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This report integrates knowledge of in situ macromolecular structures and synaptic
protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle
trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that
lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon
terminals. Advancements in electron tomography, to image tissue sections in 3D at
nanometer scale resolution, have led to structural characterizations of a network of
different classes of macromolecules at the active zone, called “Active Zone Material’. At
frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-
masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”,
“ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion.
Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely
help organize and maintain the structural integrity of active zones. Extensive studies on
the biochemistry that regulates secretion have led to comprehensive characterizations
of the many conserved proteins universally involved in these trafficking events. Here,
a hypothesis including a partial proteomic atlas of Active Zone Material is presented
which considers the common roles, binding partners, physical features/structure,
and relative positioning in the axon terminal of both the proteins and classes of
macromolecules involved in the vesicle trafficking events. The hypothesis designates
voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are
connected to macromolecules that span the presynaptic membrane at the active zone.
SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins
Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or
pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars.
RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms,
and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are

Abbreviations: NMJ, Neuromuscular junction; AZM, Active zone material; PM, Presynaptic membrane; SV, Synaptic
vesicle.

Frontiers in Synaptic Neuroscience | www.frontiersin.org 1 January 2022 | Volume 13 | Article 798225

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://doi.org/10.3389/fnsyn.2021.798225
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2021.798225&domain=pdf&date_stamp=2022-01-05
https://creativecommons.org/licenses/by/4.0/
mailto:jszule@cvm.tamu.edu
https://doi.org/10.3389/fnsyn.2021.798225
https://www.frontiersin.org/articles/10.3389/fnsyn.2021.798225/full
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Szule Hypothesis: AZM Structure-Biochemistry-Function

thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal
here is to help direct future studies that aim to bridge Active Zone Material structure,
biochemistry, and function to ultimately determine how it regulates the trafficking events
in vivo that lead to neurotransmitter secretion.

Keywords: synapse, neuromuscular junction, active zone, active zone material, neurotransmitter secretion,
synaptic vesicle, vesicle trafficking, electron tomography

INTRODUCTION

At chemical synapses, the electrical activity of neuronal
axon terminals increases the probability that neurotransmitter
molecules in synaptic vesicles (SVs) will be secreted from
specialized regions along the presynaptic plasma membrane
(PM) called active zones (Katz, 1969; Couteaux and Pecot-
Dechavassine, 1970). Prior to secretion, SVs undergo several
transient trafficking events (i.e., ‘‘docking’’, ‘‘priming’’, ‘‘Ca2+-
triggering’’ and ‘‘membrane fusion’’) at active zones that are each
necessary for secretion to occur. However, the definition and
criteria of these trafficking events are often dependent on the
experimental approach, and this has led to many variations of the
morphological and biochemical criteria used to define each step
(Slater, 2015). For the purpose of this report, docking is described
as the directed movement of an SV towards the PM at the active
zone, where the SV membrane will be held in direct contact
with the PM to become docked. Once an SV is docked, priming
influences the probability that the membranes will fuse, as only a
small subset of the docked SVs will be triggered to secrete their
contents when an electrical impulse arrives (Katz and Miledi,
1979; Heuser and Reese, 1981). Ca2+-triggering occurs when
Ca2+ ions bind specific SV proteins at sufficient concentrations
to increase the probability that a docked SV and the PM will
undergo membrane fusion, where the two distinct lipid bilayers
from each membrane will undergo rearrangements and form a
pore that is continuous from the vesicle lumen to the extracellular
synaptic cleft (Chernomordik et al., 1995). It is important to note
that disruption in the molecular mechanisms of any of these
events, either through genetic mutations or pharmacological
intervention, will also disrupt the end result of neurotransmitter
secretion.

Based on techniques that involve transmission electron
microscopy of either tissue sections or freeze-fracture replicas,
active zones in presynaptic terminals are generally characterized
by the presence of docked SVs held at the PM, a network of
macromolecules attached to both the docked SV membranes
and the PM called active zone material (AZM), and many
large macromolecules that span the PM (Palade, 1954; Palay,
1954; Couteaux and Pecot-Dechavassine, 1970; Heuser et al.,
1974, 1979; Propst and Ko, 1987; Harlow et al., 2001). Electron
tomography has been used to characterize the fine structure of
AZMmacromolecules in 3D at nanometer scale resolution in situ
to provide insights into their direct roles in these trafficking
events (Harlow et al., 2001, 2013; Ress et al., 2004; Nagwaney
et al., 2009; Fernandez-Busnadiego et al., 2010; Stigloher et al.,
2011; Szule et al., 2012, 2015; Matkovic et al., 2013; Imig et al.,
2014; Perkins et al., 2015; Cole et al., 2016; Jung et al., 2016, 2018).

Extensive biochemistry studies have also led to a
comprehensive characterization of the many conserved protein
families universally involved in these trafficking events [reviewed
by Rizo and Rosenmund (2008), Sudhof and Rizo (2011), Rizo
and Sudhof (2012), and Rizo and Xu (2015)]. Each trafficking
event requires specific biochemical interactions between proteins
of SVs, AZMmacromolecules, and the PM to proceed (Takamori
et al., 2006; Südhof and Rothman, 2009; Südhof, 2012, 2013;
Snead and Eliezer, 2019), although the mechanistic details
of each event are under considerable debate (Hanson et al.,
1997; Jahn and Sudhof, 1999; Klenchin and Martin, 2000;
Price et al., 2000; Jahn et al., 2003; Szule and Coorssen, 2003;
Han et al., 2004; Südhof, 2004; Jackson and Chapman, 2008;
Neher and Sakaba, 2008; Chua et al., 2010; Gundersen and
Umbach, 2013; Szule et al., 2015). A hypothesized proteomic
atlas will be provided here to describe how these conserved
proteins are thought to be assembled and function in their
AZM macromolecular complexes in situ to regulate SV docking,
priming, Ca2+-triggering, and membrane fusion that ultimately
control the regulation of triggered neurotransmitter secretion.

