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Comparison of manual 
and machine learning image 
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on the tongue
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Human taste perception is associated with the papillae on the tongue as they contain a large 
proportion of chemoreceptors for basic tastes and other chemosensation. Especially the density of 
fungiform papillae (FP) is considered as an index for responsiveness to oral chemosensory stimuli. 
The standard procedure for FP counting involves visual identification and manual counting of specific 
parts of the tongue by trained operators. This is a tedious task and automated image analysis methods 
are desirable. In this paper a machine learning image processing method based on a convolutional 
neural network is presented. This automated method was compared with three standard manual 
FP counting procedures using tongue pictures from 132 subjects. Automated FP counts, within the 
selected areas and the whole tongue, significantly correlated with the manual counting methods (all 
ρs ≥ 0.76). When comparing the images for gender and PROP status, the density of FP predicted from 
automated analysis was in good agreement with data from the manual counting methods, especially 
in the case of gender. Moreover, the present results reinforce the idea that caution should be applied in 
considering the relationship between FP density and PROP responsiveness since this relationship can 
be an oversimplification of the complexity of phenomena arising at the central and peripherical levels. 
Indeed, no significant correlations were found between FP and PROP bitterness ratings using the 
automated method for selected areas or the whole tongue. Besides providing estimates of the number 
of FP, the machine learning approach used a tongue coordinate system that normalizes the size and 
shape of an individual tongue and generated a heat map of the FP position and normalized area they 
cover. The present study demonstrated that the machine learning approach could provide similar 
estimates of FP on the tongue as compared to manual counting methods and provide estimates of 
more difficult-to-measure parameters, such as the papillae’s areas and shape.

The ability to detect and differentiate between food-derived chemical stimuli is mediated by receptor cells within 
taste buds1, which primarily reside within the tongue taste papillae (fungiform, foliate and circumvallate). Among 
them, the fungiform papillae (FP) are the anatomical structures foremost involved in the detection and transduc-
tion of oral and somatosensory stimuli. Given the double innervation of FP, these anatomical structures has been 
selected as one of the phenotypic markers of taste sensitivity, due to their relative abundance and accessibility 
on the tongue anterior part, their association with the density of taste buds2,3 and the higher inter-individual 
variability in their number and shape among human subjects.

Moreover, Several studies have reported on the positive correlation between the density of FP and the per-
ceived intensity of the bitter substance 6-n-propylthiuracil (PROP)4–8, the other extensively accepted phenotypical 
marker of taste responsiveness. Indeed, subjects characterized by a higher responsiveness to this compound, i.e. 
the PROP super-tasters, present at the same time a high number of FP5. However, more recent studies, involving 
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large population samples, have failed to find a relationship between the density of FP and responsiveness to 
chemosensory stimuli9,10. These contradicting results could be due to issues related to the FP-identification and 
-counting methodology11–13.

Video-microscopy was the first non-invasive technique used to assess the density of FP in a clinical setting2,3,14. 
However, this method has several disadvantages, since it is difficult to apply outside of a clinical setting and takes 
up to 60 min to collect images14–16. A suitable substitute for video-microscopy is the digital photography, the 
most recent and widely used technique for FP density assessment17. This method is based on the visual inspec-
tion of high-resolution digital pictures of blue-stained tongues16, followed by manual counting by operators 
trained according to the Denver Papillae Protocol guidelines11. The adoption of this standardized protocol can 
improve consistency among operators, but not fully remove the bias associated with the papillae counts18. Thus, 
visual inspection of digital pictures remains subjected to researcher bias and it is restricted to specific areas of the 
tongue. Furthermore, manual counting is limited in other parameters of the papillae such as the papilla shape, 
surface area and density across other parts of the tongue.

Recently, automated methods to detect FP from digital images have been proposed12,17,19,20, demonstrating 
the increasing interest in this issue. However, most of these methods still have some limitations related to (i) 
their raw counting accuracies; (ii) requiring images to be taken under very specific conditions; and (iii) limited 
robustness to papillae with non-typical appearance.

A more versatile method for analysis of digital tongue pictures would be the alignment in position and 
projection onto a standardized fixed tongue in analogue to brain- and organ-image analysis. On this basis, we 
suggested the use of convolutional neural networks based on state-of-the-art deep learning.

