
materials

Review

Surface Plasmon Resonance or
Biocompatibility—Key Properties for Determining
the Applicability of Noble Metal Nanoparticles

Ana Maria Craciun 1,†, Monica Focsan 1,†, Klara Magyari 2,*,† ID , Adriana Vulpoi 2,† and
Zsolt Pap 2,3,*,† ID

1 Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on
Bio-Nano-Sciences, Babes, -Bolyai University, 400271 Cluj-Napoca, Romania;
ana.gabudean@ubbcluj.ro (A.M.C.); monica.iosin@phys.ubbcluj.ro (M.F.)

2 Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on
Bio-Nano-Sciences, Babes, -Bolyai University, 400271 Cluj-Napoca, Romania; adriana.vulpoi@phys.ubbcluj.ro

3 Institute of Environmental Science and Technology, University of Szeged, 6720 Szeged, Hungary
* Correspondence: klara.magyari@ubbcluj.ro (K.M.); pap.zsolt@phys.ubbcluj.ro (Z.P.);

Tel.: +40-264-405300 (K.M. & Z.P.)
† All authors contributed equally to this work.

Received: 6 June 2017; Accepted: 10 July 2017; Published: 21 July 2017

Abstract: Metal and in particular noble metal nanoparticles represent a very special class of materials
which can be applied as prepared or as composite materials. In most of the cases, two main properties
are exploited in a vast number of publications: biocompatibility and surface plasmon resonance
(SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive
glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is
universally applicable in all the previously mentioned research areas is gold, although in the case
of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied.
The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending
on the chosen application (biopolymers, semiconductor-based composites: TiO2, WO3, Bi2WO6,
biomaterials: SiO2 or P2O5-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA),
Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials’
applicability and the development of new approaches will be targeted in the present review, focusing
in several cases on the functioning mechanism and on the role of the noble metal.

Keywords: bioactive glasses; noble metal nanoparticles; surface plasmon resonance; plasmonic
biosensors; diagnostics; photocatalysis; composite photocatalysts; photoactivity

1. Introduction

Noble-metal nanoparticles present an extremely widened application spectrum, which cannot be
expressed efficiently in numbers. Therefore, to gather relevant knowledge and to present information
to the large scientific audience, specific in-depth, or applicability spectrum-based review papers are
needed. Consequently, the following main interest areas were considered and covered in this work:

(1) development of innovative design of plasmonic biosensors with highly sensitive, selective, and
reliable biomarker detection abilities to enable early diagnosis and improved disease treatment.

(2) tissue engineering and drug delivery systems based on noble metal nanoparticles in bioactive
glasses and glass ceramics: the specific biological effect of these materials such as silver
nanoparticles are described by the antibacterial activity and healing enhancement effect of
nano-silver, copper nanoparticles also demonstrated the size-dependent antibacterial activity
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with low toxicity, while bioactive glasses with gold nanoparticles have good proliferation rate of
keratinocytes cells.

(3) plasmonic effect-based photocatalysis: the surface plasmon resonance (SPR) of some noble metals
can be exploited to activate photocatalytic materials, by injecting hot electrons in to the conduction
band of semiconductors making possible visible- and near infrared light driven degradation of
organic pollutants.

As it was described above, the chosen application areas are well separated (however, cross-linked
by the two mentioned properties: biocompatibility and SPR). Therefore, it is very interesting to see
how the mentioned properties were exploited, investigated and described in different research areas.
Furthermore, the present review paper will focus mostly on gold and silver in to emphasize the weight
of a noble metal in the specific research area.

2. Optical Plasmonic Biosensors for Smart Disease Diagnostics

Timely detection of specific disease biomarkers is one of the top priorities in order to enable early
diagnosis and improve diseases treatment [1]. Presently, the majority of current clinical diagnostic
methods rely on the identification and quantification of disease biomarkers [2]. A biomarker is
“a biological molecule found in blood, other body fluids, or tissue that is a sign of a normal or abnormal
progress or of a condition or disease”, as the National Cancer Institute defines [3]. Most of currently
employed diagnostic procedures are long, complex and invasive processes which imply sophisticated
assays, including multi-step protocols and difficult fluid handling. A nowadays research priority in
the field of biomedical diagnostic is focused on the development of point-of-care (POC) procedures
to allow rapid determination of relevant analytes directly in the doctor’s office or the emergency
ward, where regular assays for protein analytes, such as enzyme-linked immunosorbent assay
(ELISA), radio/electrophoretic and mass spectrometry (MS)-based proteomics cannot be performed.
Concretely, many disease biomarkers are proteins and their presence in biological fluids is considered
an indicator of the presence of some diseases such as diabetes, cancers, etc. One of the most
common methods to get information about proteins in the body is the fluorescence spectroscopy,
which usually requires labeling of proteins with fluorescent substances [4]. The main drawbacks
of this approach are: (a) the complexity of the chemical process of labeling which also induced
alteration of the proteins or the biological processes under investigation and (b) the rapid process
of photobleaching (photochemical destruction of the fluorophore) underwent by the fluorescent
label, which limits the examination time. Another current method used for detection of protein
biomarkers in diagnostic is the ELISA assay, which however requires labeling of the proteins, complex
optical equipment, and significant technical expertise, making this technique expensive and time
consuming. Despite the detection limits approaching 1 pg·mL−1 for some biomarkers [5], this
technique is difficult to employ for POC use. Considering these points, an urgent and critical
step toward the implementation of smart and early medical diagnostic tools is represented by
the development of inexpensive and user-friendly diagnostic nanoplatforms for the detection of
various biomarkers with a very high sensitivity, selectivity and reliability. Trying to respond of this
desideratum, a myriad of well-designed biosensors for optical detection of specific cancer biomarkers
has appeared in the literature during the last decades. Additionally, the researchers demonstrated
that by the integration of these plasmonic biosensors into microfluidic circuit it is possible to obtain
a single biochip (so-called “lab-on-chip”) able to detect very low concentrations of biomarkers in
a minimum volume of sample collected from simulated or biological fluids, developing thus a
portable and miniaturized POC devices for mass utility [6–9]. In particular, the development of
such integrated plasmonic biosensor in microfluidic device has the real potential to push forward the
smart medical diagnostic by: (a) reducing the detection limits of relevant biomarkers; (b) allowing
an early diagnosis of some diseases; (c) tracking the presence of proteins in real time in body fluids;
(d) introducing less- or non-invasive procedures in medical diagnostic; and (e) allowing fast and
ultrasensitive clinical analysis. Furthermore, microfluidic devices are very appealing systems for
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sensitive biomarkers detection due to the decreased risks of contaminating the biological samples,
the extremely small sample volumes (10−9–10−8 L) required and—more exciting—the possibility
for developing high-throughput, real-time, parallel, and multiplexed analyses [10], all these aspects
having a major impact on overall nanosensor performance and capture kinetics.

