
Research Article
Segmentation of Laser Marks of Diabetic Retinopathy in the
Fundus Photographs Using Lightweight U-Net

Yukang Jiang ,1,2 Jianying Pan ,1 Ming Yuan ,2 Yanhe Shen ,2 Jin Zhu ,2

Yishen Wang ,1 Yewei Li ,2 Ke Zhang ,2 Qingyun Yu ,2 Huirui Xie ,1 Huiting Li ,1

Xueqin Wang ,2,3,4 and Yan Luo 1

1State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat-Sen University,
Guangzhou 510060, China
2Department of Statistical Science, School of Mathematics, Southern China Research Center of Statistical Science, Sun Yat-
Sen University, Guangzhou 510275, China
3Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei,
Anhui 230026, China
4Xinhua College, Sun Yat-Sen University, Guangzhou 510520, China

Correspondence should be addressed to Xueqin Wang; wangxq20@ustc.edu.cn and Yan Luo; luoyan2@mail.sysu.edu.cn

Received 29 May 2021; Revised 3 September 2021; Accepted 24 September 2021; Published 19 October 2021

Academic Editor: Honghua Yu

Copyright © 2021 Yukang Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diabetic retinopathy (DR) is a prevalent vision-threatening disease worldwide. Laser marks are the scars left after panretinal
photocoagulation, a treatment to prevent patients with severe DR from losing vision. In this study, we develop a deep learning
algorithm based on the lightweight U-Net to segment laser marks from the color fundus photos, which could help indicate a
stage or providing valuable auxiliary information for the care of DR patients. We prepared our training and testing data,
manually annotated by trained and experienced graders from Image Reading Center, Zhongshan Ophthalmic Center, publicly
available to fill the vacancy of public image datasets dedicated to the segmentation of laser marks. The lightweight U-Net,
along with two postprocessing procedures, achieved an AUC of 0.9824, an optimal sensitivity of 94.16%, and an optimal
specificity of 92.82% on the segmentation of laser marks in fundus photographs. With accurate segmentation and high
numeric metrics, the lightweight U-Net method showed its reliable performance in automatically segmenting laser marks in
fundus photographs, which could help the AI assist the diagnosis of DR in the severe stage.

1. Introduction

Diabetic retinopathy (DR) is one of the most common com-
plications of diabetes and the leading cause of irreversible
visual loss globally [1]. For patients who have developed
severe DR, panretinal photocoagulation (PRP) is one of the
main treatments to reduce the risk of blindness. Laser marks
are the scars left after retinal laser treatments. Identifying the
position of laser marks on fundus photographs provides
information of the received retinal laser treatment and thus
is significant for the assistance of R3A and R3S DR stage
grading in the Diabetic Eye Screening Guidance of the

National Health Service (NHS) in the United Kingdom
(UK) [2]. The R3A is classified as active proliferative DR
(PDR) with at least one of the following active proliferate
DR characteristics: new vessels on disc, new vessels else-
where, preretinal or vitreous hemorrhage, and preretinal
fibrosis with or without tractional detachment. The R3S is
classified as the a stable stage of PDR after panretinal laser
treatment and can present stable preretinal fibrosis, but
without any other active proliferate DR characteristics [3].
The stable R3S status with panretinal laser marks can be dis-
tinguished from an active R3A, and the treatments of these
two stages are different [2]. Laser marks appearing on nasal
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proximity to optic disc no closer than 500 microns, on tem-
poral proximity to macular center no closer than 3000
microns, and at the superior/inferior limit that no further
posterior than 1 burn within the temporal arcades, are
believed to be the signal of receiving PRP [4]. Patients diag-
nosed as R3S could be monitored in the annual screen, while
the active treatments such as PRP or intravitreal injection of
anti-VEGF drug should be received by patients diagnosed as
R3A [2]. Moreover, determining the position of laser marks
is of great importance to patients with DR for the follow-up
treatment. For instance, many patients may not complete all
laser photocoagulation at one treatment and need to receive
laser photocoagulation several times because of the progress
of their disease or personal tolerance. Besides, if patients are
detected new active proliferate lesions on the retina even
with the presence of laser marks, their DR gradings may
revert to R3A, and the patients may be urged to receive
active treatments [2, 5]. In automatic retinal diagnostic sys-
tems, the existence of laser marks on the fundus photo-
graphs may hinder the further retinal image assessment
[6]. Hence, segmenting laser marks in fundus photograph
images becomes clinically important.