The deep learning method allows the algorithm to automatically learn how to extract, understand, and gener-
alize papillae from raw and noisy data21. One of the most popular deep learning models is currently Convolution 
Neural Networks (CNN)22 which has been applied for both medical image characterization and segmentation 
(see23 for a review). CNN follows the same principle of hierarchical feature learning of the visual cortex. Simi-
larly to the animal visual cortex, CNN exploits spatially- local correlation by forcing a local connectivity pattern 
between neurons of the adjacent layers. Practically, CNN applies numerous convolution filters in order to create 
original image feature maps, which represent its hidden layers. Furthermore, high-level features are extracted 
by working upon these layer by layer these feature maps. The extracted features from the last layers are either 
sampled or the convolution process is turned to generate segmentation maps24.

Specifically, the present study describes a novel automated procedure for counting and evaluating FP based 
on CNN. The relationships between automated method response and manual counting were investigated. FP 
distribution greatly varies depending on the area of the count (e.g. FP on the tongue tip will tend to be higher 
in number than those counted in more posterior tongue regions). Thus, the present paper compared, for both 
manual and automated procedures, the counts derived from the area located at 1 cm from the tongue tip along 
the median line, considering the differences in terms of area and shape (circular or squared). Moreover, the 
final goal is to improve papillae segmentation to such an extent that we will not only be able to get more reliable 
counts, but also open up the possibility of using other difficult-to-measure parameters, such as the papillae’s 
areas and shape, for future research.

Results
Assessment of the segmentation results.  The F1-score, AUC measure and Cohen’s Kappa for our 
segmentation results are reported in Table 1. These scores are standard measures for assessing segmentation 
performance: the F1-score considers both precision and recall, providing a fair score even when there is a large 
class-imbalance; AUC stands for “Area Under the Curve”, where the curve in this case is the Receiver Operating 
Characteristics, and it measures the model’s separability of the classes; Cohen’s Kappa measures inter-rater reli-
ability and accounts for the chance of random agreement between the rates. To ensure this assessment is consist-
ent with the rest of the paper, we only made comparisons against the 10 ground-truth masks that were manually 
annotated by the same expert who performed the FP counting. Furthermore, leave-2-out cross-validation was 
used when producing the segmentation masks to avoid information leak.

Descriptive statistics of manual and automated counts.  The distribution of FP across the 132 sub-
jects using the manual counts tended all to a non-normal distribution (Manual count in ED1: W = 0.97, p < 0.05; 
Manual count in ED2: W = 0.95, p < 0.001; Manual count in ED3: W = 0.96, p < 0.001), with data skewed to the 
right.

Before any analysis related to automated counting was performed, we went through the images and removed 
20 images with major quality issues. The distribution of FPD across the 112 subjects using the automated counts 
in the selected area tended all to a normal distribution (Automated count in ED1: W = 0.99, p = 0.62; Automated 
count in ED2: W = 0.99, p = 0.23, Automated count in ED3: W = 0.99, p = 0.32).

Descriptive statistics of manual and automated FP counts are reported in Table 2.

Table 1.   Performance measures of the segmentation results.

F1 AUC-ROC Kappa

Papillae segmentation 0.72499 0.89365 0.72125

Tongue segmentation 0.96675 0.99104 0.96116
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Comparison between manual and automated counts.  A comparison between automated and man-
ual counts within the selected areas and the whole tongue (TOT) has been performed through Spearman’s cor-
relation analysis (see Table 3).

The correlation between the manual and automated counts has also been evaluated by plotting them against 
each other (see Fig. 1).

The green and red lines in each subplot of Fig. 1 represent the ideal line ( y = x ) and the linear regression 
respectively. Together, they showed a clear visual correlation between the automated and manual counts for all 
three regions. A similar trend can be found when looking at the spearman’s coefficients in each region, with ED3 
being the lowest at ρs = 0.76, ED1 in the middle at ρs = 0.77, and ED2 the highest at ρs = 0.78.

To be thorough with the evaluation, we then repeated the plotting above using counts extracted from the 10 
masks manually annotated by the same expert who performed the counting. The results are plotted in Fig. 2. For 
all three regions (ED1–3), the correlation is highest when comparing counts extracted from the manual annota-
tions and computer segmentation. The correlation between manual counting and manual annotation, on the 
other hand, is only marginally better than the correlation between manual counting and computer segmentation. 