The basic mechanisms for the events that lead to triggered
secretion are thought to be conserved across neuron-types due
to the homology of the proteins involved, the consistent presence
of docked SVs connected to AZM at various active zones, and
the universality of Ca2+ as the trigger for neurotransmitter
secretion (Südhof, 2012; Ackermann et al., 2015). However,
there are also well-described differences in protein isoforms
and the architecture of AZM which are likely to accommodate
synapse-specific physiologies (Palade, 1954; Palay, 1954; Gray,
1963; Zhai and Bellen, 2004; Nagwaney et al., 2009; Ehmann
et al., 2014; Ackermann et al., 2015; Slater, 2015). The frog NMJ
is a historically established model system of chemical synaptic
transmission (Bennett, 1999; Homan and Meriney, 2018); its
physiology is well understood (Fatt and Katz, 1952; Kuffler
and Vaughan Williams, 1953; Katz and Miledi, 1967, 1979),
the organization of axon terminals is known (Couteaux and
Pecot-Dechavassine, 1970; McMahan et al., 1972; Heuser et al.,
1974, 1979; Ceccarelli and Hurlbut, 1980; Slater, 2003, 2015;
Rizzoli and Betz, 2004), and the molecular architecture of its
AZM has been quantitatively characterized in 3D by electron
tomography at rest and while undergoing SV docking, priming
andmembrane fusion (Harlow et al., 2001, 2013; Ress et al., 2004;
Szule et al., 2012, 2015; Jung et al., 2016). It should be noted
that potential artifacts caused by aldehyde fixation and heavy
metal staining were addressed using high-pressure freezing and
freeze-substitution methods. It was determined that there were
no significant differences in the positions and dimensions of the
AZMmacromolecules (Jung et al., 2016), however, future studies
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using cryoelectron tomography without the use of heavy metal
stains may help refine their unstained dimensions. Thus, AZM at
frog NMJs will be used here as a model system to link various
conserved proteins involved in neurotransmitter secretion to
the macromolecules involved in SV docking, priming, Ca2+-
triggering, and membrane fusion.

OVERVIEW OF ACTIVE ZONES AT FROG
NEUROMUSCULAR JUNCTIONS

Active zones in a motor neuron axon terminal at frog NMJs are
situated immediately across the synaptic cleft from a junctional
fold in the post-synaptic muscle cell membrane (Couteaux and
Pecot-Dechavassine, 1970). The main body of AZM is a band
that is ∼1 µm long, ∼50 nm wide, and extending ∼75 nm into
the cytoplasm. It is flanked on each side by∼10–20 docked SVs, a
small portion of which (1–3%) will secrete their neurotransmitter
cargo when the axon terminal is stimulated by an electrical
impulse (Couteaux and Pecot-Dechavassine, 1970; Heuser et al.,
1974). Further, themacromolecules that span the PM at the active
zone are organized in a parallel double row array (Heuser et al.,
1974, 1979; Ceccarelli et al., 1979a,b; Fesce et al., 1980; Stanley
et al., 2003). Transmission electron tomography has shown that
AZM is highly ordered. It is composed of morphologically
distinct classes of macromolecules that are categorized based on
their relative positions, their dimensions, and their connectivity
to the SVs, the PM, and the other AZM macromolecules
(Figure 1; Table 1; Harlow et al., 2001, 2013; Szule et al., 2012).
Although AZM macromolecules are defined as morphologically
distinct structures, their extensive connection to each other, the
SVs (both docked and undocked) and the PM make it likely
that different domains of individual proteins are components of
more than one AZMmacromolecule. Further, the dimensions of
each AZM macromolecule are also sufficient to accommodate
multiple proteins. These results have been described (Harlow
et al., 2001, 2013; Ress et al., 2004; Szule et al., 2012; Jung et al.,
2016), and reviewed (Szule et al., 2015), but a brief description
will be provided here.

The superficial layer of AZM, ≤15 nm from the PM, consists
of beams, ribs, pegs, and pins (Figure 1; Table 1). Beams are
situated adjacent to the PM and their long axis runs parallel to
the long axis of the active zone. Ribs, which are also situated
adjacent to the PM but perpendicular to beams, connect to beams
and docked SV membrane. Pegs are short filaments that connect
ribs to the PM-spanning macromolecules that are arranged in
the distinguishing parallel double row array (Heuser et al., 1974;
Pumplin et al., 1981; Harlow et al., 2001). Pins connect to the
SV membrane and the PM and are situated around the region of
contact between these membranes.

The intermediate layer of AZM, ∼15–30 nm from the PM,
consists of steps and spars (Figure 1; Table 1). Steps are situated
periodically along the midline of the AZM band deeper into the
cytoplasm compared to beams. Spars connect to steps near the
midline of the band and to docked SVs at the periphery of the
band.

The deep layer of AZM,∼30–75 nm from the PM, consists of
masts, booms, and top-masts (Figure 1; Table 1). Masts extend

from the steps perpendicular to the plane of the PM and consist
of four to nine thinner fibers. Booms connect to masts and to
docked SVs. Top-masts connect tomasts and to themembrane of
nearby undocked SVs. Booms and top-masts have a comparable
mean diameter thickness, both classes of structures connect to
the masts in similar positions, and top-masts occur in variable
angular orientations. Thus, it is conceivable that booms and
top-masts are the samemacromolecular complexes and that their
differences described here are based upon whether the SV that
they connect at a resting active zone is docked or undocked.

SV luminal filaments can be visualized by transmission
electronmicroscopy in frogNMJs that had been fixed and stained
by high pressure freezing and freeze-substitution, but not when
aldehyde fixed and heavy metal stained at room temperature
(Harlow et al., 2013). Interestingly, cryoelectron tomography
on cultured CNS neurons revealed that the lumen of some
SVs also contained filamentous material (Schrod et al., 2018).
The SV luminal filaments at frog NMJs, found in both docked
and undocked SVs, occupies ∼10% of the luminal volume
and forms a chiral structure that radiates from the center of
the lumen to provide each SV a distinguishable orientation
(Harlow et al., 2013; Figure 1). The filaments connect to the
luminal surface of an SV membrane by ∼25 nub connection
sites, which are also stereotypically arranged, and link to
the different classes of AZM and non-AZM macromolecules
by transmembrane macromolecules. The many different SV
transmembrane proteins, that have variously sized luminal
domains (Takamori et al., 2006; Burré and Volknandt, 2007),
have been proposed to link in the SV lumen in a specified
configuration so as to predefine where the proteins of the
AZM macromolecules connect to the cytosolic surface of the
SV membrane, i.e., the so-called AZM-binding domain (Harlow
et al., 2013).

