against *Cdh1* were showed in methods **CRISPR/Cas9-based gene knockout in GOs'**. The primers used for genotyping were showed in Table S2.

1272

Supplementary Figure S9. scRNA-seq analysis of mouse GOs

- A. Illustration of the workflow for stomach tissue collection and dissociation, gene
 manipulation of the gastric organoids (GOs), sample preparation of multiplex
 scRNA sequencing.
- **B.** Workflow of single cell library preparation.
- **C.** Heatmap of each cell clusters of merged datasets, including WT, KP, and EKP.
- **D-F.** Separate heatmap of each cell clusters of WT, KP, and EKP datasets, respectively.
- 1281

Supplementary Figure S10. Feature plots of mucinous, stemness, and diagnostic markers in WT, KP, and EKP GOs

- **A-C.** Feature plots of mucinous markers, gastric epithelium stemness markers, and DGAC-related diagnostic markers in WT, KP, and EKP organoids.
- D. P values of the feature plots from figure S10A-S10C. P values were calculated by using Wilcoxon rank-sum. Red marked P values were significant ones (less than 0.05).
- Supplementary Figure S11. EKP-specific regulons expression in the TCGA DGAC
 dataset and regulon activity-based UMAPs
- **A.** The expression of 20 regulons in TCGA DGAC patients and normal stomach.
- **B.** Regulon activity based UMAP of Gtf2b, Pole4, and Sox4. *P* values were calculated by using the Student's *t*-test; error bars: SD.

Figure book and the properties of the properties

Figure was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure book Rxiv preprint doi: https://doi.org/10.1101/2023.03.23.533976; this version posted April 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Naive T2 Naive T3

- 0

-2

-2

C

_2

Supplementation of the province of the provinc

bioRxiv preprint dei: https://doi.org/10.1101/2023.03.23.533976; this version posted April 4, 2023. The copyright holder for this preprint (which available under aCC-BY-NC-ND 4.0 International license.