Traditional detections [6–8] and deep learning methods
[9] have put effort into detecting the existence of laser
marks. However, they do not give enough attention to the
exact locations of laser marks on the fundus photograph
images. The traditional methods, which make full use of
morphological characteristics related to laser marks for
detection, in a sense offer the candidate regions of laser
marks, but the extraction of candidate regions tends to be
relatively poor with irregular boundaries. The deep learning
method, which is a state-of-the-art machine learning tech-
nique that has shown its superiority in the diagnosis of some
diseases [10–12], especially the DR screening in the field of
ophthalmology [13–16], extracts features directly from
images for detection and attains relatively high detective
accuracy, but it does not provide interpretable explanations
for its decisions [17, 18]. Also, it has long been a challenge
to include medical knowledge within machine learning algo-
rithms, especially within the deep learning algorithms [11,
18, 19]. Deficient attention to segmenting laser marks in
fundus images may also in part result in difficulty attaining
image data accurately annotated by well-trained ophthal-
mologists. So far, there are no public fundus photograph
datasets annotating laser marks pixel by pixel. Thus, few
studies have been involved in the segmentation of laser
marks in fundus photograph images.

In this study, a deep learning method, the light version of
U-Net [20], named lightweight U-Net, was adapted to seg-
ment laser marks in fundus photographs using the dataset
we proposed. The lightweight U-Net inputted a fundus
image and outputted the probability map localizing the
potential area of laser marks. Furthermore, to meliorate the
segmentation maps, we introduced two postprocessing pro-
cedures developed from clinical practice. These procedures
further improved the segmentation accuracy of the predic-
tion. The well-performed model would be of great help for
ophthalmologists serving as an essential component of the
DR computer-aided diagnosis system.

2. Materials and Methods

2.1. Datasets. The fundus photographs with laser marks in
this dataset were RGB images in a JPG or JPEG format
and obtained from the Image Reading Center of Zhongshan
Ophthalmic Center, Sun Yat-Sen University, China. The
fundus photographs were collected from the clinical depart-
ment of Zhongshan Ophthalmic Center, or the DR screen-
ing charity project of Lifeline Express in China, or the
internet public data. A set of 154 fundus photographs with
laser marks comprised of two subdatasets: one contains 84
images manually segmented by experienced graders at the
Image Reading Center only once, and the other contains
the rest 70 images manually and independently segmented
by three experienced graders at the Image Reading Center.
Since the manual segmentation of 84 images in the first data-
set was relatively coarse, which might lead to a less precise
estimation, we only used it in the pretraining session.

For the second dataset containing 70 images, the three
experienced graders were asked to mark all the pixels ensured
as laser marks. The gold standards of the images were labeled
by at least two graders. Since this subdataset had more precise
manual segmentations, it was used to construct the formal
data set. These 70 fundus photographs with gold standards
were randomly divided into the formal training set with 50
images and the testing set with 20 images, respectively.

In our dataset, the microaneurysms, retinal hemor-
rhages, hard exudates, soft exudates, venous beading, intrar-
etinal microvascular abnormality, NVE/NVD, fibrous
proliferation, preretinal hemorrhage, vitreous hemorrhage,
and tractional retinal detachment were detected in about
95.71%, 98.57%, 70.00%, 12.86%, 0.00%, 11.43%, 5.71%,
2.86%, 1.43%, 0.00%, and 0.00% of the 70 images, respec-
tively. Besides, among all 154 fundus photographs, 75.97%
are at the R3S stage, 3.25% are at the R3A stage, and the
remaining 20.78% are photos that are at other stages. And
51.30% of the images are with PRP, and 42.21% are with
partial retinal laser marks. All of the laser marks in our data
were at the late stage.