SV Trafficking Events at Active Zones of
Frog Neuromuscular Junctions
SV Docking
To test the involvement of AZM in the SV trafficking events
at frog NMJs, the axon terminals of motor neurons were
chemically fixed during high-frequency electrical stimulation.
Fixation-stabilized ‘‘snapshots’’ of undocked SVs were captured
during their transition to becoming docked while interacting
with the different classes of AZM macromolecules to discern
the morphological interactions and steps during SV docking
(Figure 2-Top; Szule et al., 2012). During step 1 of docking, the
full complement of∼7 booms stably connects with the undocked
SV when it is 30–40 nm from the PM which may function to
draw the SV to the PM and/or orient the SV so that it is able
to interact with other AZM macromolecules. During step 2 of
docking, the SV stably connects with the full complement of
∼2 spars when it is 17–24 nm from the PM, in addition to the
previous connections with booms, whichmay also draw the SV to
the PM and stabilize its orientation to facilitate interaction with
other AZMmacromolecules. During step 3 of docking, undocked
SVs interact with the full complement of ∼4 ribs and ∼4 pins
when it is less than 16 nm from the PM, in addition to the
previous connections with spars and booms, which may function
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FIGURE 1 | Organization of AZM and SVs at an active zone of a frog NMJ. 2D (Left) and 3D (Right) schematic diagrams derived from electron tomography analysis
of active zones showing the positions, dimensions, and connectivity of AZM macromolecules to SV membranes and the PM (see legend for color codes). Docked
SVs are in direct contact with the PM whereas undocked SVs are not. The SV luminal filaments and SV transmembrane (TM) macromolecules are ghosted in the
undocked SV because their orientations and spatial relationships to AZM and non-AZM macromolecules have not been observed directly. The AZM band is ∼1 mm
long and is composed of 5–10 repeats of the unit shown in the 3D schematic diagram on the right. Adapted from Harlow et al. (2001), Szule et al. (2012), and
Harlow et al. (2013). NMJ, Neuromuscular junction; AZM, Active zone material; PM, Presynaptic membrane; SV, Synaptic vesicle.

TABLE 1 | Dimensions of active zone material (AZM) macromolecules.

Mean ± S.D. nm (n)

AZM macromolecule Length Diameter Reference

Ribs ∼28 ∼9 Szule et al. (2012)
Proximal portion of ribs ∼17 Jung et al. (2016)
Pegs ≤7 Harlow et al. (2001)
Pins ∼13 ∼5 Jung et al. (2016)
Spars ∼18 ∼7 Szule et al. (2012)
Booms ∼16 ∼7 Szule et al. (2012)
Top-Masts ∼25 ∼7 Szule et al. (2012)
Steps ∼28 × ∼22 ∼14 Szule et al. (2012)
Mast bundle of filaments ∼32 ∼22 Szule et al. (2012)
Mast filaments ∼32 ∼9 Szule et al. (2012)
Beams ∼75 ∼11 Harlow et al. (2001) and Szule et al. (2012)

to fine-tune the alignment of the SV prior to becoming docked
on a predefined, specialized position of the PM. Once the SV has
interacted with the full complement of AZM macromolecules,
force is likely applied between the SV membrane and PM to
overcome the repulsive and hydration forces that are present
upon their close apposition (Rand and Parsegian, 1989), bringing
the SV membrane into direct contact with the PM where it
becomes docked.

SV Priming
Electron tomography was also used to study the structural role of
AZMmacromolecules during docked SV priming at active zones
from frog NMJs. It was determined that there are correlations
between several structural parameters with the probability that
the SV will fuse when the terminal is electrically stimulated,
including the area of SV-PM contact, the length of ribs and pins,
and the positions of pegs (Jung et al., 2016; Figure 2-Middle).
Further, electronmicroscopy of frog NMJ freeze-fracture replicas

led to the conclusion that the positions of transmembrane
macromolecules, and consequently their associated pegs, are
dynamic during exocytosis (Stanley et al., 2003). Thus, it was
hypothesized that priming for each docked SV is continuously
changing (Figure 2-Middle). The area of SV-PM contact and
the position of the pegs and their associated PM-spanning
macromolecules is thought to be due to force being applied
by the shortening ribs and pins, which resulted in increased
membrane destabilization andmovement of the putative voltage-
gated Ca2+-channels closer to the Ca2+-sensor protein at the
SV-PM interface (Jung et al., 2016).

Ca2+-Triggering and Membrane Fusion
Ca2+ ions that enter the axon terminal through voltage-
gated Ca2+-channels when an electrical impulse depolarizes
the PM bind to Ca2+-sensor proteins embedded on the SV
membrane. At sufficient concentrations, Ca2+ binding to the
sensor protein changes its interactions with the PM (Chapman
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FIGURE 2 | SV trafficking events that lead to neurotransmitter secretion at
frog NMJs. 2D schematic diagrams of the SV trafficking events at frog NMJs
derived from electrically stimulated terminals and analyzed by electron
tomography. The three steps of SV docking are characterized by the distance
between the undocked SV to the PM and their connections to specific AZM
macromolecules (Top). After an SV is docked it undergoes priming which
determines the probability that it will fuse when an electrical impulse arrives;
the variable priming model states that priming is regulated by forces exerted
by AZM macromolecules, which are variable and in dynamic equilibrium, to
destabilize the SV membrane–PM contact site and change the positioning of
voltage-gated Ca2+-channels in relation to the Ca2+-sensor protein
embedded in the docked SV membrane (Middle). When sufficient
concentrations of cytosolic Ca2+ bind the sensor protein Synaptotagmin, the
SV membrane and PM undergo lipidic membrane fusion to form a pore
through which neurotransmitter molecules are secreted to the synaptic cleft
(Bottom). Adapted from Szule et al. (2012) and Jung et al. (2016).

and Davis, 1998; Hui et al., 2009; Paddock et al., 2011; Bowers
and Reist, 2020). These changes are thought to overcome an
energy barrier and initiate membrane lipid rearrangements that
ultimately result in the formation of a fusion pore between
the SV membrane and PM, as described by the stalk-pore
hypothesis (Chernomordik et al., 1995; Kozlov et al., 2010).
At frog NMJs, fused SVs undergo full fusion (Figure 2-
Bottom) and the SV membrane then flattens into the PM and
moves to a lateral position where it is endocytosed (Heuser
and Reese, 1973). There is little evidence for ‘‘Kiss-and-Run’’
fusion at frog NMJs (Rizzoli and Jahn, 2007), as compared
to other synapses throughout the nervous system (Alabi and
Tsien, 2013), and the proteins involved in endocytosis and
SV recycling are beyond the scope of this report, but see
Doherty and McMahon (2009). SVs that had fused and vacated
the docking sites are replaced at the active zone by a nearby

undocked SV from the recycling pool (Rizzoli and Betz, 2005),
presumably by one that is connected to a top-mast (Szule et al.,
2012).