In recent years, significant attention was paid to designing innovative optical biosensors based on
plasmonic transducers with greater efficiency to translate the system into clinical use, where the main
limitation is its modest detection sensitivity. For example, ELISA is the current gold standard for clinical
prostate-specific antigen (PSA) biomarker detection, with a limit of detection of 0.1 ng·mL−1 [11].
However, this detection limit is higher than the concentrations of cancer biomarkers in clinical serum
samples, which are sometimes useless when an early stage detection of the disease is desired. Thanks
to the development of nanotechnology, gold (Au) nanostructures have drawn a considerable interest
as plasmonic transducers, because of their unique physical and optical properties related to their size,
shape and dielectric microenvironment [12], which make them excellent scaffolds for the development
of biosensors for a variety of target biomarkers. In fact, their optical properties are governed by
Localized Surface Plasmon Resonance (LSPR), which is the result of the collective oscillations of the
metal conduction electrons after being exposed to a light beam [13]. The spectral sensitivity of LSPR to
the dielectric properties of environment has recently started to be investigated in plasmonic-based
immunoassays, thus enabling the sensitive and specific label-free ultradetection of target biomarkers
of interest. In the case of disease diagnostics, the LSPR detection takes place when a measurable
wavelength red-shift of the plasmonic band caused by changes in the local refractive index around the
metallic surface is detected [14]. More importantly, excepting all the advantages above-mentioned,
Au nanostructures-based biosensors are highly favored for development by researchers because
of their surface versatility which provides many possibilities for functionalization. Additionally,
the capability to finely tune their surface properties, size, shape as well as their aggregation state
(in case of colloidal Au nanoparticles (AuNPs)), makes Au nanostructures ideal biosensor platforms,
that can be successfully employed for specific diagnostic applications. Therefore, in the following
section we will focus on providing an overview on the recent progress in employing different types of
Au-based biosensors—both solid and in colloidal suspension—with the aim to improve and enlarge
their applicability in smart disease diagnostics.

2.1. Solid Plasmonic Substrate-Based Immunoassays

Various Au-based biosensors—as solid plasmonic platforms—have been designed in the literature
using different innovative fabrication strategies and tested in terms of sensitivity and limit of the
detection (LOD) for detection of disease-related specific biomarkers. For example, Troung et al. [15]
successfully fabricated an individual Au nanorods-based immunosensor immobilized on glass
substrate for the LSPR detection of PSA-antichymotrypsin (PSA–ACT complex) at concentrations
as low as 111 attomolar. The improvement of the detection sensitivity is in fact the key of
early diagnostics and better treatment of specific diseases. However, to reach a higher sensitivity
than with conventional ELISA, researchers have also focused their attention on developing new
fluorescence-based immunoassays strategies that have the potential to revolutionize smart clinical
detection. For example, Liu el al. [16] developed an activatable and ultrasensitive probe based on
Rhodamine B isothiocyanate (RBITC) loaded onto AuNPs for detection of PSA in patient serum
samples with high sensitivity. The new as-formed RBITC-AuNP conjugates induced a complete
fluorescence quenching of RBITC dye molecules through the Nanometal Surface Energy Transfer
(NSET) mechanism. Then, this positively charged complex was linked to the negatively charged Ab2
antibodies via electrostatic interaction, retaining in this way their biological activity towards the target
PSA antigen. In order to form a sandwich structure, the Ab2- RBITC-AuNP complex was pulled down
onto the surface and after subsequent addition of cysteamine, the loaded dyes were immediately
released from the AuNPs surface, and consequently the fluorescence intensity of RBITC was enhanced.



Materials 2017, 10, 836 4 of 37

The recovered fluorescence intensity was associated with the concentration of PSA spiked in serum
samples, obtaining a detection limit down to 0.032 pg·mL−1.

Recently, Li et al. [17] reported on the fabrication of Au mushroom-based array nanosensors using
the interference lithography (IL) for the label-free, one-step specific detection of alpha-fetoprotein
(AFP) (see Figure 1A), an important biomarker specific to hepatocellular carcinoma in clinical patient
serum. Specifically, the morphology of the as-fabricated plasmonic substrate via IL and Au deposition
is presented in Figure 1B. The LOD determined by AFP antibody detection in buffer solution
(here in 24 ng·mL−1) was found to be below the critical concentration in normal plasma, which was
established to be ≈25 ng·mL−1. Furthermore, in order to demonstrate the feasibility of the fabricated
biosensor, the AFP detection was evaluated using real serum samples collected from different patients
suffering from liver cancer, the obtained LSPR results being consistent with the clinical ones obtained
by electrochemiluminescence immunoassay. Concretely, the recorded reflectance spectrum of the
plasmonic substrate shifts ≈1.8 nm for a positive clinical sample, like 90 ng·mL−1 according to the
calibration curve (Figure 1C).

Figure 1. (A) Schematic illustration presenting the covalent functionalization of the fabricated
plasmonic biosensor with anti-alpha-fetoprotein (AFP) for label-free and one-step localized surface
plasmon resonance (LSPR) detection of AFP; (B) Representative SEM image of the fabricated plasmonic
substrate; (C) Normalized reflectance spectra of the plasmonic biosensor before (a) and after (b–d)
exposure to human serum sample three times. (Reproduced with permission from Reference [17]
published by Elsevier).

More significantly, for improved healthcare system where multiple biomarkers should be
simultaneously detected, it is highly desirable to develop innovative and convenient nanosensors,
which are amenable for multiplexed detection. With this aim, Sim et al. [18] have recently designed
novel nanoplasmonic chip-based biosensors for the label-free specific detection and quantification of
three different targeted cancer biomarkers (i.e., AFP, carcinoembryonic antigen (CEA) and PSA from
patient-mimicked serum samples), chosen herein as a “proof-of-concept”. The proposed multiplex
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plasmonic biosensor was fabricated by immobilizing in a selective manner the targeted immune-AuNPs
on a hydrophilic-hydrophobic patterned microscope slide. The LSPR response of the immune-AuNPs
is shifted to longer wavelengths as a function of the concentration of cancer biomarkers, indicating
the success formation of biomarker@AuNPs complex. As a result, the LODs of the developed sensing
platform were determined to be 91 fM, 94 fM and 10 fM, values suitable for direct implementation
of the platform in practical clinical detection. The advantage of this platform is that it can be easily
extended to detect other relevant cancer biomarkers for the clinical diagnostics field.

In the same period, Lee et al. have investigated the possibility to develop a label-free immunoassay
by fabricating a fiber-optic LSPR nanosensor for the real-time detection of PSA with high resolution
and sensitivity [19]. In this case, the nanosensor was fabricated by using spherical AuNPs immobilized
on the end-face of the optical fiber via the self-assembled monolayer approach. The authors have
concluded that the proposed fiber-optic LSPR nanosensor can be further applied for clinical testing,
being able to detect a PSA concentration as low as 1 pg·mL−1. Recently, an important progress towards
the development of the portable and miniaturized label-free optical-fiber LSPR technology has been
realized by achieving the lowest LOD at 3 fM of free PSA in PBS buffer solution [20]. For PSA detection,
a very stable and robust fiber biosensor has been fabricated by an inexpensive lift-off process adapted
to design Au nanodisk arrays at the fiber end facet. However, just keeping these examples in mind,
it is important to note that—in general—the development of fiber-optic based on LSPR technology
is important for POC applications due to its relatively simple optical set up with no electromagnetic
interference, low clinical sample volume used, low-cost, as well as—very importantly for a real-time
and label-free clinical sensing—portability and miniaturization [21].

More recently, an innovative analytical label-free strategy has been proposed by Lechuga’s
group [22] for the rapid detection and real-time quantification of tumor-associated autoantibodies
(TAA) directly in clinical blood serum and plasma for non-invasive diagnosis of colorectal cancer
(CRC) at early stages. Specifically, the developed refractometric nanobiosensor is based on the LSPR
response of Au nanodisks fabricated by hole-mask colloidal lithography technique, which allowed
us to obtain uniform and reproducible plasmonic biosensors. After rigorous optimization of the
biofunctionalization protocol based on the formation of an alkanethiol self-assembled monolayer onto
the plasmonic nanodisks, an LOD of 1 nM has been reached (i.e., 150–160 ng·mL−1). The excellent
sensitivity and reproducibility of the designed nanobiosensor together with its simplicity of detection
(without specific labels or sample pretreatments) provide a real non-invasive POC alternative that
could be implemented for reliable CRC diagnostics.