It should be noted that every image collected in the data-
set was used to make clinical diagnoses, leading to the char-
acteristic inconsistency of these images because photos were
acquired by more than one specific camera model, such as
CIRRUS, Cobra, and Canon. Shot by various types of cam-
eras, the images had different resolutions (ranging from
1116 × 1080 pixels to 4928 × 3264 pixels), fields-of-views
(from 45 to 60 degrees), hues (whitish, yellowish, reddish,
etc.), centers of the fundus images (either macula lutea or
optic disc (OD), pupil diameters, and so on. All these varia-
tions contributed to the diversity of our dataset, enabling a
more generalized and robust deep learning algorithm for
laser marks segmentation.

2.2. Image Preprocessing and Augmentation. It was essential
to preprocess the images to summarize the commonness
artificially because fundus photographs in the image dataset
varied in size, resolution, and hue due to the multiplicity of
camera devices. Preprocessing helped diminishing differ-
ences in the intrinsic feature distributions.
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First, images were all resized to 512 × 512 pixels. The
next three steps were successively implemented on each
channel to eliminate the outputted overall tone brightness
variance among images. TheZ-score standardization, result-
ing in an image with a mean of 0 and a variance of 1, was
calculated using the following formula:

zijk =
xijk − μjk

σjk
,

i = 1, 2,⋯,N imgð Þ, j = 1, 2,⋯, p, k = 1, 2, 3,
ð1Þ

where NðimgÞ is the total number of images in the training
set, p is the number of pixels in a channel of an image (for
a 512 × 512 image, the number of pixels p is 262144), and
k = 1, 2, 3 represents the three channels (red, green, blue)
of an image. And xijk represents the jth pixel value in the k
th channel of the ith image, μjk =∑ixijk/NðimgÞ, and σjk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑iðxijk − μjkÞ2/NðimgÞ
q

is the mean and the standard devia-

tion of the corresponding pixel points of all images in the
training set, respectively. The outcome zijk is the adjusted
value of that specific pixel.

Inner image minimum-maximum normalization then
followed, aiming to rescale the gray values into a scale of 0
to 255. This process was enabled by

vijk =
zijk − min

j=1,⋯,p
zijk
� �

max
j=1,⋯,p

zijk
� �

− min
j=1,⋯,p

zijk
� � × 255,

i = 1,⋯,N imgð Þ, j = 1,⋯, p, k = 1, 2, 3,

ð2Þ

where zijk is obtained in the previous step, and min
j=1,⋯,p

ðzijkÞ
and max

j=1,⋯,p
ðzijkÞ stand for the minimum and maximum value

of zijk in the kth channel of ith image, respectively. And vijk
is the final value restricted in the range between 0 and 255.

The contrast limited adaptive histogram equalization
(CLAHE) [21] and the gamma correction ðγ = 1/1:2Þ [22]
were conducted sequentially to enhance the contrast in the
image. The grayscale values were then divided by 255 to
transform them back to the 0 and 1 range. By performing
these preprocessing steps on all three channels separately
and then combining them back together, the contrast could
be effectively enhanced between the laser marks and back-
ground while feature discrepancies caused by camera models
would be weakened (Figure 1).

The random cropping technique was applied to effectu-
ally augment the training set due to data scarcity [23]. A
total of 500,000 patches were extracted from the formal
training set that contained 50 fundus images. Completely
black patches extracted from the peripheral black area that
contained no information would be excluded. As a result,
from each training image, 10,000 randomly centered patches
with 48 × 48 pixels in size were extracted. This size was cho-
sen because the patches of the size were able to determine
whether there were one or two laser marks in the images,

thus enabling the network to learn the characteristics of
these specific lesions. The corresponding ground truth label
patches were also extracted (Figure 1) to match the aug-
mented training set. In the testing process, we cropped the
images into pieces 48 × 48 pixels in size, a coherent size to
the training ones. Unlike the training set where the central
locations were randomly chosen, a sliding operation with
stride 5 (five pixels were moved each time) was adopted
in the testing set to clip the patches. Although some parts
of the original images were repeatedly seized, i.e., the
patches overlapped, it benefitted the accuracy of the predic-
tion, as a single-pixel might be predicted several times. The
patches cropped at the right or lower margins might not be
of size 48 × 48 because of the sliding operation; as to these
images of incompatible sizes, we used a zero padding strat-
egy on that specific margin (or those margins) to preserve
the marginal information. In our case, a total of 3364
patches could be attained from one image. The modified
testing set with a size of 48 × 48 pixels was fed into the
trained lightweight U-Net. The predicted outcomes of the
patches were then placed back to create the integral predic-
tion maps of the original images. The final integral out-
comes that the algorithms would present for each image
were prediction maps with each pixel indicating the proba-
bility of being diagnosed as laser marks, calculated by the
sum of the prediction results divided by the frequency of
being predicted.