The AZM macromolecules that connect to SV membranes
are likely formed through specific interactions between proteins
of a base AZM complex attached to the PM and proteins
bound to SV membranes. The functions and interacting
domains of various proteins that contribute to AZM structures
at different synapses have been comprehensively reviewed
elsewhere (Südhof, 2004; Schoch and Gundelfinger, 2006;
Takamori et al., 2006; Rizo and Rosenmund, 2008; Chua et al.,
2010), although it is important to note that not all of these
proteins have been specifically identified at active zones of
frog NMJs. Here, a hypothesis is presented that relates the
contributions of several proteins that have been implicated in
AZM regulated vesicle trafficking events to the different classes
of AZMmacromolecules. The hypothesis considers the common
roles, binding partners, physical features/structure, and relative
positioning in the axon terminal of both the proteins and
classes of macromolecules involved in the vesicle trafficking
events. The structures of several proteins listed below have been
determined by x-ray crystallography, single particle cryo-electron
microscopy, or NMR spectroscopy in solution and deposited in
the Protein Data Bank (PDB1). The length, width, and depth
of several protein structures, at their greatest distance in each
dimension, were measured here unless otherwise stated using the
‘‘Measurements’’ tool from the Mol* Viewer software package
(Sehnal et al., 2021).

HYPOTHESIS: PROTEINS THAT
CONSTITUTE “ACTIVE ZONE MATERIAL”
MACROMOLECULES

Cation Channels
N-type Ca2+-channels (CaV2.2; Catterall, 2000–2013), the
prominent type of voltage-gated Ca2+-channels present at active
zones of frog NMJs (Robitaille et al., 1990; Cohen et al., 1991),
allow the influx of Ca2+ into the cytosol in response to membrane
depolarization to trigger membrane fusion. The channel consists
of the α1B pore-forming subunit, β subunit, and α2/β1 subunits.
α1B also has a large cytoplasmic domain that includes the
87 amino acid ‘‘synprint’’ region in the II-III linker that interacts
with a cytosolic region of the SNARE protein syntaxin and
influences channel gating (Sheng et al., 1994; Bezprozvanny
et al., 1995; Jarvis et al., 2002). The single particle cryo-electron
microscopy-derived structure of the α1B subunit [PDB accession
code: 7MIY (Gao et al., 2021)] has an expected diameter in the
plane of the PM of∼11 nm (Table 2).

Ca2+-gated K+-channels found at active zones of frog NMJs
regulate the efflux of K+ to repolarize the membrane potential
in preparation for subsequent rounds of triggered secretion
(Robitaille and Charlton, 1992; Robitaille et al., 1993a,b).
From the x-ray diffraction-derived structure of Ca2+-gated K+-
channels [PDB accession code: 1LNQ (Jiang et al., 2002)], the

1http://www.wwpdb.org
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TABLE 2 | Hypothesis of protein contributions to the classes of AZM macromolecules.

Protein Putative function PDB accession Dimensions, nm (LxWxD) AZM structure

N-type Ca2+-channel Cation regulation 7MIY 11 × 11 × 22 Pegs, Ribs
Ca2+-gated K+ channels Cation regulation 1LNQ 13 × 13 × 13 Pegs, Ribs
Syntaxin Late stage of secretion 1N7S 10 × 1 × 1 Ribs/Pegs, Pins
SNAP25 Late stage of secretion 1N7S 12 × 2 × 2 Ribs, Pins
Synaptobrevin Late stage of secretion 1N7S 9 × 1 × 1 Ribs, Pins
SNARE complex Late stage of secretion 1N7S 12 × 3 × 3 Ribs, Pins
Synaptotagmin Ca2+-sensor for secretion 5CCG 8 × 5 × 5 Ribs, Pins
Munc13 SNARE complex regulation Ribs, pins
Munc18 SNARE complex regulation 6LPC 8 × 8 × 5 Ribs
Complexin SNARE complex regulation 3RK3 8 × 1 × 1 Ribs
NSF SNARE complex regulation 3J95 13 × 13 × 9 Ribs
Rab3A SV Tethering and Docking 1ZBD 5 × 4 × 3 Top-Masts, Booms, Spars
Rabphilin-3A SV Tethering and Docking 1ZBD 8 × 3 × 2 Top-Masts, Booms, Spars
Rab3A-Rabphilin-3A SV Tethering and Docking 1ZBD 8 × 5 × 3 Top-Masts, Booms, Spars
RIM Scaffolding Beams, Steps, Masts, Ribs, Spars, Booms, Top-Masts
Bassoon/piccolo Scaffolding 80 × 10 × 10 Beams, Steps, Masts, Ribs, Spars, Booms, Top-Masts
Spectrin Scaffolding Beams
SV2 Vesicle Scaffolding SV luminal filaments

diameter in the plane of the PM is expected to range from ∼8
to 13 nm (Table 2).

The freeze-fracture replicas of macromolecules that span the
PM at active zones each have diameters that range from 9 to
13 nm (Fesce et al., 1980) which includes a thin coating of
platinum/carbon.

Thus, based on the requirement for cation flux through
the PM at active zones to mediate neurotransmitter secretion
and similarities in the dimensions of the cation channels and
the PM-spanning macromolecules observed by freeze-fracture
techniques at active zones of frog NMJs, it is hypothesized
that the N-type Ca2+-channels and Ca2+-gated K+ channels are
included in the macromolecules that span the PM, and their large
cytoplasmic domains, including the synprint region, are included
in pegs and ribs (Table 2). However, the specific composition and
arrangements of the channel types in relation to each other and
the docked SVs are under investigation. Through computational
modeling, it has been estimated that on average two, but as few
as one, active N-type Ca2+-channels associated with a docked SV
are required to trigger membrane fusion (Dittrich et al., 2013;
Homan et al., 2018). Further, it has also been proposed that the
N-type Ca2+-channels are included in the rows that are proximal
to the docked SVs (Jung et al., 2016).