Going further, flexible platform-based technologies, in particular paper-based nanosensors,
have recently created an exciting avenue in the field of portable POC diagnostics [23]. Paper-based
nanosensors represent an attractive, innovative, and inexpensive plasmonic detection nanoplatforms
owing to their multiple advantages such as low-cost and easy fabrication, ease of use, high specific
surface area, flexibility, or excellent wicking ability due to capillary forces. Excellent articles have been
focused on the immobilization of plasmonic NPs by immersion approach onto various types of paper,
like filter paper [24], photocopy paper [25], poly(L-lactic acid) nanofibrous paper [26] or cellulose
paper [27].

Tian et al. [28] have developed for the first time an inexpensive, environmental-friendly, and
highly sensitive plasmonic nanotransduction platform using a common laboratory filter paper
(i.e., Whatman 1) for the rapid and label-free LSPR detection of aquaporin-1 (AQP1) protein in
artificial urine sample, an important cancer biomarker for early detection of renal cancer carcinoma
(RCC). The developed bioplasmonic paper-based platform consists in Au nanorods conjugated firstly
with anti-AQP1 and then adsorbed on the filter paper. By monitoring the LSPR shift by increasing the
concentration of AQP1, an LOD of 10 ng·mL−1 was noted. This value is well-matched with the lower
limit of the range of AQP1 in patients with kidney cancer. Due to its three-dimensional (3D) porous
structure compared to glass solid substrate, this type of flexible paper-based LSPR substrate facilitates
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a better uptake and transport of targeted biomarkers, enabling a larger LSPR shift and consequently
the possibility to achieve a lower LOD.

Tadepalli et al. [29] have demonstrated the selective and sensitive LSPR detection of the cardiac
biomarker troponin I (cTnI), an important indicator for the detection of myocardial damage, using a
bioplasmonic paper device, as a sensing plasmonic nanoplatform. Specifically, with the aim to directly
translate the LSPR-based paper biosensor to inexpensive and rapid POC diagnostics, the authors
functionalized the Au nanorods treated paper with peptide recognition elements with high affinity for
cTnI biomarker. A major advantage of employing short peptides as recognition elements compared
to larger antibodies was their enhanced chemical and environmental stability, making peptide-based
LSPR sensors an excellent candidate for POC diagnostics, particularly for the resource-limited settings.
Considering all these advantages, troponin was detected in this way directly in complex physiological
fluids, achieving an LOD in human plasma of 353 pg·mL−1. The ultrasensitive detection of troponin
has also been achieved from artificial eccrine sweat at physiologically relevant concentrations [30].

The major advantage of Surface enhanced Raman spectroscopy (SERS) technique—as a powerful
fingerprinting tool—relies on its ability to provide rich and complex spectroscopic information
for the ultrasensitive detection of biomarkers, as well as their identification without labeling the
targeted analytes. Additionally, compared to conventional detection techniques like MS, which offers
high sensitivity but implies purification of the protein sample before analysis [31], or radioactive
immunoassays which are less time consuming, SERS can be used as successful POC tool due to its
multiplexing detection capability, single biomarker sensitivity and ease-of-use without complicated
sample preparation. In general, to perform a reliable, fast diagnosis and imaging of diseases, e.g., cancer
(margins) or infectious diseases, analytical methods allowing a specific and sensitive detection are
required. SERS can be such a tool, since molecular specific Raman spectroscopy is combined with
high sensitivity based on exceptional plasmonic properties of metallic nanostructures (i.e., field
enhancement). Up to now, theoretical articles demonstrated that the maximum electromagnetic field
enhancement in SERS occurs specifically in between NPs or in close proximity to nanometer-sized
metallic nanostructures [32]. In fact, metallic nanostructures can be modified with a reporter molecule
and specific recognition units creating SERS labels for the specific interaction of binding sites, producing
an important enhancement (104–108) of the Raman spectrum [33].

In the work presented by Wu et al. [34], a novel sensitive SERS immuno-sensor has been
constructed for protein biomarker detection, employing a periodic Au triangle nano-array platform
coupled to Au nanostar@Raman-reporter@SiO2 sandwich NPs. Using this coupling strategy, a large
number of “hot-spots” can be generated in between the as-created 3D space. This biosensor
demonstrated the ability to measure the level of vascular endothelial growth factor (VEGF) in human
blood plasma samples taken from the breast cancer patients.

In the same period, Porter et al. [35] have developed a multiplex SERS-based immunoassay
platform for the detection of two pancreatic cancer biomarkers, here serum carbohydrate antigen
19-9 (CA 19-9)—this one being the only validated biomarker for pancreatic cancer—and matrix
metalloproteinase 7 (MMP-7). The LODs of each target using SERS-based immunoassay were
2.28 pg·mL−1 and 34.5 pg·mL−1 for MMP-7 and CA 19-9, respectively, from spiked serum. Comparing
these values to those obtained using the conventional ELISA technique, the increase in sensitivity
was achieved, pointing out the possibility of using SERS in real-world samples. Recently, a CEA
tumor biomarker was detected directly in human body fluids using a stable and highly reproducible
Au butterfly wings platform as efficient SERS substrate [36]. With their natural 3D hierarchical
sub-micrometer structures presented in Figure 2A, which is quite impossible to manufacture by
conventional methods (e.g., photolithography, etc.), Au butterfly wings generate an effectively 3D
enhanced SERS clinical detection of CEA. Specifically, the biosensing protocol proposed for the
detection of CEA antigen is schematic illustrated in Figure 2B. To demonstrate SERS-based CEA
detection ability of the functionalized Au butterfly wings platform (see Figure 2C), five different blood
clinical samples were collected from patients at the Zhejiang Cancer Hospital, China. The authors
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have obtained acceptable accuracy for quantitative clinical CEA detection as compared to Abbott CEA
reagent kits, demonstrating as such the feasibility of this platform to be further employed for the
specific detection of multiple biomarkers.

Figure 2. (A) Surface textures of the origin of butterfly wings covered with an Au layer of 40–70 nm
thickness; (B) Schematic illustration representing the functionalization steps involved in the fabrication
of butterfly wings for carcinoembryonic antigen (CEA) detection; (C) Surface enhanced Raman
spectroscopy (SERS)-based CEA detection for five different clinical samples. (Reproduced with
permission from Reference [36] published by the Royal Society of Chemistry).

Fluorescence spectroscopy is another well-known spectroscopic method playing a major role in
selective detection of protein biomarkers. Similarly to the effect of increasing the Raman scattering
of molecules, the presence of noble metal nanostructures can enhance the fluorescence signal from
locally situated fluorophores. The phenomenon, known as metal-enhanced fluorescence (MEF),
has gained considerable research interest in recent years [37]. An LSPR-based POC system was
implemented by Zhou et al. [38] to enhance the excitation of the fluorescence labels for medical
diagnostics. The detection configuration based on MEF is able to significantly enhance the sensitivity,
up to 10-fold compared to a Au film for PSA biomarker detection. In particular, in the proposed POC
system the fluorescence detection was recorded by a mobile phone camera.

Up to now, β2 microglobulin (β2M)—one of the very important biomarkers for cancers inflammatory
disorders and kidney diseases [39]—was successfully detected by Preechaburana et al. [40] using a first
angle-resolved surface plasmon resonance (SPR) detection system consisting of a single lab-on-chip
device, an optical coupler (made up of polydimethylsiloxane (PDMS) rubber and epoxy) and a
smartphone. Concretely, the illumination light source was provided in this case by the phone’s
screen, while the front camera of the phone was used for reflected light collection. This as-developed
system was able to detect pathophysiological range of β2M with an LOD of about 0.1 µg·mL−1,
a performance suitable for detection in the clinical range. Later, Liedberg et al. [41] have constructed
a novel smartphone sensing platform that employ directly a built-in light emitting diode (LED)
flash from the phone as light source and a camera as the detector. Then, the peptide-functionalized
AuNPs with a diameter of 36 nm have been used to detect cTnI by real-time monitoring of the LSPR
red-shift. The LOD of the smartphone-based sensing system, a fast, sensitive, and portable LSPR
sensor, is estimated to be 50 ng·mL−1, comparable to the value achieved with common SPR technique.