2.3. A Lightweight U-Net Model Development. The light-
weight U-Net structure was proposed by Wang et al. [24],
who used this structure for the segmentation of retinal ves-
sels in single-channel images. Our model resembled the
structure of Wang et al., and we applied this method to seg-
ment the laser marks of the fundus photographs.

The U-Net structure mainly consisted of two paths: the
“mutually inverse” contracting path and the expansive path.
On each path, dense convolutional bocks, comprising two
convolutional layers followed by rectified linear unit (ReLU)
layers, were joined by either downsampling operations (on
the contracting path) or upsampling operations (on the
expansive path).

And the main change from the U-Net to the lightweight
U-Net was that we downscaled the original network into a
three-scaled network, meaning that there were only five
dense convolutional blocks within the entire structure. We
further adjusted hyperparameters in the structure:

(1) The number of feature channels at every block has
been halved compared to the U-Net

(2) The padding strategy was adapted in every convolu-
tional operation for storing the marginal information

(3) Dropout layers (with probability = 0:2) were intro-
duced between two successive convolutional layers
to prevent overfitting

In the structure proposed by Wang et al., they used con-
volutional filters with a size of 3 × 3 and a striding step of 2
to down-sample the feature maps, but our model simply
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used the max-pooling operations with filters of size 2 × 2 to
downsize the feature maps. Figure 2 vividly shows the struc-
ture of the lightweight U-Net. The detailed parameters of the
layers are also presented in Figure 2.

We used the transfer learning technique for parametric
initialization before formally training the networks with
images containing accurately labeled laser marks. We first
pretrained the modified lightweight U-Net with the DRIVE
dataset [25], a fundus image dataset with a total of 40
images annotating vessels. Likewise, 40 images in DRIVE
went through the data preprocessing, and augmentation
procedures mentioned above before being used for pre-
training. Although DRIVE was not built for the segmenta-
tion of laser marks, using it to pretrain the network did
help accelerate the convergence of parameters and obtain
more accurate results because both datasets shared similar
characteristics [26]. Subsequently, we pretrained the light-
weight U-Net with the 84 roughly labeled fundus images.
This helped the network to grasp a coarse cognition of
laser marks.

Our extended training set was randomly divided into
batches, each possessing 128 patches. Ten percent of the
samples of a batch was split apart for validation. The sto-
chastic gradient descent (SGD) was applied for parameter
optimization by minimizing the loss function. The loss func-
tion in this segmentation task was a pixel-wise categorical
crossentropy, which computed the following formula over
the final feature maps:

R = −〠
N

i=1
〠
K

k=1
yik log f k xið Þ, ð3Þ

where N indicates the total number of pixels within a batch,
i.e., N = batch size × pixel number per patch, K denotes the
number of classes, and yik and f kðxiÞ represent the ground
truth label and the predicted probability of the xi pixel in
the kth class, respectively. Network parameters (weights)
saved for testing were the weights that minimized the loss
function evaluated in the validation set.

2.4. Postprocessing Procedures. PRP surgeries generally fol-
low certain standards, and there are several standards
directly related to positioning and screening laser marks on
fundus images in clinical practice. Here are two examples:

(i) Lasers should not be beamed within the OD and a
diameter range of the OD

(ii) Lasers should not be beamed within 1500 microns
from the macular fovea

We developed two postprocessing procedures to denoise
the prediction maps based on these standards. Below is a
sketchy description of the algorithms.