The SNARE Proteins
Syntaxin, SNAP25 with Synaptobrevin together referred to as
SNARE proteins (Soluble NSF-Attachment Protein Receptor)
assemble to form the SNARE complex, and several models have
implicated the complex as essential for membrane fusion (Sollner
et al., 1993b; Weber et al., 1998; Melia et al., 2002; Han et al.,
2004; Südhof and Rothman, 2009; Jackson, 2010; Karatekin et al.,
2010). Additionally, other models suggest the roles of the SNARE
complex to be upstream to membrane fusion, such as during
docking and priming (Coorssen et al., 1998; Tahara et al., 1998;
Price et al., 2000; Harlow et al., 2001, 2013; Szule and Coorssen,
2003, 2004; Szule et al., 2003, 2012; Gundersen and Umbach,
2013; Imig et al., 2014; Meriney et al., 2014; Jung et al., 2016).

Syntaxin has a transmembrane domain that spans the PM
associated with N-type Ca2+ channels through the synprint
domain (Bennett et al., 1992b; Sheng et al., 1994; Bezprozvanny
et al., 1995; Rettig et al., 1997; Jarvis et al., 2002). SNAP25 has
been post-translationally modified with palmitoyl lipid moieties
so that it associates with and is anchored in the hydrophobic
core of the PM (Veit et al., 1996). Synaptobrevin, also referred
to as VAMP (Vesicle-Associated Membrane Protein), has a
transmembrane domain that is integral to the SV membrane.
The PM-associated proteins Syntaxin and SNAP25 interact with
the SV membrane-associated protein Synaptobrevin to form a
SNARE core complex through associations of their so-called
SNARE coiled-coil domains. The SNARE core complex forms
a four-helix bundle with contribution of one coiled-coil domain
(i.e., a characteristic 65 amino acid stretch) from Syntaxin, two
from SNAP25, and one from Synaptobrevin [reviewed by Sudhof
and Rizo (2011) and Rizo (2018)]. Syntaxin1, SNAP25, and
VAMP2 are neuronal isoforms, and are present at active zones
of frog NMJs (Boudier et al., 1996). From x-ray crystallography
[PDB accession code: 1SFC (Sutton et al., 1998); PDB accession
code: 1N7S (Ernst and Brunger, 2003)] and cryo-electron
microscopy [PDB accession code: 6MTI (Grushin et al., 2019)],
the SNARE core complex is ∼12 nm in length and ∼3 nm in
diameter (Table 2). Further, it has been estimated that multiple
SNARE core complexes, at least three in cultured PC12 cells, are
associated with each docked vesicle for biological secretion to
proceed (Hua and Scheller, 2001). Once assembled, the SNARE
core complex is variable in length and it is proposed to zipper,
and effectively shorten, to exert force between the two opposing
membranes (Weber et al., 1998; Melia et al., 2002).

Pins and ribs/pegs are connected to both the PM and SV
membranes, in agreement with the assignment of the SNARE
core complex to these AZM macromolecules. The physical
dimensions of the SNARE core complex can be accommodated
by pins (∼13 nm in length and 5 nm in diameter; Table 1),
and the proximal portion of ribs between the peg proximal to
the docked SV and the SV membrane (∼17 nm in length and
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∼9 nm in diameter; Table 1). It was concluded that pins and
proximal portions of ribs change the length to exert variable
amounts of force between the SV membrane and PM during the
final stage of docking and during priming, as would be expected
if SNARE complexes were included in these structures (Szule
et al., 2012; Jung et al., 2016). However, further scrutiny suggests
that the proximal portions of ribs are associated with pegs that
are associated with large macromolecules transmembrane to the
PM likely to include voltage-gated Ca2+-channels (Harlow et al.,
2001), whereas pins have not been documented to be associated
with any such largemacromolecules that span the PM. Therefore,
while it is plausible that SNARE core complexes are components
of both pins and ribs, either only a subset of SNARE core
complexes associate with the voltage-gated Ca2+-channels or they
are only components of the proximal portions of ribs (Table 2).

Synaptotagmin
Synaptotagmin is the putative Ca2+-sensor protein to trigger
neurotransmitter secretion (Perin et al., 1990; Mackler et al.,
2002). There are 17 isoforms of Synaptotagmin that impart
different Ca2+-sensitive cellular functions, and Synaptotagmin
1 has been shown to be present at active zones of frog NMJs
(Boudier et al., 1999). For a review of the different isoforms of
Synaptotagmin, see Südhof (2002) and Wolfes and Dean (2020).
Synaptotagmin has a short SV luminal domain, a transmembrane
domain that is integral to the SV membrane, SNARE-interacting
domains, and two cytoplasmic Ca2+-binding C2 domains (C2A
and C2B) that interact with the plasma membrane (Rizo and
Sudhof, 1998; Groffen et al., 2010; Grushin et al., 2019).
The SNARE interacting domain consists of multiple binding
sites between the C2 domains and the SNARE core complex,
with the primary interface between C2B and the Syntaxin-
SNAP25 complex suggested to be involved triggered secretion
that occurs at motoneuron active zones (Zhou et al., 2015).
Ca2+-binding to Synaptotagmin changes its interactions with the
plasmamembrane bymasking repulsive electrostatic charges and
inducing insertion of hydrophobic residues of the C2 domains
into the hydrophobic region of lipid bilayers to lower the
energy barrier of membrane fusion (Chernomordik et al., 1995;
Chapman and Davis, 1998; Hui et al., 2009; Kozlov et al., 2010;
Paddock et al., 2011; Bowers and Reist, 2020). Further, in the
absence of Ca2+-binding, Synaptotagin 1 and 2 form oligomeric
rings that are 20–40 nm in diameter (Wang et al., 2014; Zanetti
et al., 2016).

The x-ray crystallography-derived structure of
Synaptotagmin 2 [PDB accession code: 5CCG (Zhou et al.,
2015)] is∼8 nm×∼5 nm×∼5 nm (Table 2).

Pins and ribs/pegs are connected to both the PM and SV
membranes, and their ∼8 connections form a ring around
the SV-PM contact area that has been measured to have
an average diameter of 20–25 nm (Szule et al., 2012; Jung
et al., 2016). This arrangement agrees with the assignment
of Synaptotagmin in the proximal portions of ribs and pins.
Synaptotagmin is transmembrane to the SV membrane and the
SNARE interacting domains are situated with, and bound to,
SNARE core complexes, which are proposed to be included in
the proximal portions of ribs and pins. The C2 domains interact

with the PM, and the connection sites of ribs/pegs and pins
with the PM are closest to the SV membrane—PM contact
site when the SV is most primed. And, the rings formed by
oligomers of Synaptotagmin are similar in dimension to the rings
formed by ribs/pegs and pins around the SV membrane—PM
contact site. Further, these AZMmacromolecules are of sufficient
size to accommodate Synaptotagmin. Thus, it is proposed that
Synaptotagmin is included in the proximal portions of ribs
and/or pins (Table 2).