2.2. Solution-Based Homogeneous Immunoassays

Homogeneous immunoassays, have attracted considerable attention recently, becoming useful
platforms for the detection of biomarkers with prospects for easy automation and increase of
analytical throughput [42]. Compared to typical heterogeneous immunoassays, which involve antibody
immobilization, multiple steps of incubation and washing cycles, homogeneous immunoassays avoid
multiple reactions and washing procedures before signal amplification and reading. Moreover, with
the expanding use of nanomaterials in the biomedical field, colloidal plasmonic nanoparticles can play



Materials 2017, 10, 836 8 of 37

a significant role in the development of innovative, low-cost, rapid and easy-to-use homogeneous
immunosensors in solution, due to their appealing plasmon-induced optical properties.

2.2.1. Immunoassays Based on the Intrinsic Optical Properties of AuNPs

One important class of AuNPs-based immunoassays exploits the intrinsic optical response of
AuNPs, such as absorption, scattering and intrinsic photoluminescence, to traduce the antigen-antibody
binding events which can be further correlated with the concentration of biomarker in the analyzed
sample. For example, the approach based on the spectral shift of LSPR band of AuNPs has been
implemented as a transduction strategy in label-free immunoassays. In the early 2000s, Thanh and
Rosenzweig [43] showed for the first time that AuNPs can be used to quantify antibodies in aqueous
and serum samples based on an aggregation-based unique, sensitive, and highly specific immunoassay.
Specifically, by monitoring the absorption change at 620 nm against anti-protein A concentration in
serum samples, an LOD of 1 µg·mL−1 anti-protein A was achieved. The results showed that the
sensitivity of their AuNPs-based assay for the protein associated with the bacteria Staphylococcus aureus
was comparable with the sensitivity of ELISA. Later, Wang and co-workers [44] brought a significant
contribution to the field of immunosensors with real applicability in early diagnosis by designing a
novel plasmonic biosensor based on Au nanorods (AuNRs) to detect the hepatitis B surface antigen
(HBsAg), which indicates active viral replication of hepatitis B virus. By monitoring the wavelength
shift of the LSPR peak of AuNRs induced by the immunological reaction, the biosensor showed a
dose-dependence response ranging from 0.01 IU·mL−1 to 1 IU·mL−1, with an LOD of 0.01 IU·mL−1.

LSPR of AuNPs has been also exploited in the development of highly sensitive label-free fiber-optic
biosensors for the detection of cancer biomarkers. For example, Li et al. proposed a new optical
microfiber biosensor employing AuNPs as amplification labels, for the selective and sensitive detection
of alpha-fetoprotein (AFP) from serum samples. After optimization, the detection scheme based on the
LSPR shift occurring after an antigen-antibody binding event yielded an LOD for AFP of 0.2 ng·mL−1

in PBS and 2 ng·mL−1 in bovine serum, comparable to conventional assays [45].
AuNPs and LSPR-based biosensing approach has been recently explored as novel tool for the

early diagnosis of prostate disease. Jazayeri et al. [46] established a novel approach for improving
the efficacy and sensitivity of PSA by employing 25 nm colloidal AuNPs conjugated with anti-PSA
antibody LSPR and monitoring the LSPR changes occurring as a consequence of AuNPs’ aggregation
induced by antibody-antigen reaction. The same LSPR-based approach was exploited by Salahvarzi
and coworkers [47] to develop an immunoassay based on AuNPs for detecting thyroid stimulating
hormone (TSH), used for monitoring thyroid associated diseases, in human blood serum. The capture
of TSH by anti-TSH monoclonal immobilized on the AuNPs surfaces by electrostatic adsorption
induced a LSPR peak shift which was used as basis for determination of TSH antigen. A dynamic
range between 0.4–12.5 mIU·L−1 and a sensitivity of 1.71 L mIU−1 was obtained. Furthermore, TSH at
a concentration of 6.2 mIU·L−1 TSH is detected in human serum sample.

The pioneering work of Mirkin [48] on the use of AuNPs as signal reporter for the selective
detection of biological samples, based on the distance-dependent optical properties of AuNPs
has boosted the expansion of AuNPs-based colorimetric assays. The optical properties of AuNPs
are strongly dependent on the interparticle separation distance while their aggregation induces a
significant shift in the extinction spectrum manifested as a color change of suspensions from red to
purple. Most AuNPs-based colorimetric immunosensors are designed in such a way that binding
of an analyte causes aggregation, and consequently a colorimetric response which is correlated with
the concentration of the analyte in the analyzed sample. Such immunoassays have witnessed a
rapid development due to several advantages when compared to traditional immunoassays, such as
simplicity, rapidness, enhanced stability, reduction in nonspecific aggregation and no need for
expensive or challenging instruments. This approach was used by Chen et al. [49] to develop a
novel, simple and rapid label-free colorimetric assay based on fibrinogen and AuNPs for the highly
selective and sensitive detection of thrombin, a biomarker of pulmonary metastasis, in blood plasma.
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The LOD obtained for thrombin—0.04 pM—is lower than those obtainable using other nanomaterial-
and aptamer-based detection methods. In a similar way, neurogenin3 (ngn3), a marker for pancreatic
endocrine precursor cells and associated with the development of diabetes, was quantitatively detected
for the first time by Yuan and coworkers [50] using a label-free colorimetric immunosensor based on
glutathione AuNPs. The electrostatic binding of positively charged ngn3 to the negatively charged
anti-ngn3 labeled AuNPs induces the aggregation of NPs in the presence of salt resulting in a visible
change of color and occurrence of a new optical band. The assay showed a linear response range of
50–300 ng·mL−1 for ngn3 and a promising LOD of 20 ng·mL−1. Recently, Liu et al. [51] developed
a wash-free homogenous colorimetric immunoassay relying on the control of AuNPs growth for
mediating the interparticle spacing in the protein-AuNPs oligomers. When applied for the detection of
CEA, a commonly used clinical biomarker associated with various types of cancer, the assay displayed
a linear dependence for 0–100 ng·mL−1 range and an LOD of 5.66 ng·mL−1 which is encouraging
since in most individuals with cancer, CEA is often in the range from several to hundreds of ng·mL−1.
The group of Yang [52] showed that colorimetric immunosensing can be successfully applied for the
detection of Amyloid β (Aβ), a key predictor of Alzheimer’s disease (AD). Specifically, AuNPs coated
with N- or C-terminal antibody captured simultaneously Aβ inducing aggregation of NPs and a
change of solution color from red to blue. The authors report good linearity within a range from 7.5 nM
to 350 nM with an LOD of 2.3 nM, which is even better than other detection limits reported for Aβ.
Colorimetric immunoassays can also be applied for the early diagnosis of viruses which is imperative
for preventing their further spread and facilitate therapy. For example, influenza A virus (IAV) was
detected using a colorimetric sensor based on AuNPs modified with monoclonal anti-hemagglutinin
antibody (mAb), as schematically depicted in Figure 3A [53]. The single-step approach provides results
by means of plasmon shift derived from the assembled mAb–AuNPs on the surface of subtype H3N2
virus occurring together with the change of color from red to purple, which can be quantified by
absorption spectral measurements. The immunosensor revealed high specificity, accuracy comparable
to clinically available HA inhibition tests, good stability and an LOD of 7.8 hemagglutination units
(HAU) (see Figure 3B) [53].