As to the first standard, all the “suspected laser marks” at
the ODs and their peripheries are not laser marks. Thus, it is
necessary to eliminate the false-positive judgments around

(a) Fundus photograph (b) Pre-processed

(c1)

(c2)

(c) Random cropping

Figure 1: Presentation of the preprocessing and data augmentation session. (a) A sample from the training set. (b) The matching
preprocessed image. (c) The examples of the randomly cropped patches (c1) and the corresponding labeled patches (c2).
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the ODs. To do this, we first located the ODs and then
erased the positive decisions within an elliptical area at and
around the ODs. We applied a deep learning method to
locate the ODs. The deep learning structure and training
process were identical to the lightweight U-Net, except that
it was pretrained only on the DRIVE dataset and then
trained on the fundus images with ODs manually seg-
mented. This fundus photograph dataset annotating ODs
was collected and annotated at the Image Reading Center
of Zhongshan Ophthalmic Center. The predicted OD area
on each segmentation map was determined as the largest
connected domain on the binary prediction graph, where
the division threshold of the binary prediction graph from
the grayscale output was set to be 0.5 empirically. This
method has proven effective in locating and segmenting this
anatomic structure in our prior experiment on an inhouse
image dataset: evaluating on the inhouse testing set, the area
under the receiver operating characteristic curve (AUC) was

0.9997, and the sensitivity, specificity, and accuracy were
93.90%, 99.90%, and 99.81%, respectively. The major and
minor axes of elliptical areas that would be covered over
the ODs were determined by 1.8 times the maximal x-axis
and y-axis lengths of the predicted OD.

As to the second standard, what we did was highly anal-
ogous. The macular region was first oriented through mor-
phological features using the method proposed by Jiang
et al. [27], and then the area around the macular region
was covered. To erase more impertinent noises, the area cov-
ered was macular-centered squares whose sides were 80
pixels long. Both manipulations served as the backend pro-
cesses to further optimize the prediction results. The flow-
chart of the postprocessing is presented in Figure 3.

2.5. Hyperparameter Setting for Model Training. The initial
learning rate was 1 × 10−3 with a learning rate reduce the
factor of 0.3 for every ten consecutive epochs without
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improvement in validation accuracy. The onset of an early
stop was when validation accuracy did not improve in 40
consecutive epochs.

2.6. Statistical Analysis of Model Performances. Statistical
analyses were performed using Python 3.6.5 (Wilmington,
Delaware, USA), which was also used for image processing
and the lightweight U-Net experiments. Grayscale images
were provided as the outcomes of the algorithms, as some
shallow shades between bright domains might inform
graders of coalesces of laser marks. To evaluate the perfor-
mances of the lightweight U-Net and its combination with
two postprocessing procedures, evaluation metrics were cal-
culated. We drew the receiver operating characteristic
(ROC) curves and computed the AUC. Besides, we pre-
sented the optimal pairs of sensitivity and specificity on the
ROC curves. The optimal choices were based on Youden’s
index [28], defined as the sum of sensitivity and specificity
subtracted by 1, i.e.,

Youden’s index = sensitivity + specificity − 1: ð4Þ

Dice similarity coefficient (DSC) can show the percent-
age of the overlap areas between two set (the prediction
map and the manual segmentation map). It equals twice
the number of elements in the intersection of both set
divided by the sum of the number of elements in each set.
The corresponding formula is as follows:

DSC =
2TP

2TP + FP + FN
, ð5Þ

where TP, FP, FN represent the number of pixels correctly
segmented as laser marks (true positive), pixels falsely seg-

mented as laser marks (false positive), and pixels falsely
detected as background (false negative), respectively.

3. Results

Before using the proposed dataset, we did a fivefold crossva-
lidation to verify the randomness in selecting the training set
and the testing set. The 70 elaborately labeled images were
randomly divided into five folds, and each fold contained
14 images. Then, one of the five folds was selected to be
the testing set, and the other four folds were the training
set in the following validation experiment. The ROC curves
of the five crossvalidation experiments without postproces-
sing procedures and the mean ROC curves were presented
in Figure 4. The maximum and minimum AUCs were
0.9833 and 0.9706, respectively. The interval formed by these
two extreme AUC values covered 0.9798, indicating that the
original division of the training set and the testing set were
relatively random.