SNARE Auxiliary Proteins
Munc13 is a large protein (∼200 kD) that is thought to be
involved in SV priming (Augustin et al., 1999), operating through
interactions with membrane lipids including diacylglycerols
(Basu et al., 2007), and SNARE proteins (Betz et al., 1997).
It has been proposed that Munc13 interactions with Syntaxin
regulate the associations between Syntaxin and SNAP25, thereby
providing an acceptor complex for Synaptobrevin (Guan et al.,
2008). There are several domains of Munc13 including C2A
domain, CaMb (Calmodulin-binding sequence), C1 (membrane
diacylglycerol lipid-binding), C2B, MUN, and C2C, however,
the structure-function relationship of several of these domains
remain unclear. Further, the structure of Munc13 in its entirety
has not yet been solved, but rather only certain domains
have been characterized including a fraction of the MUN-CD
domain which has been proposed to be structurally similar
to other membrane tethering domains (Li et al., 2011). A
fragment of Munc13, that includes the C1, C2B, and MUN
domains, is elongated and reported to be 19.5 nm in length
(Xu et al., 2017). It has also been proposed that the C1-
C2B-MUN-C2C domains bridge the SV membrane to the
PM (Quade et al., 2019).

Munc18 is a member of the Sec1/Munc18 (SM) family of
proteins that are conserved and critical for different types of
membrane trafficking (Carr and Rizo, 2010). Munc18 is thought
to be involved in SV priming by controlling the formation of
the SNARE complex through direct interactions with the closed
conformation of Syntaxin, thereby stabilizing it and hindering
the assembly of the SNARE core complex (Dulubova et al., 1999,
2003; Rizo and Sudhof, 2002; Burkhardt et al., 2008; Gerber
et al., 2008). It has further been proposed that Munc13 and
Munc18 cooperatively chaperone SNARE complex assembly
prior to zippering (Shu et al., 2020). The x-ray crystallography-
derived structure of Munc18 [PDB accession code: 6LPC (Wang
et al., 2020)] is∼8 nm×∼8 nm×∼5 nm (Table 2).

Complexin is a cytosolic protein that interacts with the
SNARE complex (Chen et al., 2002) at a position that also
binds Synaptotagmin (Tang et al., 2006) and has been proposed
to act as a clamp that inhibits membrane fusion by inhibiting
the complete zippering of the SNARE complex (Giraudo et al.,
2006). In this model, Complexin is dislodged from the SNARE
complex in a Ca2+-dependent manner to allow membrane fusion
to proceed. In an alternate and contradictory model, Complexin
has been proposed to facilitate secretion because deletion of
Complexin results in reduced Ca2+-triggered neurotransmitter
release in synapses of the mouse central nervous system
(Xue et al., 2008). Regardless of its physiological role in
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secretion, it is established that Complexin interacts with the
SNARE complex. The x-ray crystallography-derived structure of
Complexin [PDB accession code: 3RK3 (Kummel et al., 2011)] is
∼8 nm×∼1 nm×∼1 nm (Table 2).

NSF (N-ethylmaleimide Sensitive Factor) is an ATPase that,
together with SNAP (Soluble NSF Attachment Protein), has been
proposed to disassemble the SNARE complex after membrane
fusion has occurred so that Syntaxin and SNAP25 can interact
with Synaptobrevin of an incoming SV and form a new SNARE
complex (Sollner et al., 1993a). NSF binds a subcomplex of
SNAP protein and cis-SNARE complex, i.e., Syntaxin, SNAP25,
and Synaptobrevin are anchored in the same membrane after
fusion, to form a so-called 20S super-complex. ATP hydrolysis
initiates NSF to exert torque to unwind the highly stable
four-helix SNARE complex bundle (Zhao et al., 2015), and is
present in active zones of frog NMJs (Boudier et al., 1996).
The single particle cryo-electron microscopy-derived structure
of NSF [PDB accession code: 3J95 (Zhao et al., 2015)] is
∼13 nm×∼13 nm×∼9 nm (Table 2).

Munc13, Munc18, Complexin, NSF each directly associate
with the SNARE proteins, that are designated above to
be included in the ribs and/or pins. The diameter of the
SNARE complex, Munc18, and Complexin (not including
Munc13 because its dimensions are unknown) is 9 nm if they
were bound together, and less if their binding positions with the
SNARE complex were staggered, which can be accommodated
by the average diameter of the ribs (9 nm; Table 1). Further, the
average full length of ribs (29 nm; Table 1) or just the proximal
portion of ribs (17 nm; Table 1) are sufficient to accommodate
this complex if their binding to the SNARE complex were
staggered. However, it is unlikely that the diameter of the pins
(5 nm; Table 1) can accommodate this large complex but it
is plausible that pins accommodate fewer proteins bound with
the SNARE complex or possibly the Munc13 bridge between
the SV membrane and the PM. It is also established that NSF
binds the cis-SNARE complex, i.e., they are anchored in the
same membrane after the SV and PM had fused, which presents
the possibility that it is a component of AZM at rest while the
SNARE complex is in a trans configuration, i.e., Syntaxin and
SNAP25 anchored in the PM and Synaptobrevin anchored in the
SV membrane. However, it is also plausible that NSF is recruited
from the cytosol by the presence of the cis-SNARE complex after
membrane fusion had occurred. Thus, it is hypothesized here that
Munc13 is localized to ribs and/or pins,Munc18, andComplexin,
are localized to ribs, and NSF is either a component of ribs at rest
or binds ribs and/or pins after membrane fusion had occurred
(Table 2).