Figure 3. (A) Schematic illustration of the single-step colorimetric detection assay applied for the
early detection of H3N2 influenza A virus (IAV) using Au nanoparticles (AuNPs); An obvious color
change from red to purple and alteration of extinction spectrum is observed with the increase of H3N2
concentration; (B) Variance of absorption ratio of A700/A525 as a function of H3N2 concentration.
(Reproduced with permission from Reference [53] published by the Royal Society of Chemistry).
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The coherent radiation scattered by AuNPs when irradiated by light has also been exploited in
diagnosis applications in conjunction with techniques like dynamic light scattering (DLS), resonance
light scattering correlation spectroscopy (RLSCS) or resonance Rayleigh scattering (RRS). Liu et al. [42]
were the first to develop a one-step homogeneous and quantitative immunoassay based on probing the
dynamics of AuNPs by DLS. Spherical and nanorod-shaped AuNPs labeled with two different primary
anti-PSA antibodies were exposed to PSA antigen leading to the formation of oligomers through
sandwich type antibody-antigen-antibody linkages. A correlation was made between the relative ratio
of dimers/oligomers versus individual AuNPs and the amount of antigen in solution. The assay was
sensitive for PSA concentrations from 0.1 to 10 ng·mL−1. In a similar way, Driskell et al. [54] developed
a simple, rapid and sensitive method for quantitative detection of influenza A virus, using DLS and
AuNPs as labels. DLS is used to measure the mean hydrodynamic diameter of aggregates induced
upon the interaction of target virus with influenza-specific antibodies conjugated to individual AuNPs.
This assay provides an LOD improved with up to 2 orders of magnitude compared to commercial
diagnostic kits.

LikeDLS, RLSCS spectroscopy can be used to monitor AuNPs via the strong photon bursting
phenomenon of single AuNPs occurring due to plasmon resonance scattering and Brownian motion of
single NPs, however, in this case, in a small detection volume. Lan et al. [55] applied this approach to
develop a fast and sensitive homogeneous sandwich immunoassay for PSA. Photon burst counting
method can detect changes in the photon burst counts of AuNPs before and after immune reactions,
when the formation of oligomers reduces the number of AuNPs. The relationship between the photon
burst counts of AuNPs and PSA concentration was used to quantify the level of PSA in human serum
samples. The authors report a linear behavior of the assay for PSA in the range of 1–1000 pmol·L−1 and
an LOD of 0.8 pmol·L−1, which is good agreement with conventional ELISA assays. RRS takes place
when the wavelength of Rayleigh scattering is located close to the absorption band of the scattering
sample. The unique RRS of AuNPs was exploited for the first time by Cat et al. [56] in quantitative
immunosensing applications. The assay was developed for the detection of transferrin, a clinical
biomarker for protein-calorie malnutrition and a potential marker for diabetes. The detection based on
the specific immune recognition between anti-transferrin antibody conjugated spherical AuNPs and
transferrin from human serum samples allowed an LOD of 85 pM and a linear detection range from
85 pM to 3.4 nM.

Another type of scattering effect exploited in AuNPs-based detection assays is the Hyper-Rayleigh
scattering (HRS), a nonlinear incoherent second-order light scattering. The HRS method relies on the
fluctuations of the density or orientation of NPs, which break the centrosymmetry of isotropic media
and create conditions of net frequency doubling. It has been shown that for antigen detection in an
aqueous solution, the sensitivity by HRS intensity is 10 times higher than that by UV-Vis extinction
spectroscopy [57]. Recently, the first label-free, fast, and highly sensitive immunoassay for the selective
detection of AD’s biomarker based on HRS of AuNPs was reported [58]. In the presence of tau protein,
anti tau labelled—AuNPs bind to each other, as depicted in Figure 4A, thereby producing aggregates
visible in TEM (Figure 4B) and also indicated by the occurrence of a new absorption band at 670 nm
(see Figure 4C). The authors show that the two-photon Rayleigh scattering (TPRS) from anti-tau
antibody-coated spherical AuNPs increases linearly with the concentration of tau protein over the
range 5–350 ng·mL−1 (see Figure 4D) and that the assay can be successfully applied for detecting
Alzheimer’s tau protein in the 1 pg·mL−1 level which is about 2 orders of magnitude lower than cutoff
values of 195 pg·mL−1 for tau protein in cerebrospinal fluid [58].
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Figure 4. (A) Schematic representation of the synthesis of monoclonal anti-tau antibody-conjugated
AuNPs and interaction with tau protein; (B) TEM image of anti-tau antibody-conjugated AuNPs after
the addition of 20 ng·mL−1 tau protein; (C) Extinction spectrum of monoclonal anti-tau antibody
conjugated AuNPs in the presence of bovine serum albumin (BSA) and tau protein (200 ng·mL−1);
(D) Plot illustrating the linear correlation between two-photon Rayleigh scattering (TPRS) intensity
and concentration of tau protein over the range of 5–350 ng·mL−1. (Reprinted with permission from
Reference [58] Copyright (2009) American Chemical Society).

Along with their abilities to scatter efficiently light, AuNPs have demonstrated over the years the
capability to generate a strong intrinsic photoluminescence (PL), correlated with their well-defined
plasmon resonances, hence enabling their probing by fluorescence spectroscopy toward sensing
applications. Chen et al. [59] were the first to report the possibility of developing ultrasensitive
immunoassays for the detection of proteins in blood serum based on probing the PL of AuNPs
by fluorescence correlation spectroscopy (FCS). The idea was later embraced by Xu et al. [60] who
developed a homogeneous immunoassay for the detection of thrombin from real samples based
on a sandwich approach. When differently aptamer-labeled AuNPs were mixed with solutions
containing thrombin, the affinity reaction caused the AuNPs to form dimmers or oligomers, which led
to an increase in the diffusion time which was finally detected by FCS and correlated with thrombin
concentration. Under optimal conditions, the assay provides an LOD of 0.5 nM.

2.2.2. Immunoassays Based on AuNPs as Signal Quenchers/Enhancers

Due to the intense electromagnetic field generated at their surface and in close proximity when
interacting with light, plasmonic NPs and of particular interest AuNPs, have the ability to modify
(quench or enhance) the signal of molecules located in direct contact with them or nearby. For example,
quenching of fluorescence by AuNPs have taken a considerable advance in the establishment
of so-called fluoroimmunoassays. Such immunoassays exploit the ability of AuNPs to quench
fluorescence more efficiently than organic quenchers not only via Förster resonance energy transfer
but also by manipulating the radiative rate of nearby fluorophores [61]. In one of the first reports on
fluoroimmunoassays employed for antigen detection, Ao et al. [62] combined AuNPs with magnetic
NPs to develop a sensitive and specific system for the detection of α-fetoprotein (AFP), a serum marker
of hepatocellular carcinoma. AFP was captured in between AuNPs and magnetic NPs both coated
with anti-α-fetoprotein. The sandwich-type immunocomplex was then separated by a magnetic field
while the supernatant containing unbound AuNPs, was used to quench the fluorescence of fluorescein



Materials 2017, 10, 836 12 of 37

isothiocyanate which was proportional to the concentration of AFP. The measurement range of the
assay was from 15 to 400 ng·mL−1 and the LOD was 12 ng·mL−1, which is comparable to the normal
concentration of AFP in serum (<20 ng·mL−1). Later, the lowest LOD for cardiac thrombin T (cTnT)
using a homogeneous sandwich assay based on AuNPs was reported. The principle of operation
is based on the simultaneous interaction of cTnT with two different antibodies, one attached to
AuNPs and the other labeled with fluorescent dyes, which induces the quenching of dye fluorescence,
correlated with the concentration of protein. The LOD achieved was 0.02 nM (0.7 ng·mL−1) [63].
Imposed by the urgent need to develop rapid, sensitive, and cost efficient tests for striking diseases,
Guirgis and coworkers [64] have developed a rapid AuNPs-based fluorescence immunoassay suitable
for malaria diagnosis from clinical samples. Fluorescence measurements show that the homogeneous
assay can detect a concentration of Plasmodium falciparum protein 70 (PfHsp70) in infected human
blood as low as 2.4 µg·mL−1. The assay displayed a linear response within a range of antigen
concentration from 8.2 to 23.8 µg·mL−1. The same authors have later extended their work by
combining fluorescence spectroscopy with a range of other techniques in order to obtain a detailed
picture of the competitive immunoassay for malaria antigen detection in serum samples, based on
fluorescence-quenching by AuNPs, especially under competitive binding conditions. More importantly,
antigen-binding constants to AuNPs-antibody conjugates were determined for the first time [65].