Table 2.   Descriptive statistics of papillae density from manual count (Manual ED1–ED3) and automated 
image analysis (Automated ED1–ED3). a Counting method according to Nachtsheim and Schlich7. b Counting 
method according to Masi et al.34. c Counting method according to Essick et al.5. d Non-tasters. e Medium tasters. 
f Supertasters.

Manual Automated

Descriptive statistics ED1a ED2b ED3c ED1 ED2 ED3

Min 8 6 31 7.3 5 27

Max 32.3 32.5 142 32.0 30.5 123

Mean 17.6 14.5 72.6 17.3 15.4 75.5

Standard deviation (Std) 4.9 4.9 20.0 4.2 4.4 17.2

PROP status

NTd (mean ± Std) 16.3 ± 4.3 13.5 ± 4.6 67.9 ± 18.7 17.8 ± 3.2 16.0 ± 3.7 78.5 ± 15.2

MTe (mean ± Std) 17.1 ± 4.9 14.1 ± 5.0 70.7 ± 18.9 17.1 ± 4.3 15.3 ± 4.3 75.1 ± 16.9

STf (mean ± Std) 19.0 ± 5.2 15.5 ± 4.9 77.7 ± 21.5 17.3 ± 4.7 15.2 ± 5.0 74.6 ± 18.8

Table 3.   Correlations among manual and automated counts: spearman’s correlation matrix (n = 112). Values 
in bold represent significant correlations between manual and its respective automated count in each selected 
area. a Counting method according to Nachtsheim and Schlich7. b Counting method according to Masi et al.34. 
c Counting method according to Essick et al.5. d TOT refers to total image area.

Manual Automated

TOTdED1a ED2b ED3c ED1 ED2 ED3

Manual

ED1 1 .66*** .80*** .77*** .69*** .66*** .37***

ED2 1 .65*** .58*** .78*** .55*** .24**

ED3 1 .67*** .66*** .76*** .38***

Automated

ED1 1 .83*** .87*** .51***

ED2 1 .79*** .42***

ED3 1 .46***

TOTd 1

Figure 1.   Automated counts plotted against manual counts in selected areas (ED1–3).



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18694  | https://doi.org/10.1038/s41598-020-75678-2

www.nature.com/scientificreports/

This suggests that there is a difference between how we count and annotate when it comes to choosing what to 
include and exclude.

The correlations among taste function phenotypic measures (PROP and FP counts, both manual and auto-
mated) were also tested. PROP bitterness ratings were positively correlated to the manual counts in ED1-ED3, 
albeit the magnitude of this association was very low (in all selected area ρs < 0.2, p < 0.05) whereas no significant 
correlations were found between FP automated counts, neither the whole tongue nor PROP bitterness rat-
ings. An objective-based evaluation of our model has been made, where we compared its ability to distinguish 
between different PROP taster status classes with that of the manual counts (non-tasters, NT; medium tasters, 
MT, supertasters, ST). To check if the manual counts and automated counts are detecting the same pattern, we 
first plotted the distributions of mean FP counts computed from bootstrapping each PROP taster status class in 
Fig. 3. The results showed that manual and automated counts detected the same patterns for gender but are not 
in full agreement for PROP taster status.

In the case of gender, a higher mean FP count was consistently observed in females than males by both 
counting methods across all selected areas. Judging from the medians of the mean distributions for gender, the 
automated model seemed to systematically overcount by approximately 1 – 2 papillae in ED1 and ED2 and by 4 
papillae in ED3 as compared with the manual counts.

Regarding the relationship between PROP taster status and FP, the manual method detected higher mean FP 
counts in supertasters than non-tasters, whereas the automated method failed to detect any difference between 
the two groups, as shown by the significant overlap between their mean distributions. Upon closer inspection of 
the median values of the mean distributions, we can see that in ED2 and ED3, the automated counts for super-
tasters match the manual counts quite well, whereas medium tasters and non-tasters were slightly overcounted by 
the automated method, especially for ED1. The weakly contradicting conclusions reached for PROP non-tasters 

Figure 2.   Comparisons against the manual papillae annotations used to train our model. The subset of 10 
annotations used here are drawn by the same expert who performed the papillae counting.
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and supertasters are thus caused by our model’s tendency to overcount FP in non-tasters as compared to manual 
counting. Several counting experiments were carried out to obtain a more detailed understanding of why this 
happened. We started by recounting a randomly sampled subset of non-tasters and supertasters to check the 
precision in manual counting (Fig. 4a,b).