~		GOBP DIGESTION		2.08	5 1e-12	2 20-09	
				1 71	3 50 11	1 10 08	
				2.07	1.60.10	2 90 09	
				2.07	1.00-10	1.00-00	
				1.00	1.30-17	4.20-00	g
				1.05	1.30-07	1.30-05	AC
				1.64	1.2e-07	1.3e-05	
				1.82	1.4e-07	1.4e-05) -
		GOBP_TIGHT_JUNCTION_ORGANIZATION		1.90	3.6e-07	3.3e-05	1
0		GOBP_RESPONSE_TO_WOUNDING		1.47	1.4e-06	1.1e-04	
BI		GOBP_PANCREAS_DEVELOPMENT		1.87	1.8e-06	1.4e-04	
ğ		GOBP_POSITIVE_REGULATION_OF_LEUKOCYTE_CELL_CELL_ADHESION		-2.06	6.0e-12	2.3e-09	1
		GOBP_LEUKOCYTE_CELL_CELL_ADHESION		-1.93	6.6e-12	2.3e-09	1
		GOBP_B_CELL_ACTIVATION		-1.98	7.3e-13	3.5e-10	1
		GOBP_B_CELL_RECEPTOR_SIGNALING_PATHWAY	1100	-2.70	3.8e-15	2.1e-12	_
	GOBP_	ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC_RECOMBINATION_OF NE RECEPTORS BUILT FROM IMMUNOGLOBULIN SUPERFAMILY DOMAINS		-2.13	1.1e-15	7.2e-13	GA
	_	GOBP_LYMPHOCYTE_MEDIATED_IMMUNITY		-2.22	3.6e-16	3.3e-13	3
		GOBP_IMMUNE_RESPONSE_REGULATING_CELL_		-2.14	3.8e-16	3.3e-13	
		GOBP_ACTIVATION_OF_IMMUNE_RESPONSE		-2.20	4.2e-16	3.3e-13	
		GOBP_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY	101 min +	-2.45	1.0e-16	2.0e-13	
		GOBP_CYTOPLASMIC_TRANSLATION		-3.25	8.2e-37	3.2e-33	
В		Pathway	Gene ranks	NES	pval	padj	
		REACTOME_CELL_JUNCTION_ORGANIZATION	••••••••••••••••••••••••••••••••••••••	2.21	1.8e-13	1.1e-11	
		REACTOME_CELL_CELL_COMMUNICATION		2.06	1.3e-11	6.9e-10	1
		REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION		1.76	2.8e-10	1.4e-08	
		REACTOME_COLLAGEN_FORMATION	No 1	2.02	3.4e-09	1.6e-07	_
		REACTOME_CELL_CELL_JUNCTION_ORGANIZATION	• • • • • • • • • • • •	2.04	3.2e-08	1.4e-06	DGAC2
		REACTOME_BIOLOGICAL_OXIDATIONS		1.78	6.0e-08	2.5e-06	
		REACTOME_PHASE_I_FUNCTIONALIZATION_OF_COMPOUNDS		1.92	9.4e-08	3.8e-06	
		REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE		1.93	1.2e-07	4.7e-06	
	Ξ	REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX		1.85	1.7e-07	6.2e-06	
	2	REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_ AND_OTHER_MULTIMERIC_STRUCTURES	N	1.99	1.8e-07	6.5e-06	
	AC	REACTOME_TRANSLATION		-2.75	1.6e-31	1.5e-29	