Rab3A and Rabphilin-3A
Rab proteins constitute a large family of low molecular mass
GTP-binding proteins that are involved in multiple stages of
membrane trafficking throughout the cell (Grosshans et al., 2006;
Hutagalung and Novick, 2011). They interact with effectors
preferentially while in a GTP-bound state through a Switch
domain (Pfeffer, 2005). Rab3 proteins are a sub-family that
associate with SVs during the late stages of membrane trafficking
(Matteoli et al., 1991; Geppert et al., 1997), however, there are

multiple isoforms of Rab3 which may have multiple functions,
making interpretations of knock-out and over-expression studies
difficult (Schluter et al., 2002). Rab3A is the most abundant
Rab3 protein in the nervous system and in its GTP-bound state
translocates from the cytosol to interact with the hydrophobic
region of the SV membrane and its effector Rabphilin-3A (Stahl
et al., 1996). Rabphilin-3A possesses 2 tandem C2 domains that
bind to SV membranes in a Ca2+-dependent manner (Chung
et al., 1998). SV redistribution within axon terminals of C.
elegans and mouse motor-neurons has been demonstrated in
Rab3 and Rab3A mutant animals, respectively, with a reduced
proportion of SVs at active zones within <50–150 nm of the
PM (Nonet et al., 1997; Coleman et al., 2007). It was concluded
that Rab3A is not essential for SV fusion with the PM, but
rather is required to maintain a normal reserve of SVs during
repetitive stimulation by directing them to the active zones
(Südhof, 1995; Nonet et al., 1997; Coleman et al., 2007). From the
x-ray crystallography-derived structure of Rab3A/Rabphilin-3A
complex [PDB accession code: 1ZBD (Ostermeier and Brunger,
1999)] Rab3A is ∼5 nm × ∼4 nm × ∼3 nm, Rabphilin-3A is
∼8 nm × ∼3 nm × ∼2 nm, and the overall Rab3A/Rabphilin-
3A complex is∼8 nm×∼5 nm×∼3 nm (Table 2).

Rab3A-Rabphilin-3A are directly involved in the interactions
between the AZM and the SV membranes at an active zone.
The interactions between AZM and the membranes of undocked
and docking SVs involve the top masts, booms, spars, ribs and
pins, and the dimensions of each are sufficient to accommodate
the inclusion of Rab3A and Rabphilin-3A. However, as outlined
above, it is likely that the rib connections to docking SV
membranes involve the SNARE proteins to form a SNARE
core complex to exert force between the docking SV membrane
and the PM to bring them into direct contact. Further,
pin-SV membrane connections are not likely to involve Rab3A-
Rabphilin-3A interactions because pins are directly involved in
step 3 of docking once the SV is 15 nm from the PM and in
regulating priming for Ca2+-triggered membrane fusion once
the SV is docked on the PM (Figure 2; Szule et al., 2012;
Jung et al., 2016). Also, the pin-SV interactions are not likely
involved in maintaining a normal reserve of undocked SVs
during stimulation or affecting the movement/state/positioning
of undocked SVs during the early steps of docking when it
is >15 nm from the PM. Top-masts are likely to be involved
in maintaining a normal reserve of undocked SVs at the
active zone during stimulation, and the booms and spars are
likely to affect the positioning of undocked SV when they are
further than 15 nm from the PM. Therefore, it is hypothesized
that Rab3A and Rabphilin-3A are localized to the interface
of SV membranes with the top-masts, and/or booms, and/or
spars (Table 2).

AZM Scaffolding Proteins
The AZM consists of several multidomain scaffolding proteins
that interact with other proteins enriched at active zones (Schoch
and Gundelfinger, 2006; Mittelstaedt et al., 2010).

RIM (Rab3-Interacting Molecules) protein is generally
thought to be a critical active zone organizer that recruits
voltage-gated Ca2+-channels and is involved in SV docking and
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priming (Zarebidaki et al., 2020). There are seven members
of the RIM protein family, encoded by four genes, with
RIM1α likely involved in neurotransmission. RIM1α has a
zinc-finger, PDZ, C2A, and C2B domains. RIMs have been
reported to bind with Rab3A in a GTP-dependent manner
(Wang et al., 1997), with Munc13 to form a Rab3-RIM-
Munc13 tripartite complex (Dulubova et al., 2005), directly
with voltage-gated Ca2+-channels (Kiyonaka et al., 2007; Picher
et al., 2017), and with other scaffolding proteins such as liprin-
α and ELKS (Schoch et al., 2002; Wang et al., 2002; Lu et al.,
2005). Although the structure of RIM in its entirety has not
yet been solved, the structures of individual domains have
been derived by solution NMR or x-ray crystallography. The
structures of the zinc-finger domain [PDB accession code: 2A20
(Dulubova et al., 2005)] is ∼4 nm × ∼3 nm × ∼2 nm,
the PDZ domain [PDB accession code: 1ZUB (Lu et al.,
2005)] is ∼4 nm × ∼4 nm × ∼2 nm, the C2A domain
[PDB accession code: 2BWQ (Dai et al., 2005)], and the C2B
domain [PDB accession code: 2Q3X (Guan et al., 2007)] is
∼5 nm×∼4 nm×∼3 nm (Table 2).

Bassoon and Piccolo are scaffolding proteins that are enriched
at the synaptic active zone, they share high sequence similarity,
and have several similar protein interacting domains (Cases-
Langhoff et al., 1996; tom Dieck et al., 1998); reviewed by
Gundelfinger et al. (2016). Both Basoon and Piccolo are
thought to be vertebrate-specific and have been found at
active zones of synapses from both the central and peripheral
nervous systems. They are also thought to perform multiple
presynaptic functions including assembly of active zones,
organization of neurotransmitter releasemachinery, endocytosis,
and synapse maintenance. Bassoon and Piccolo have two zinc-
finger, three coiled-coil, PDZ, C2A, and C2B domains that
perform the various functions and bind with other active
zone proteins. These proteins include, but are not limited to,
Munc13, CAST (CAZ-Associated Structural Protein; an active
zone scaffolding protein that is structurally related to ELKS),
RIM, and voltage-gated Ca2+-channels (Takao-Rikitsu et al.,
2004; Wang et al., 2009; Chen et al., 2011; Gundelfinger
et al., 2016). Using immunohistochemistry and super-resolution
STED microscopy on active zones at mouse NMJs (Nishimune
et al., 2016), Bassoon and Piccolo were shown to be localized
to AZM in the vicinity of the voltage-gated Ca2+-channels.
Although the structures of Bassoon and Piccolo in their entirety
have not yet been solved, silica modeling has predicted their
structures based on x-ray crystallography and solution NMR
of the multiple domains (Gundelfinger et al., 2016). Overall,
Bassoon and Piccolo have an elongated length of ∼80 nm
that generally appears filamentous with interspersed globular
domains that are estimated to be less than ∼10 nm in
diameter (Table 2).