The recounting of subsets of non-tasters and supertasters has shown that while the precision is quite high 
for supertasters, the mean distribution for non-tasters shifted right by 1 papilla in the recounting. Although this 
does not change the conclusion reached by the manual method, it does suggest that the actual difference between 
non-tasters and supertasters may not be as large as previously shown in Fig. 3.

To test the statistical significance of the observed difference in mean FP count between females and males, a 
bootstrapped permutation test was performed, and its results are plotted below. Given uncertainties associated 
with the PROP results, we would only consider the gender category from this point on.

Figure 3.   The bootstrapped mean distributions of PROP taster status groups.
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As shown in Fig. 5a–c, both automated and manual counts were able to reject the null hypothesis in all three 
regions of interest. However, the permutation test results of manual counts are still more accurate (i.e. presents 
lower variability) than that of the automated counts.

Discussion
The present study describes a novel automated procedure for counting and evaluating the number of fungiform 
papillae (FP) based on state-of-the-art deep learning. The determination of the number of FP is an important 
measure in sensory science research since this measure has been used as index of taste sensitivity in general.

The majority of studies in the literature manually count the number of FP in a small region on the anterior 
tongue tip. Recently, automated methods to detect FP from digital images have been proposed. Sanyal and 
colleagues12 proposed the first attempts at using computers to automatically analyze tongue papillae. The authors 
designed an algorithm using the TongueSim suite of software, which allowed them to measure the FP density 
and other properties, such as the degree of roundness of each papilla. The algorithms proposed in that study 
appeared generally robust in the identification and counting of FP. However, their algorithm seemed to present 
poor prediction in the lowest range of papillae counts, probably due to the very few number of pictures (n = 9) 
used to validated the model. Valencia and colleagues20, designed an algorithm that allowed the user to manu-
ally select a rectangle that contains an average papilla and then uses it as a template to find similar objects in 
the search area. The algorithm uses the 2D normalized cross-correlation between the greyscale versions of the 
tongue image and the template. When comparing the algorithm’s counts with manual counts, they were able to 
show a general correspondence between the two, where tongues with higher automatic counts also have higher 
manual counts. However, the proposed algorithm was very dependent on the user’s ability to provide a good 
exemplar FP to be used as a reference for the total FP count on the whole tongue. More recently, two different 
automated approaches were proposed for fully automated detection and calculation of the number of FP from 
digital images13,19.

Piochi and colleagues13 proposed an algorithm based on the procedure used by Kraggerud et al.25. A script 
was developed to provide a black and white image through correction of the background variation and graphi-
cal emphasis of the elevated structures represented as white spots. Then, the procedure allowed to automatically 

Figure 4.   Bootstrapped mean distributions in ED1: (a) is computed using a recounted subset of PROP and (b) 
is computed from the same subset’s original manual counts.

Figure 5.   p-value distributions of bootstrapped permutation test on the mean FP counts for gender.
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identify the FP as circular-like elements (whit a diameter ranging from 0.30 to 1.05 mm) and to compute the 
frequency of these circular-like elements in classes with varied diameter size. Eldeghaidy and colleagues19 pro-
posed a color-based segmentation method based on the procedure used by Rios et al.26. The authors manually 
selected three structures of interest—fungiform papillae, filiform papillae and tongue base, and transformed the 
colour space of these regions from RGB into LAB to minimize the sensitivity for illumination differences, before 
taking the average colour of each region. The segmentation works by taking the nearest neighbour according 
to the Euclidean colour separation between the regions of interest and each pixel. However, these last two dif-
ferent models cannot be compared directly unless the tongue images are of the same kind, e.g., all stained or 
all unstained, and have an equal quality standard. Nevertheless, for the case-specific performance, the count 
accuracies seem to have improved significantly since the previous attempts12,20.

The novel automated procedure presented, applying the deep learning approach, had the purpose of achieving 
more accurate and comprehensive outcomes compared to the existing works within this area. Firstly, deep learn-
ing has been incorporated into the segmentation stage, allowing the model to automatically learn the features that 
best describe a papilla and how to interpret them, thereby resulting in more accurate segmentation. Moreover, 
the high-performance of the computerized approach permitted the computation of the pixelwise distribution 
with normalized convolution, in order to minimize information loss as much as possible.