For the model evaluation, ROC curves of predictions
through the lightweight U-Net alone and with the postpro-
cessing procedures were presented in Figure 5. The optimal
pairs of sensitivity and specificity on the ROC curves and
the pixel-wise accuracies corresponding to them were shown
in Table 1, which contained the results on a test set trained
by lightweight U-Net and the net with postprocessing. The
AUC for the 20 testing images was 0.9824 for the lightweight
U-Net structure with the postprocessing procedures, which
increased the AUC index by 0.26% compared with the
AUC for the structure without these procedures. The best
sensitivity, specificity, and accuracy for the lightweight U-
Net with the postprocessing procedures were 94.16%,
92.82%, and 92.90%, respectively, attaining a, respectively,
0.61%, 0.66%, and 0.65% rise compared to those of the light
structure without postprocessing procedures. And the DSC
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Figure 3: The flowchart of the postprocessing procedures. The top row presented the prediction maps after each step, and the bottom row
showed the corresponding procedures on the fundus photographs. (a) The raw prediction map coming from the lightweight U-Net structure
and the corresponding fundus image. (b) The prediction map and the fundus image after an elliptic region around the optic disc were
covered. (c) The prediction map and the fundus image after the optic disc and macula region were covered.
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also verified the results that the postprocessing procedures
brought in a small advance. The small scale of improvement
might result from the low probability of noises around ODs
and macular regions. The effect of the postprocessing proce-
dures on the evaluation metrics was not as great as the effect
on the display of the segmentation results. Examples of the
raw prediction images generated from the lightweight U-
Net and the corresponding postprocessed prediction images
were shown in Figure 6. After postprocessing procedures,
noises at and around the ODs and macular regions were
removed, leaving clearer and more accurate segmentation
results. Finally, an algorithm according to the definition of
PRP for diagnosing was designed, and the prediction results
were used to verify in the test set. Through the prediction of
laser marks, the sensitivity, specificity, and accuracy of our
algorithm are 80%, 100%, and 90%, respectively.

Both the quantitative evaluations and the predicted maps
showed that the combination with prior medical knowledge
improved the performance of the deep learning algorithm
and thus could achieve a good result even with a small
amount of data.

4. Discussion

To the best of our knowledge, we first developed the light-
weight U-Net, a deep learning algorithm used to segment
the laser marks in fundus photographs in the present study.

Traditional methods also focus on the detection of laser
marks from fundus photos [6–8]. On the one hand, some
details in the reported methods, such as some key parame-
ters, are not clearly provided in the articles; so, we cannot
use the accurate parameters to get good performance results.
On the other hand, the segmentation of laser marks by tra-
ditional morphological methods is relatively poor and
rough, for the morphological methods do not extract the
candidate regions exactly. On the contrary, the deep learning
method can well learn the essential features of retinal laser
lesions by training on a well-labeled dataset and perform
better than the morphological methods [29]. The neural net-
work was trained and evaluated on the dataset of novel
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fundus photographs with laser marks in this study. More-
over, two postprocessing procedures developed from clinical
standards of the PRP surgery were combined with the light-
weight U-Net to further improve the segmentation results.
Both the high numerical metrics and grayscale output
images showed the lightweight U-Net could be used to set
apart the laser marks on the fundus images, thus providing
visible explanations of computer aid systems for DR
diagnosis.

The biggest challenge of AI is the interpretability of deep
learning algorithms. When a deep learning model detects a
fundus photograph as an image with DR, it always gives
out the diagnosis without providing more interpretable rea-
sons why it made the decision. In this study, we first adopted
a convolutional neural network designed for image segmen-
tation, the lightweight U-Net, to detect laser marks from
fundus photographs. This network assigned class labels to
every pixel of the images and the pixel-based method to
some extent visualized the diagnosis of the R3S stage of

DR. The segmentation probability maps provided not only
the suspected locations of laser marks but the valuable infor-
mation for ophthalmologists, who could fully consider the
comprehensive conditions of the patients and thus could
provide more accurate and suitable cares and adjust the
treatment regimens for the patient with DR. The focal or
grid laser marks due to diabetic macular edema in our data
were relatively lighter, smaller, and less pigment than the
laser spots in other parts of the retina. While the experienced
graders in our study marked all kinds of laser marks includ-
ing the focal or grid laser marks accurately, we combined
different laser marks images together for the training of the
deep learning algorithm. Thus, it would not reduce the accu-
racy of segmentation in the test set. Combined with the
additional algorithm, PRP could be accurately diagnosed
according to the segmentation of laser marks, and the diag-
nostic accuracy of PRP on the test set was 90%, assisting the
interpretative diagnosis of R3S. All the laser marks with the
different color or size used for segmentation in this study

Table 1: Comparison of methods on the proposed dataset.