Spectrins are a family of cytoskeletal proteins separated into
α-Spectrins (αI, αII) and β-Spectrins (βI, βII, βIII, βIV, βV),
which are each composed of 2 α and 2 β subunits. Spectrins
contain a Calponin Homology (CH) domain, SRC Homology
3 (SH3) domain, Pleckstrin Homology (PH) domain, EF hand
domain, and spectrin repeats, and there are binding sites
for other proteins including ankyrin, actin, synapsin, among

others, andmembranes containing PIP2, phosphatidylserine, and
phosphatidylethanolamine lipids (reviewed by Machnicka et al.,
2014). Spectrins generally create membrane scaffolds at Golgi,
endoplasmic reticulum, and plasma membrane with various
functions during cellular trafficking (reviewed by De Matteis
and Morrow, 2000). Brain-derived Spectrins have been shown
to interact with the presynaptic protein Synapsin I (Sikorski
et al., 1991), and β-Spectrin has been shown to interact either
directly or indirectly with several active zone proteins including
Munc13 in rat brain (Sakaguchi et al., 1998), and voltage-gated
Ca2+ channels at active zones of the torpedo electric organ
synapse which is a modified NMJ (Sunderland et al., 2000). The
x-ray crystallography-derived structure of the Spectrin repeat
region of β-Spectrin [PDB accession code: 6M3P (Li et al., 2020)]
is ∼15 nm × ∼3 nm × ∼2 nm, which link to form elongated
filaments.

RIM likely interacts with Rab3A in the top-masts and/or
booms and/or spars, Munc13 in the ribs, and voltage-gated
Ca2+-channels in ribs/pegs, as outlined above. However, for
RIM to simultaneously interact with Rab3A, Munc13, and
voltage-gated Ca2+-channels, it is also likely to be a component
of beams, steps, and masts. Bassoon and Piccolo function
by inducing the assembly and organization of AZM, they
possess several protein-binding domains, and their lengths
can extend across the depth of AZM. It is likely that their
interactions with voltage-gated Ca2+-channels, Munc13 and RIM
are localized to pegs, ribs, spars/booms/top-masts. Further, the
other scaffolding interactions between Bassoon/Piccolo, RIM,
Liprin-α, and CAST/ELKS are likely to occur in the central
regions of the AZM (i.e., in the beams, steps, and masts).
Spectrin is an elongated filamentous cytoskeletal protein at
the interface with the PM, and it possesses several domains
that bind other AZM proteins proposed to be at or near
the PM including voltage-gated Ca2+ channels and Munc13.
Beams are also elongated (∼75 nm; Table 1) filamentous AZM
macromolecules at the interface with the PM that are connected
to ∼10–12 ribs, which are thought to include voltage-gated Ca2+

channels andMunc13. Thus, it is hypothesized here that Spectrin
is a component of beams.

Vesicle Scaffolding
The protein backbone of the luminal filaments is thought
to be glycosylated, which forms a carbohydrate matrix that
helps bind the soluble content of the SVs (Rahamimoff
and Fernandez, 1997; Reigada et al., 2003). It was further
hypothesized that the SV luminal filaments organize the
locations of AZM macromolecule connections on the external
membrane surface and impart the SV with a distinct orientation
(Harlow et al., 2013).

SV2 (Synaptic Vesicle protein 2) is an ∼80 kD, highly
glycosylated protein that is common to SVs throughout
vertebrate nervous systems, and there are three isoforms (SV2A,
SV2B, and SV2C) that have differing expression patterns through
development. SV2 has 12 transmembrane domains that traverse
the SVmembrane, seven cytoplasmic domains of varying lengths
with phosphorylation sites, and six luminal domains of varying
lengths with at least three glycosylation sites (Bajjalieh et al.,
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1994; Bartholome et al., 2017). SV2 is present at frog NMJs
(Dunaevsky and Connor, 2000). At mouse NMJs, SV2A is
down-regulated in motor nerve terminals on fast-twitch muscle
fibers after birth whereas SV2B and SV2C are retained at nearly
all NMJs into adulthood (Chakkalakal et al., 2010). SV2 binds
active zone proteins including Synaptotagmin, Synaptophysin,
Synaptobrevin, and Rab3A (Bennett et al., 1992a), and it was
also proposed that there are ∼2 copies of SV2 per SV (Takamori
et al., 2006). The structure of SV2 isolated from its native tissue
has not been determined but based on its primary and secondary
structures, the large luminal domains are able to traverse the SV
lumen several times. Thus, it is likely that the luminal portions of
SV2 form the bulk of the luminal assembly of macromolecules
detected in SVs at frog NMJs processed by the high-pressure
freezing and freeze-substitution methods of fixation and staining
(Figure 1; Harlow et al., 2013). The large cytoplasmic domains
are likely components of AZM macromolecules that connect
to SV membranes, such as ribs, pins, spars, booms, and top-
masts, and/or non-AZM macromolecules that link SVs to other
undocked SVs (Figure 1; Szule et al., 2012; Harlow et al., 2013).
The nubs linking the luminal assembly to the luminal surface
of the SV membrane are also likely composed of a combination
of SV2 at the transitions to transmembrane regions and also
the luminal portions of other SV membrane proteins, such as
synaptotagmin, synaptophysin, synaptobrevin, and Rab3A, that
link to SV2.

SUMMARY

The current report, although not exhaustive, provides a
hypothesis that incorporates cellular and morphological features
of synaptic active zones with biochemical mechanisms of the
transient SV trafficking events that lead to neurotransmitter
secretion. These events include recruiting and tethering
undocked SVs to the active zone, SV docking as a directed
approach to the PM, SV priming after it has docked, Ca2+-
triggering initiated by an electrical impulse, and fusion between
the SV membrane and PM to secrete neurotransmitters. Due
to the quantitative characterization of AZM at frog NMJs, both

at rest and during impulse-evoked synaptic activity, it is an
appropriate model system for which to propose a hypothesis
relating to structure, biochemistry, and function. AZM is
composed of several morphologically distinct macromolecules
that each play a role in the transient stages of membrane
trafficking and active zone assembly/organization. In summary
(see Table 2), the cation channels are proposed to be included
in pegs and ribs, the SNARE proteins and SNARE auxiliary
proteins are proposed to be included in ribs and pins, Rab3A
and Rabphillin-3A are proposed to be included in spars and/or
booms and/or top-masts, the scaffolding proteins are proposed
to be included in steps and masts, and SV2 is proposed to
compose the bulk of SV luminal filaments. It would be of
great interest to test this model so that the function of AZM at
presynaptic terminals can be understood at the molecular level.
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