In general, results from the automated model matched those from the manual count in each selected area. 
The results showed a strong agreement with manual counting in all the selected areas (all ρs ≥ 0.76), as well as 
the overall FP count on the anterior part of the tongue strongly correlates with the automated counts. Previously 
published data showed similar results or correlation coefficients (reported either graphically or by statistical 
analysis)12,13,19,20.

An in-depth comparison between the model and the expert’s counts has also been made. As it turned out, the 
accurate and consistent classification of fungiform papillae was sometimes difficult not just for the model, but 
also for our expert, due to the 3D shapes of FP, blurriness, and poor staining in some images. We suspect that this 
is also the key factor contributing to the lower than expected correlation between manual counting and manual 
annotation performed by the same expert, see Fig. 2. This, combined with the fact that the highest correlation is 
achieved between manual annotation and segmentation, suggests that the accuracy bottleneck is not the U-Net 
based model, but the quality of data. Some examples, where counting and segmentation disagreed the most, 
are shown in Fig. 6. Generally, manual counting is more lenient when it comes to objects with unclear borders, 
whereas segmentation tends to more lenient with objects with unclear 3D structures.

Regarding segmentation performance (see Table 1), the model achieved an F1-score of 0.72499 for papillae 
segmentation. While this is lower than the F1-score of 0.96675 achieved for tongue segmentation, it is important 
to keep in mind that due to the reasons explained above, there will most likely be discrepancies even between dif-
ferent annotation attempts of the same tongue by the same expert. This is unfortunately an unavoidable drawback 

Figure 6.   Some examples of where the counting and segmentations disagreed the most. Green markers show 
the papillae where counting and segmentation agreed, cyan markers show the papillae detected exclusively by 
segmentation, and pink markers show the papillae detected exclusively by counting.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18694  | https://doi.org/10.1038/s41598-020-75678-2

www.nature.com/scientificreports/

when each tongue has hundreds of papillae and many of them may have unclear boundaries. As a result, we 
believe this score on its own does not fully convey, how well the segmentation works.

According to Nuessle and colleagues11, the Denver Papillae Protocol criteria to identify and, thus manually 
count, a tongue structure as FP is to strictly assume a circular shape and a diameter size of at least 0.5 mm. Thus, 
computer models could identify as FP tongue structures with irregular shapes or with a wider variety of sizes. 
This could result in an underestimation or, contrarily, in an overestimation of structures with a certain size/
shape configuration, treating these elements as actual papillae and not as artefacts. Moreover, for smaller analysis 
regions ED1 and ED2, the boundary effect is also in play – it was decided that an FP will be included in the counts 
if its centre point lies within the region, but judging this when counting manually proved to be difficult for FPs 
that are centred near the boundary. Despite of the randomness of this effect, we cannot exclude that this might 
have coincidentally resulted in the lower manual FP counts for non-tasters in Fig. 3. This hypothesis has been 
corroborated by the recounted subset in Fig. 4a,b suggesting that a representative selection of the initial dataset 
of pictures could improve the accuracy of the automated counting. Apart from these discrepancies, our model 
showed in general good reliability (similar mean values among ED1-ED3 in automated and manual counts) 
comparing the two methods of counting. Nevertheless, the recounting of subsets of non-tasters and supertasters 
seems to have improved also the model accuracy (i.e. same elements counted by the different methods).

Irrespective of the imbalance in male/female ratio (males < 25%) in our study, the females had a persistent 
higher FP count by both counting methods. Gender differences on the variations in taste functions have been 
recently reviewed17,27, suggesting that women detect basic taste stimuli at lower concentrations than men. How-
ever, whether these differences between sexes are reflected in the number of FP is still unclear and several studies 
failed to find a significant effect of gender8,15,28–34. On the contrary, other recent large-scale studies reported that 
women consistently having a higher number of FP in respect to men9,10, and Piochi and colleagues35 hypothesized 
that males and females may differ in the number of FP having specific diameters.