In a different scenario, Chang and coworkers [66] exploited the localized electromagnetic field near
AuNPs in combination with fluorescence to develop a fiber-optic biosensor based on localized surface
plasmon coupled fluorescence able to detect AFP biomarker in human serum. Specifically, the proposed
detection platform, integrating a sandwich immunoassay, is able to detect AFP concentration in PBS
solution from 0.1 ng·mL−1 to 100 ng·mL−1 whereas a linear response between the fluorescence signals
and the concentrations of AFP from 2.33 ng·mL−1 to 143.74 ng·mL−1 is observed in human serum.

Raman spectroscopy can be a very sensitive technique for quantitative detection and analysis
of molecules, including disease biomarkers, at low concentration, even in solution. The enhanced
electromagnetic field arising at the surface of plasmonic NPs, when the incident laser light is tuned to
the plasmon resonance wavelength enhances the unique Raman “fingerprint” of molecules located
in contact with metal or in close proximity, through SERS effect [67]. One of the first significant
SERS-based immunoassays developed for diagnosis purposes exploits the combined properties
of hollow gold nanospheres (HGNs) and magnetic beads for the detection of lung cancer marker
CEA. HGNs and magnetic beads previously conjugated with polyclonal and monoclonal anti-CEA
antibodies, respectively, bind in sandwich immunocomplexes in the presence of CEA antigen.
Quantitative analysis was performed on samples obtained after removal of nonspecific binding HGNs
using a bar magnet. The authors demonstrated that the developed SERS-immunoassay was quick and
reproducible, providing an LOD of 1–10 pg·mL−1, a value improved over 100–1000 times compared
to ELISA [68]. In the following years, similar approaches based on magnetic capture and isolation
of immunocomplexes for further signals processing have been reported. For instance, Chon and
co-workers [69] demonstrated the simultaneous detection of two routine cancer biomarkers (i.e., CEA
and AFP) by SERS under a single excitation wavelength by exploiting the same HGNs—magnetic
beads combination. Two different Raman-tags attached separately onto HGNs enabled the detection
of both biomarkers after the formation of immunocomplexes and magnetic-capture. The established
trend to detect multiple disease biomarkers was also emphasized by Neng et al. [70] who established
a sensitive SERS-based assay for the detection of multiple viral antigens. In contrast to similar
studies, the strategy employed here consisted in performing SERS detection on Raman tag-labelled
immunocomplexes magnetically concentrated after antigen capture. The proposed approach provided
an LOD of 5 fg·mL−1, which is 200–2000-fold greater then reported in previous studies on the detection
of single antigens using magnetic capture assays. More recently, Lin and coworkers [71] have reported
satisfactory results on the detection of CEA from real human serum through SERS, by employing
easy-to-synthesize spherical AuNPs and magnetic core-shell AuNPs. Similar to previous studies,
the selective detection of CEA antigen was achieved after the magnetic separation of immunocomplexes
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obtained from the interaction of antibody-functionalized Raman tag-labeled AuNPs and magnetic core
shell AuNPs with CEA antigen from serum. The LOD was as low as 0.1 ng·mL−1.

Simultaneously, others were able to develop SERS-based immunoassays that provided convincing
results without the need to perform magnetic capture and isolation of immunocomplexes from the
solution. For example, Neng et al. [72] claimed the first demonstration of a SERS-based immunoassay
for the diagnosis of the infection with West Nile Virus using a single type of AuNPs. The strategy
consisted in incubating AuNPs conjugated with antigen and blocking agent with unprocessed rabbit
serum samples containing the immunoglobulin target analyte and bi-functional Raman tag/antibody
binding reporter. The assay provided a minimum detection sensitivity of 50 pg·mL−1 for targeted
antibody in serum, a value significantly improved compared to ELISA. The SERS approach was also
exploited by Wang et al. [73] to fabricate an innovative type of multiplexed immunoassay platform for
the simultaneous detection of three cytokines, key mediators of various diseases. The strategy, called
target-controlled assembly-based SERS immunoassay, consisted of using spherical and rod-shaped
AuNPs labeled with monoclonal antibodies and Raman tags to create hot-spots for plasmonic
enhancement via controlled sandwiched antigen-antibody assembly (see Figure 5A) [73].

Figure 5. (A) Illustration of single-step SERS immunoassay based on plasmonic coupling enhancement
via sandwich assembly; (B) SERS spectra obtained in response to different combinations of proteins
targets; (C) SERS response for immunoassay of recombinant human interferon gamma (INFγ)
protein with varying concentration; (D) The peak intensity at 1335 cm−1 as a function of INFγ
concentration. (Reprinted with permission from Reference [73] Copyright (2013) published by American
Chemical Society).

By using the designed platform, the multiplexed quantification of the three cytokines (recombinant
human interferon gamma (INFγ), interleukin-2 (IL-2) and tumor necrosis factor alpha (TNFα))
was possible, as shown in Figure 5B. By fitting the intensity at 1335 cm−1 versus concentration
(see Figure 5C,D), an LOD of 0.5 pM was achieved for INFγ protein.

3. Metallic Nanoparticles in Composites with Bioactive Glasses and Glass Ceramics

3.1. Bioactive Glasses and Glass-Ceramics

Bioactive glass and glass ceramics are attractive materials for biomedical applications. One of the
important advantages of these materials is the bone bonding ability [74], namely these materials are
able to bind with living tissue by forming an apatite-like layer on the glass surface, following initial
glass dissolution [75]. Leveraging these advantages, the bioactive glass particles and granules are used
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by orthopaedic surgeons and by dentists for orthopaedic bone grafting and dental bone regeneration.
The Bioglass® particles are also used in toothpastes for treating tooth hypersensitivity and bleaching
treatments of teeth [76]. Another important application of bioactive glasses is for coatings of metallic
implants such as hip prostheses and periodontal implants. The metals alone are bioinert, which means
they are encapsulated with fibrous tissue after implantation [76].

In the last decade, different compositions of bioactive glasses were developed such as silicates [77–83],
phosphates [84–87], borates [88,89], borosilicates [89–92], borophosphates [93–95], opening the possible
applicability of these materials. For example, the borate glasses have faster bioactive kinetics than
silicate materials [95,96] and the phosphate glasses are resorbable materials due to high solubility in
aqueous media [94,97].

The first Bioglass® was prepared by melt quenching method, by mixing various oxides, i.e., SiO2,
P2O5, CaO, Na2O, melting under the crystallization temperature followed by rapid cooling [98].
With this simple preparation method, fully dense materials can be obtained. This limits their application
in medicine [99], but they are very useful when the specific application does not require highly porous
materials. With the appearance of the sol-gel method, this disadvantage of bioactive glasses was
eliminated [100]. The reduced sintering temperature permits us to obtain porous materials and new
glass compositions. The process is based on inorganic polymerisation reaction of metal alkoxides and
metal salt precursors and it takes place in the following steps: hydrolysis and condensation reaction of
molecules (sol formation), gelation (sol-gel transformation), aging and drying [100–102].