Architecture
Sensitivity
= TP∗

TP + FN†

Specificity
= TN‡

TN + FP§

Accuracy
= TP + TN

TP + FP + TN + FN
DSC AUC

Lightweight U-Net 93.55% 92.16% 92.25% 70.59% 0.9798

Lightweight U-Net with macular regions covered 93.55% 92.38% 92.46% 70.76% 0.9804

Light weight U-Net with optic discs covered 94.15% 92.58% 92.68% 71.01% 0.9818

Lightweight U-Net with both post-processing procedures 94.16% 92.82% 92.90% 71.18% 0.9824
∗TP: the number of pixels correctly classified as laser marks; †FN: the number of pixels mistakenly classified as background; ‡ TN: the number of pixels
correctly classified as background; § FP: the number of pixels mistakenly classified as laser marks.

(a) (b) (c) (d) (e) (f)

Figure 6: Dataset and prediction result presentation. Each row represented a sample in the testing sets and its corresponding processed
results. (a) Laser marks showed in the fundus photographs of patients with DR. (b) The ground truth labels of laser marks in the testing
images. (c) The raw predictions for laser marks made by the lightweight U-Net. (d) The predictions for laser marks made by the
lightweight U-Net after optic disc areas were covered. (e) The postprocessed lightweight U-Net showed more accurate outcomes in the
segmentation of laser makers. (f) The merge of postprocessed prediction maps and the original fundus photographs.
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were from the fundus photographs of patients with DR.
However, the features of retinal laser marks treated different
diseases are similar, and the algorithm in our study could
also make accurate predictions for laser markers in the fun-
dus photographs of patients with retinal vein occlusion or
peripheral retinal breaks.

Another major challenge in building computer-aided
diagnosis systems is that medical knowledge is difficult to
merge with deep learning algorithms. Combining prior med-
ical knowledge undoubtedly improves the decision accuracy
of a deep learning model. The present work addressed this
challenge by collaborating the results of multimodels, which
was to postprocess the segmentation results of the light-
weight U-Net. According to clinical practices that the areas
around OD and macular regions do not allow the presence
of laser marks, we applied a similar deep network structure
to cover the elliptic area containing the OD and a classical
morphological operation to locate macular regions and then
denoised around them. These two procedures were rooted in
clinical practices and made the results closer to reality. The
coverage of ODs and their peripheries improved the light-
weight U-Net results more than the coverage of macular
regions, which might be because ODs and laser marks
shared more morphological characteristics, resulting in
more misclassification around the optic disc areas for the
lightweight U-Net model. The combination with the post-
processing procedures did not require graders a great effort
to label a large amount of laser mark. With a relatively small
amount of data for training, along with the cooperation with
other models, the refined results containing a priori medical
experience could be obtained. The postprocessing proce-
dures derived from the clinical practices in this study
increased the efficiency of the lightweight U-Net. The result
concatenation from multiple models in our study was a sim-
ple but effective way to incorporate medical knowledge.

There were still several limitations in our study. First,
our model showed its high reliability in distinguishing most
laser marks from retinas, but it was still hard to differentiate
some noises sharing similar morphological characteristics.
Therefore, we will try to adjust the image tone in preprocess-
ing and coalesce local information with global information
in the future. Second, the number of fundus photographs
in the training set was still relatively small. With more train-
ing images from diverse populations, the model would be
more robust and accurate.

5. Conclusions

This study developed the postprocessed lightweight U-Net
to accurately and reliably segment laser marks in fundus
photographs for the AI-assisted diagnosis of DR in the dif-
ferent stage, potentially reducing the workload of oculists
in various fundus diseases to some extent in the near future.
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