The relationship between FP count and PROP responsiveness was also assessed on both manual and auto-
mated counts, considering selected areas and the whole tongue. Significant correlations between manual counts 
of FP and PROP intensity ratings were found, albeit the magnitude of this association was very low (ρs < 0.2), 
accordingly to some previous findings4,7,8,36. However, neither the number of FP measured with the automated 
counts in the selected area nor the total number of FP on the whole tongue significantly correlated with the 
PROP intensity ratings. Recent studies involving a large sample size of individuals failed to show an associa-
tion between FP count and PROP rating (see17 for a review). Moreover, it has been reported that subjects with 
lower FP density are characterized by increased sensory responsiveness10,37. Indeed, the present automated data 
showed that FP variation is slightly associated with the subject’s PROP taster status, due to significant overlap 
between the mean FP distributions. These distribution patterns seem to be in line with one found by Dinnella and 
colleagues10, who explored the importance of FP density in taste sensing in a group of PROP NT and PROP ST. 
The authors showed that both ST and NT groups are characterized by individuals with low and high FP density, 
and hypothesized that the variation of density of FP strongly affected the orosensory perception of food stimuli 
with the same PROP taster group (i.e. high/low FP density in NT or ST subjects). Thus, as already concluded by 
the authors, additional insight should be gained on associations between FP/PROP, and the role of peripheral 
sensing organs should be reconsidered.

Although the deep learning model used in this paper succeeded in detecting most of the papillae, some 
consideration must be made in terms of its strengths and weakness. The biggest advantage of using a convolu-
tion neural network is that its classification rules are learned through examples rather than programmed. This 
generally leads to a more accurate segmentation, which can be further improved through the correction and 
relearning of mistakes. Boosting the performance of non-machine learning-based methods, on the other hand, 
will likely require significant design changes and will thus be much more difficult and time-consuming. A weak-
ness of deep learning method is ironically also its reliance on learning from data. For the model to learn the right 
classification rules, a large number of highly accurate examples must be provided in the training set.

Considering the current state of automatic papillae analysis in this paper and related works, there is still fur-
ther issues to be addressed. For instance, our counting experiment revealed that an object’s 3D shape also matters 
in the sense that active papillae cannot be flat. Given the difficulties faced by tongue experts and our model in 
judging this feature consistently, the current method of data collection should be improved. While problems 
associated with blurriness can easily be corrected by improved camera setup, other underlying issues do not have 
such a simple solution. This includes, but is not limited to, the dye adhesion problem in tongue staining and the 
very fact that we are trying to evaluate 3D shape using 2D images. It could be therefore worthwhile to add laser 
scanning to the existing data collection procedure or use a multi-camera system for stereoscopic reconstruction. 
Moreover, to eliminate possible boundary effects associated with manual counting in future studies, an FP should 
only be counted if it is entirely inside the analysis region.

Another area of the analysis worth exploring in future studies is how the segmentation masks can be used 
more effectively. At the moment, the papillae segmentations are converted into counts before any statistical tests 
are performed. As a result, many of the new segmentation features that can bring new perspectives into the study 
of fungiform papillae are overlooked (such as area and shape).

In conclusion, data from the present study demonstrated how a computerized approach, based on state-of-
the-art deep learning, can open a whole new range of papillae features to looking into. The density of FP predicted 
from automated analysis output is in good agreement with data from the manual count, especially in the case 
of gender. Moreover, a significant improvement in the accuracy has been obtained through the recounting of 
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subsets of non-tasters and supertasters. The deep learning machine approach for tongue analysis could provide 
further and innovative advantages by defining a tongue coordinate system that normalizes the size and shape 
of an individual tongue and by defining a heat map of the FP position and of the normalized area they cover. 
This could open up the possibility of using other difficult-to-measure parameters, such as the papillae’s areas 
and shape. The present study showed a prove of concept for automated papillae counting using a deep learning 
computer approach. The automated method appears to be suitable for FP counting in larger scale lingual surface 
imaging studies.

Material and methods
Subjects.  One hundred and fifty-two subjects (23% males) between the ages of 18 and 55 years were recruited 
to attend the test and sensory and tongue picture data were collected anonymously. Informed, written consent 
was obtained from all subjects on the test day. The present study was performed according to the principles 
established by the Declaration of Helsinki and the protocol was approved by the Danish National Committee on 
Biomedical Research Ethics (ref. nr: 18012023). All the following methods were carried out in accordance with 
relevant guidelines and regulations.