One of the applicability requirements of the biomaterials is to obtain a tissue engineered bone
scaffold. The concept of a bone scaffold is that it can act as a three-dimensional temporary template to
guide bone repair, thus the ideal scaffold can simulate the natural mechanism of human bone formation.
Therefore, the bone scaffold must meet certain criteria such as: support of cell attachment, proliferation
and differentiation, excellent bioactivity, good biodegradability, adequate microstructure, relevant
structural-mechanical properties, irregular shape fabrication and commercialization potential [76,103,104].
Beside an important disadvantage, namely the low mechanical strength and decreased fracture
resistance, bioactive glass and glass ceramic scaffolds have many of these properties. A promising
approach for scaffold production is composite materials comprising a biodegradable polymeric phase
and a bioactive inorganic phase, such as bioactive glass and glass ceramic [105]. Whereas the polymeric
phase degradation shows the ideal rate of tissue degradation and keeps the space conducive for tissue
in growth and vascularisation, the bioactive phase should promote bone growth [105].

Although the application of first bioactive glasses and glass-ceramics was in a skeletal system,
nowadays these materials are also proposed for a wide range of application such as neuromuscular
repair, artificial cornea, orbital implants, epithelial and cardiac tissue engineering, treatment of gastric
ulcers and non-osseous cancer therapy [106]. Thus, beside the existing requirements of ideal scaffolds,
other customized requirements appeared. For this reason, there is the desire to use the properties of
nanoparticles (NPs) in scaffold engineering.

3.2. Role of Metallic Nanoparticles in Organism

It is known that the composition of bioactive glasses and glass ceramics determines their biological
performance. Composite materials built from biomaterials and noble metal NPs are desirable
for infection treatment and prevention. These types of structures combine the properties of each
component resulting in a bioactive antibacterial and pro-inflammatory compound ideal for healing
processes. Thus, incorporating specific ions or NPs into the glass composition can lead to further
release of these species in the biological environment, modifying the material’s performance [78].
Metallic elements such as silver, copper and gold have been used as doping bioactive glasses referring
to the specific biological effect of these metallic ions [107].

In both the melt quenching and sol-gel method the noble metal amount is conventionally indicated
in the oxide form such as Ag2O, Au2O or CuO. To promote the thermal reduction of these metal ions
leading to NPs formation, the glass powders are subjected to thermal treatments.
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However, many studies have shown the biological response of bioactive glass composites with
metallic NPs, as summarized in Table 1.

Table 1. Effect of metallic nanoparticles (NPs) on organism: summary of literature studies.

NP Composites Biological Response In Vitro/In Vivo References

AgNP

phosphate glasses in vitro bioactivity [108]
silicate bioactive glass in vitro bioactivity; protein adsorption [109,110]

mesoporous bioactive glass antibacterial activity [111]
borophosphate glass antibacterial activity [112]

bioactive glass in vitro bioactivity; antibacterial activity [113]
bioactive glass-polymer in vitro bioactivity; antibacterial activity [114]

AuNP
bioactive glass in vitro bioactivity; cytotoxic effect, cell viability [115–118]

cytotoxic effect, cell viability [116,117]
polymer-bioactive glass biocompatibility, cell viability [119]

CuNP

bioactive glass in vitro bioactivity [120]
bioactive glass, in vitro bioactivity [121]

bioactive glass-ceramics in vitro bioactivity; biocompatibility; cell
viability, antibacterial activity [122]

soda-lime glass antibacterial activity [123]

The different NPs incorporated into glass and glass-ceramics composition can have a major impact
on the glass structure, bioactivity and biocompatibility. The resulted specific properties are applicable
in tissue engineering and will be discussed in the next section.

3.2.1. Silver Nanoparticles in Bioactive Glass and Glass Ceramics

Silver nanoparticles (AgNPs) have been employed in a broad range of applications due to their
unique physical and chemical properties as it has been previously claimed that these particles could be
used in various medical applications for reinforcement to tissue repair, for anti-inflammatory agents,
for biosensors and hygiene [124–128].

The bioactivity properties of AgNPs are described by the antibacterial activity and healing
enhancement effect of nano-silver. The bactericidal property of AgNPs has been debated for a long
time and it is still unknown which is the main antimicrobial mechanism. Studies have proposed
several mechanisms. The mechanism of antibacterial activity depends on the size of the NPs. When the
NPs are smaller than 10 nm, they can penetrate through the cell wall, in this way damaging bacteria.
When the NPs are bigger than 10 nm, the antibacterial activity can be explained by adhesion of the
NPs to the bacteria surface resulting in cell wall damage [129,130]. Thus, the role of Ag content in
the glass matrix is to reduce the microbial contamination. This property is also a requirement for the
materials introduced into the living organism considering the increasing amounts of multi resistance
bacteria stains, which are very often involved in hospital acquired infections.

The antibacterial effect of bioactive glasses doped with AgNP was demonstrated in many
studies [112–114]. Magyari et al. [112] tested the antibacterial activity of borophosphate glasses
with silver oxide (Ag2O) content using Listeria monocytogenes. For these materials, a good antibacterial
effect appears when the glass contains minimum 0.2 mol% Ag2O (AgNPs with 10 nm diameter),
but once Agn clusters appear (1.5 mol% Ag2O) this effect was diminished. Goh et al. [113] found
that sol-gel silicate bioactive glasses with Ag2O content above 5 mol% prevented the Escherichia coli
bacterial colonization effectively after 24 h. Fan et al. [111] used mesoporous bioactive glass as a
template to deposit AgNP and found better antibacterial performance against Staphylococcus aureus
and Escherichia coli when the AgNPs were distributed uniformly onto the surface.

Vulpoi et al. [114] tested antibacterial activity of the composite of polymer-bioactive glass with
Ag2O on genetically modified light-emitting bacteria Escherichia coli and Staphylococcus epidermidis
by measuring the bioluminescence of the indicator strains (Figure 6). It was discovered that the
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polymer-bioactive glass composite with Ag content showed bactericidal effect, while inhibition of
bacterial growth was also proved for the Ag-free polymer-bioactive glass composite.

Figure 6. Bioluminescent signals from Escherichia coli and Staphylococcus epidermidis in response to the
presence of polymer/bioactive glass and polymer/bioactive glass with Ag2O composites. (Reproduced
with permission from Reference [114] published by Sage).

The glasses and glass composites with AgNP can be prepared both with sol-gel and melt
quenching methods by adding the Ag component [131] or can be introduced as AgNP in the structure of
the composite [111,132,133]. The conventional melt quenching method applies silver nitrate (AgNO3)
or silver oxide (Ag2O) as the precursor. This technique includes the mixing of the corresponding
materials of the desired composition, melting in a temperature higher than 1200 ◦C and quenching the
glass melt. In these glasses, the size and the dispersion of AgNPs was dependent on the used precursors,
the concentration of Ag2O and the glass composition. Ahmed et al. [134] and Magyari et al. [125]
used AgNO3 as starting materials for preparing phosphate glasses doped with 0.5–2 mol% Ag2O and
0.5–1 mol% Ag2O, respectively. It was demonstrated that, when the Ag2O content in the phosphate
glasses was <0.5 mol% only Ag+ ions were present in the glass, while metallic Ag0 was obtained
when Ag2O content exceeded 0.8 mol%. Baia et al. [135] produced phosphate glasses doped with
0.05–0.25 mol% Ag2O using and demonstrated the existence of AgNPs in the range between 1.5 and
5 nm. When the silver oxide content was between 0.7 and 3 mol% isolated spherical, 9 nm sized AgNPs
were obtained in borosilicate glasses [136].

The sol-gel synthesis pathway is an alternative method for the preparation of bioactive glasses
and can be described as a formation of an oxide network via polycondensation reactions of molecular
precursors in a liquid [137]. Vulpoi et al. [109,110] and Goh et al. [113] prepared silicate bioactive
glasses with Ag2O content between 2 and 8 mol% and 1–10 mol%, respectively and observed that
when the Ag2O concentration was at least 2 mol% AgNPs were present and when the Ag2O content
was higher (8–10 mol%) the obtained AgNPs possessed different sizes and shapes.