	RE	REACTOME_NONSENSE_MEDIATED_DECAY_NMD	18188	-3.27	3.4e-33	3.7e-31	
		REACTOME_CELLULAR_RESPONSE_TO_STARVATION	h 100 miles and 100 miles and 100 miles	-3.19	5.1e-35	6.2e-33	
		REACTOME_RESPONSE_OF_EIF2AK4_GCN2_TO_AMINO_ACID_DEFICIENCY	linni i ee e i ee e	-3.39	2.7e-36	3.7e-34	
		REACTOME_SIGNALING_BY_ROBO_RECEPTORS		-3.11	1.7e-36	2.8e-34	B
		REACTOME_REGULATION_OF_EXPRESSION_OF_SLITS_AND_ROBOS		-3.15	4.9e-38	9.5e-36	Ā
		REACTOME_SELENOAMINO_ACID_METABOLISM		-3.40	2.6e-38	6.4e-36	-
		REACTOME_EUKARYOTIC_TRANSLATION_INITIATION		-3.36	6.8e-39	2.2e-36	1
		REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_ PROTEIN TARGETING TO MEMBRANE	1.81.1.000.1.1.000.000	-3.46	6.1e-43	3.0e-40	D
		REACTOME_EUKARYOTIC_TRANSLATION_ELONGATION	1.01 · · · · · · · · · · · · · · · · · · ·	-3.53	3.8e-45	3.7e-42	1
C		Pathway	Gene ranks	NES	pval	padi	
V		WP NUCLEAR RECEPTORS METAPATHWAY		1 70	2 1e-08	1 6e-06	
				1.85	2.6e-07	1.00 00	
				1.85	4.5e-06	1.90-04	
				1.00	1.00-00	2.86.02	
				1.62	1 10 04	2.00-03	Þ
				1.00	1.10-04	2.00-03	3AC
	V			1.05	1.50-04	3.40-03	N
				1.00	1.50-04	5.40-03	
				1.61	2.66-04	5.5e-03	
		WP_ELECTRON_TRANSPORT_CHAIN_OXPHOS_SYSTEM_IN_MITOCHONDRIA WP_TYPE_L_COLLAGEN_SYNTHESIS_IN_THE		1.69	3.0e-04	5.7e-03	
	Ę	CONTEXT_OF_OSTEOGENESIS_IMPERFECTA		1.78	4.1e-04	7.3e-03	
	-			-2.21	8.9e-06	3.1e-04	
		WP_CHEMOKINE_SIGNALING_PATHWAY		-1.72	9.1e-06	3.1e-04	
		WP_CANCER_IMMUNOTHERAPY_BY_PD1_BLOCKADE	····	-2.33	3.0e-06	1.4e-04	
		DURING_STAPHYLOCOCCUS_AUREUS_INFECTION		-2.11	1.6e-06	8.5e-05	_
		WP_TCELL_ACTIVATION_SARSCOV2		-2.06	2.9e-07	1.7e-05	DGA
		WP_ALLOGRAFT_REJECTION		-2.36	1.3e-09	1.3e-07	<u>3</u>
		WP_PATHOGENESIS_OF_SARSCOV2_MEDIATED_BY_NSP9NSP10_COMPLEX	11.1	-2.58	9.6e-11	1.1e-08	1
		WP_PATHOGENESIS_OF_SARSCOV2_MEDIATED_BY_NSP9NSP10_COMPLEX WP_TCELL_RECEPTOR_TCR_SIGNALING_PATHWAY	ана с на р Парана се	-2.58 -2.46	9.6e-11 1.6e-11	1.1e-08 2.5e-09	
		WP_PATHOGENESIS_OF_SARSCOV2_MEDIATED_BY_NSP9NSP10_COMPLEX WP_TCELL_RECEPTOR_TCR_SIGNALING_PATHWAY WP_MODULATORS_OF_TCR_SIGNALING_AND_T_CELL_ACTIVATION	1.1	-2.58 -2.46 -2.58	9.6e-11 1.6e-11 3.5e-12	1.1e-08 2.5e-09 8.3e-10	