Taste responsiveness to PROP.  The protocol applied to evaluate subjects’ PROP responsiveness was fully 
described in Cattaneo et al.38 using a method proposed by Prescott and colleagues39. Subjects were asked to rate 
the intensity of bitterness of a supra-threshold 0.0032 M solution of PROP (European Pharmacopoeia Reference 
Standard, Sigma-Aldrich) through the Generalized Labeled Magnitude Scale (0–100), gLMS40. Two identical 
samples (10 ml) were presented to the subjects who were asked to hold in their mouth each sample for 10 s, 
then to expectorate the solution and to evaluate the perceived bitterness intensity after 20 s. To avoid carry-over 
effect, subjects were asked to rinse the mouth with water after the first sample evaluation and to wait 90 s before 
evaluating the second sample41. The PROP sensitivity score for each individual was calculated as the mean of 
both gLMS measurements.

Acquisition of tongue pictures. To measure the FP count, subjects were asked to place their chin on a chin rest 
table fixture (Western Opthalmics, USA) and extend their tongues and hold it in steady position. The tongue 
was stained with a blue food coloring using a cotton-tipped applicator. In this way, the FP became more clearly 
visible, as mushroom-like structures, on the anterior portion of the dorsal surface of the tongue. Digital pictures 
were recorded using a 18 megapixels digital camera (Canon EOS 700D, Japan) in a brightly lit room using the 
camera’s macro mode with no flash. Pictures captured the anterior part of the tongue. A ruler fixed on the chin 
rest provided a size calibration to allow surface comparisons across subjects. A series of pictures were taken and 
for each subject the best photograph was selected. Photoshop software (Adobe, USA) was used to mark the area 
to count the FP.

Manual FP counting procedures.  Three different counting methods were employed on the tongue pic-
tures. These encompassed all FP counting at the tip of the tongue, but differed in the surface area and uni/bi 
laterality used for counting. The counting methods used were according to:

	 (i)	 Nachtsheim and Schlich7, in which three circles of 6 mm diameter were drawn in the front of the anterior 
(ED1; Fig. 7a);

	 (ii)	 Masi et al.34, in which two circles of 6 mm diameter were drawn one on the left side and one on the right 
side of the tongue, 0.5 cm from the tip and 0.5 cm from the tongue midline (ED2; Fig. 7b); and

	 (iii)	 Essick et al.5, in which a square of 1 cm2 was drawn on the tongue tip with the midline of the tongue 
bisecting the center of the square (ED3; Fig. 7c).

For each method, the individual FP numbers were manually calculated following the Denver Papillae 
Protocol11.

Figure 7.   An example of a tongue image used for fungiform papillae counting (FP). The three counting areas 
shown in the subfigures are selected according to (a) Nachtsheim and Schlich7—ED1; (b) Masi et al.34—ED2; (c) 
Essick et al.5—ED3.
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Automated counting procedure.  Before any analysis related to automated counting was performed, we 
went through the images and removed 20 images with major quality issues. For the deep learning approach 
to tongue and papillae segmentation, a convolutional neural network similar to the U-Net proposed by Ron-
neberger and colleagues42 was used. The model’s architecture is shown in Fig. 8.

The encoding part of the model is structured identically to a VGG1643, but without the dense layers. This 
allows to load ImageNet weights and apply transfer learning on feature extraction. The rest of the network is 
modelled after the U-Net, but with added batch normalization and drop-out layers (fraction = 0.5) for regulariza-
tion. An example of the input and target data used in the modelling is shown in Fig. 9a–c.

Considering how densely packed the papillae are and that they only make up a small part of the total image 
area (TOT), a weighted IoU loss-function was used for network optimization:

where y , ŷ and w represent the true mask, the predicted mask, and the loss weights respectively. The loss-function 
penalizes errors in-between neighbouring papillae much harder than errors in other areas to improve object 
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)
∑V−1

v=0

∑H−1
h=0

(
y[v, h]

)
+

∑V−1
v=0

∑H−1
h=0

(
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Figure 8.   The U-Net based architecture used to segment the tongue and the papillae.

Figure 9.   (a) A tongue image, (b) its manual papillae annotation, and (c) its manual tongue annotation.
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separation. Since the IoU loss is measured in terms of overlap instead of absolute difference, the model is less 
sensitive to the extreme class imbalance.

For papillae segmentation, the loss weights were computed from the true masks by identifying the pixels 
that are within a 15 pixels distance from at least two papillae and increasing their weights tenfold (Fig. 10a,b).

For tongue segmentation, the same loss-function was used. In this case, the loss weights were drawn by 
hand and had the purpose of forcing the model to better learn the difference between the tongue and the lip. An 
example of the loss weights for a tongue is shown in Fig. 11a,b. Note that although there are 4 colours, only the 
lip (green) has its weight increased fivefold.

In total, 29 selected tongue pictures were used for the training and validation of the papillae segmentation 
model in a random 8:2 split.

Extensive image augmentation was applied to compensate for the relatively small dataset size. A random 
combination of rotation, horizontal/vertical mirroring, shearing, zooming, and intensity adjustments was applied 
at each round of augmentation, and examples are shown in Fig. 12a,f.

The original images along with their masks were cut into patches of 384 × 576 pixels to keep the GPU memory 
manageable while avoiding information loss. To reduce unnecessary training time, image patches where papil-
lae could not exist, such as regions outside of the tongue, were left out. A sliding window ensemble was used to 
return output segmentations to their original size at the end.

The training process for tongue segmentation was very similar to that of papillae segmentation, except a 
slightly bigger training and validation set consisting of 33 tongue pictures was used. Since the tongue took up a 
much larger proportion of the total area, images and masks were downscaled instead of cutting them into patches.

Figure 10.   (a) A patch of papillae segmentation and (b) its loss weights.

Figure 11.   (a) A tongue and (b) its corresponding weights.
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To achieve accurate counting and measurements, the raw papillae segmentations were first cleaned up using a 
series of morphological operations. A multiplication was then applied with the corresponding tongue segmenta-
tions to remove the false positives outside the tongue. To get rid of the filiform papillae that were erroneously 
detected as FP, the objects remaining were further filtered by calculating the mean area of the largest 25% of the 
objects and removing everything smaller than one-fifth of this area. The reason for filtering filiform papillae in 
this way, instead of thresholding with a specific minimum area, was to account for the fact that the “normal” 
range of FP areas for different individuals were different. The actual papillae counts were extracted by adding 
up the number of individual objects found with connected components. See Fig. 13 for the various stages of 
segmentation post-processing described here.

Data analysis.  The normality assumption of the FP density distributions from manual and automated counts 
was tested by the Shapiro–Wilk W test (α = 0.05), and if found to be non-normally distributed, a non-parametric 
correlation analysis was used. Spearman’s correlation coefficients (ρs) were used to assess the agreement among 
the different manual and automated counts, with significance defined as p < 0.05. The correlation between PROP 
intensity ratings and FP counts (both manual and automated) was assessed by Spearman’s correlation analysis. 
Statistical analysis was performed using IBM SPSS statistical software version 25 (SPSS Inc, USA).

The uncertainty of mean FP count was estimated with bootstrapping, where the subset the full taster classes 
was compared with random sampling with a 1,000 times replacement. The mean FP count was then computed for 
all 1,000 subsets, resulting in a distribution that could be used to infer where the real value most likely would be.

The statistical significance of a difference in mean FP count between two taster classes was examined using 
a permutation test, and the power of the permutation test was estimated by bootstrapping: for any pair of taster 
classes being compared, we performed 1,000 rounds of bootstrapping. At the start of each round, the bootstrap-
ping size was randomly set to 40–100% of the original class size, and the same percentage was used for both 
classes to maintain the relative size ratio. A 10,000 round permutation test was then performed, where the dif-
ference in mean FP count of the two bootstrapped taster classes against that of two randomly sampled groups 
were compared. The percentage of times where the random difference was larger than the class difference, also 
known as the p-value, was recorded before moving to the next bootstrapping round.

In a typical permutation test, a threshold value of 0.05 is used as the significance criterion. This means that 
if less than 5% of the random differences are larger than the difference by the group, one can reject the null 
hypothesis that there is no difference between the two groups. With this power estimate, one also has an estimate 
of the uncertainty of the p-value. Thus, instead, we calculate the frequency sum of p-values larger than 0.10 was 
calculated. If this sum makes up more than 40% of the total cases, then we would reject the null hypothesis.

Figure 12.   (a) A patch of the original image and (b–f) its random augmentations.
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Figure 13.   (a) The raw segmentation output, (b) its tongue segmentation, (c) 3 iteration of erosion and 2 
iterations of dilation to increase separation, (d) multiplication with tongue mask to remove false positives, (e) 
the output after area-based filtering of noise.
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