0 4 8 12 16 x10³

В

		Pathway	Gene ranks	NES	pval	padj	
		BIOCARTA_NUCLEARRS_PATHWAY		1.70	1.6e-03	1.7e-02	
		BIOCARTA_P53HYPOXIA_PATHWAY	b and 1999 and	1.63	6.7e-03	5.8e-02	
		BIOCARTA_TFF_PATHWAY	h 10	1.59	6.3e-03	5.8e-02	
		BIOCARTA_WNT_PATHWAY		1.58	9.1e-03	6.8e-02	
		BIOCARTA_PDZS_PATHWAY	h	1.55	1.1e-02	7.8e-02	DG
		BIOCARTA_HIF_PATHWAY	1	1.56	2.0e-02	1.4e-01	AC2
		BIOCARTA_EFP_PATHWAY	B	1.39	7.9e-02	4.1e-01	
		– – BIOCARTA HER2 PATHWAY	1	1.35	9.8e-02	4.7e-01	
	4	BIOCARTA AGR PATHWAY	here was a	1.34	1.0e-01	4.8e-01	
	RT	BIOCARTA CARM ER PATHWAY	h	1 30	1 4e-01	5 5e-01	
	СA			1.00	4 10 04	5 60 03	
	30 Sio		1.00.00	-1.97	2.70.04	5.00-03	
				-1.90	2.76-04	4.00-03	
		BIOCARTA_STATHMIN_PATHWAY		-2.00	1.66-04	2.70-03	
		BIOCARTA_IL7_PATHWAY		-2.03	1.4e-04	2.7e-03	
		BIOCARTA_INFLAM_PATHWAY		-2.07	1.1e-04	2.4e-03	GA
		BIOCARTA_NKT_PATHWAY		-2.20	6.5e-06	1.8e-04	3
		BIOCARTA_NO2IL12_PATHWAY	1.11.11	-2.24	1.2e-06	4.1e-05	
		BIOCARTA_TCR_PATHWAY	1 8 ANN - 1 100	-2.28	6.2e-07	2.8e-05	
		BIOCARTA_CTLA4_PATHWAY	1.000	-2.36	9.8e-08	6.6e-06	
		BIOCARTA_CSK_PATHWAY		-2.46	4.1e-10	5.6e-08	
		Dethway	Cono ronko	NES	nyal	podi	
			Gene ranks	NES	pvai	padj	
				2.00	1.40.07	2.40-00	
			1	2.00	2.50.05	5.70.04	
				1.02	2.00-00	1.60.02	
				1.55	1.00-03	2 00-02	
	PID	ECADHERIN STABILIZATION PATHWAY		1.71	1.3C-03	2.0C-02	GAC
	110_			1.69	2 1e-03	2.20.02	C2
				1.60	2.5e-03	2.40 02 2.7e-02	
		PID FGF PATHWAY		1.62	4 6e-03	4 7e-02	
•		PID ARE6 TRAFFICKING PATHWAY		1.60	6.0e-03	5.8e-02	
ЫС		PID BCR 5PATHWAY		-1.59	7.0e-03	6.4e-02	
		PID IL27 PATHWAY	1.1.00.1.000	-1.95	1.9e-03	2.4e-02	
		PID_IL2_1PATHWAY	-	-1.81	5.5e-04	9.1e-03	
		PID_FCER1_PATHWAY	1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-1.75	4.4e-04	8.0e-03	
		PID_CXCR4_PATHWAY		-1.73	1.4e-04	2.9e-03	DG,
		PID_IL12_STAT4_PATHWAY	11011-0-04	-2.27	1.1e-05	2.9e-04	5 2
	PI	D_CD8_TCR_DOWNSTREAM_PATHWAY	b	-2.23	8.7e-07	2.6e-05	
		PID_IL12_2PATHWAY	l 1996 1998	-2.57	9.3e-11	5.6e-09	
		PID_TCR_PATHWAY	li	-2.61	1.6e-11	1.5e-09	
		PID_CD8_TCR_PATHWAY	1000 e e o og	-2.68	3.7e-12	6.7e-10	
		Pathway	Gene ranks	NES	nval	nadi	
	K	EGG CARDIAC MUSCLE CONTRACTION		1.89	2.2e-06	3.2e-05	
		KEGG_TIGHT_JUNCTION		1.80	2.1e-06	3.2e-05	
		KEGG_ECM_RECEPTOR_INTERACTION		1.86	3.4e-06	4.5e-05	
KEGG_METABO	LISM_OF_	XENOBIOTICS_BY_CYTOCHROME_P450	· · · · ·	1.90	4.7e-06	5.7e-05	
ARRHYTHMOGENIC	RIGHT_VI	ENTRICULAR_CARDIOMYOPATHY_ARVC		1.84	1.1e-05	1.3e-04	DĢ
		1.85	2.1e-05	2.0e-04	AC2		
		1.75	2.2e-05	2.0e-04			
		1.70	3.5e-05	3.0e-04			
		1.80	1.0e-05	5.5e-04			
	1.000	-2.19	1.4e-06	2.3e-05			
		-2.40	3.2e-07	6.1e-06			
к		-2.13	4.3e-08	9.1e-07			
	I	-2.42	3.3e-08	8.2e-07			
KEGG_PRIMARY_IMMUNODEFICIENC				-2.53	9.7e-09	2.8e-07	DC
	• • • • • • •	-2.64	1.6e-10	5.3e-09	AC		
KEGG_NAT	110 - 12 - 1	-2.34	6.9e-11	3.0e-09			
			-2.64	3.6e-11	2.1e-09		
KEGG RIROSOM				-2.67	1.4e-11 6.9e-41	1.20-38	
		REGO_RIDOGUME	0 4 8 1216	x10 ³	3.36-41	1.20-30	

KEGG

С

KEGG

Primer set 2: Kras G12D Mutant (Before Cre)

Supplementate tifed grade review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

EKP vs WT EKP vs KP 0.8165 0.9994 0.2042 0.0105 0.9036 8.96E-14 0.0336 0.0001 2.36E-63 3.49E-131 0.3643 2.81E-13 0.5387

0.04

- 0.03 - 0.02 - 0.01 - 0.00

в

Sox4