The incorporation form of Ag can be demonstrated by Transmission Electron Microscope (TEM),
UV-Vis absorption and X-ray Photoelectron spectroscopy (XPS). UV-Vis spectroscopy is the fastest
and cheapest, with the disadvantage that it cannot determine the distribution, the exact size and
shape of NPs. Since Ag atoms, ions, NPs and clusters exhibit different optical properties, thus these
can be evidenced by means of UV-Vis spectroscopy. The electronic transition involving Ag+ ions
is present in the 190–230 nm spectral range, while the electronic transition of Ag0 between 250 and
330 nm, and 400–500 nm, due to Ag SPR [138–140]. An example is shown in Figure 7 when the UV-Vis
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spectra of silicate bioactive glasses with Ag2O content are presented. It can be seen that the maximum
is around 420 nm, which can be associated with the existence of very small, spherical Ag particles,
formed inside the glass matrix.

Figure 7. UV-vis spectra of the 60SiO2(32−x)CaO·8P2O5·xAg2O samples.

The presence of AgNP on the surface can be also evidenced by XPS spectra and it is possible
to determine the elemental composition of the outermost layer (10 nm depth). The size of AgNP
can be estimated using the Ag 3d core level shifts, which were shown to be sensitive to the particle
size [136,141].

The healing potential of AgNPs was mentioned by Wong et al. [127] where AgNPs were proposed
to facilitate proliferation and migration of keratinocytes, to reduce formation of collagen by fibroblasts
and to modulate the number of cytokines produced.

However, pure AgNP may be toxic to any living organism; therefore, the material’s surface
functionalization is an important issue. Also, without any steric stabilization, AgNPs may aggregate
easily because of their high surface energy. Some of the best coatings agents used to achieve
biocompatible nanocomposites that also act as stabilizing agents are polymers.

Formation of AgNPs involves two major steps: reduction of the Ag precursor and growth of the
AgNPs. The chemical reduction of Ag precursors in homogenous liquid media with assistance of
capping molecules is an excellent approach to obtain stable Ag colloids in a quick and inexpensive
manner [142]. The most popular reducing agents are applied in aqueous media; however, for a more
complex synthesis procedure organic media can be used. The capping molecules are applied because
they strongly bond to the surface of AgNPs to prevent the NPs from aggregation. Popular materials
that can be used as both reducing and stabilizing agents are polymers.

3.2.2. Gold Nanoparticles in Bioactive Glasses and Glass Ceramics

Incorporation of AuNPs in bioactive glass matrix can widen the medical applicability of these
materials: diagnostics, therapy, prevention and hygienic applications [116,119,143]. This depends
on the promising properties of the AuNPs, such as biocompatibility, facile surface modification,
stability and optical properties, which can be tuned by particle size and shape, surface chemistry
and charge [116,143]. Concerning the toxicity of AuNPs it was found that the colloidal particles
(3–100 nm) do not have any toxic effect on cell cultures, while the 1–2 nm sized AuNPs are considered
dangerous due to the possibility of irreversible binding to biopolymers in the cells [143]. At the same
time, one must consider the upper size limit of penetration via the hematoencephalic barrier which is
between 5 and 20 nm.
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Many studies demonstrated that bioactive glasses with Au content do not have toxic effect [116,117,119]
and their bioactivity is not affected by the presence of AuNPs [116–118]. One promising application
of the bioactive glass with AuNP is to serve as drug delivery agents [116], as it was also shown by
Jayalekshmi et al. [119]. The bioactive glass–polymer composite was incorporated in the voids formed
by the removal of bone tumors for controlled drug release to suppress the further tumor formation,
and to enhance bone growth.

The effect of AuNPs content in glass systems on cell cultures depends on the used cells.
Aina et al. [116] tested Hench’s bioactive glass with AuNPs on Human osteoblast cells and it was
observed that the samples did not show any negative effects. However, when the glasses contained
Aun+ species an increase of lactate dehydrogenase leakage and malondialdehyde production
was observed.

The good proliferation rate of Human keratinocytes cells were obtained on bioactive glasses with
AuNPs, which were very close to the value obtained in the presence of free AuNPs [117]. These results
show the preservation of AuNPs’ properties in the glass system and open an application in wound
healing processes.

The AuNPs size and maximum concentration in the glass matrix is dependent on the preparation
method of the glass and on the starting materials. In the case of melted glasses the upper limit
concentration of AuNPs is lower compared to that from the glass obtained by sol-gel method, due to
the poor solubility of Au [144]. Aina et al. [116] added Au into the Hench’s Bioglass 45S5, prepared
by melt quenching method using gold (III) chloride trihydrate (HAuCl3·3H2O) as starting material.
They obtained the glass samples with metallic Au isolated atoms and with small AuNPs (5 nm).

In the sol-gel derived glasses, the Au can be introduced only during the sol-gel preparation in
two ways. One method is to use the HAuCl3·3H2O as a precursor and the AuNPs in the glass matrix
are obtained by thermal treatment [115,118]. However, this way the size of the NPs was reported to
be greater than 25 nm, and Aun+ (n = 1 or 3) species together with Au0 in the form of isolated atoms
were also present [115,118]. In another method the previously prepared AuNPs were introduced
into the samples. Jayalekshmi et al. [119] reported that the AuNPs were incorporated in the sol-gel
derived bioactive glass-polymer composite by functionalization via the amine linkages. In another
study, the Pluronic stabilized spherical AuNPs were embedded in bioactive network during the sol-gel
preparation process [117]. In the obtained glass matrix, a part of AuNPs keeps its original size, but a
higher amount of NPs with size of about 100 nm also formed as a result of heat treatment (Figure 8).

Figure 8. TEM micrographs of sample 60SiO2·31.85CaO·8P2O5·0.15Au2O (mol%). (Reproduced with
permission from Reference [117] published by Elsevier).
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3.2.3. Copper Nanoparticles in Bioactive Glasses and Glass Ceramics

Like AgNPs, copper nanoparticles (CuNPs) also demonstrated size-dependent antibacterial
activity with low toxicity and good stability [145], which can be used to enhance a biomaterial’s
qualities. It is known that the Cu ions have angiogenesis response, thus can promote the bone growth
and mineralization [146]. By introducing Cu in the glass structure, one can obtain materials with
angiogenesis response and with antibacterial activity. The presence of Cu metal as Cun+ species on
surface of the glass can be also used to bind different biomolecules in order to obtain drug delivery
systems [121].

Several studies revealed that CuNPs containing silicate glasses did not show any bioactivity
alteration [120–122]. The antibacterial activity of silicate glass with Cu has been demonstrated by
Popescu et al. [122] by obtaining samples with good antibacterial effects against Staphylococcus aureus.
Esteban-Tejeda et al. [123] used CuNPs containing soda-lime glasses against Escherichia coli and
Micrococcus luteus and obtained good antibacterial effect also. Aina et al. [121] proved the presence of
CuNPs also on the glass surface, suggesting that this material is a good candidate for immobilization
of organic molecules through the covalent bonding with their SH groups.

The introduction of CuNPs into the melt derived glass matrix is more difficult, due to the
significant susceptibility of Cu to oxidation, relative to other noble metals (Ag, Au). Several methods
have been used to eliminate this disadvantage, such as embedding monodispersed CuNPs into
sepiolitefibres [123], incorporation of a reducing agent (tin) together with CuO in the matrix [147] and
ionic exchanged processes [148].

In the sol-gel derived glasses for the Cu content the copper(II) nitrate trihydrate (Cu(NO3)2·3H2O)
is usually used as a precursor and the CuNPs in the glass matrix is obtained by thermal
treatment [120–122,149]. Using different thermal treatment conditions (temperature and atmosphere)
it is possible to obtained glasses with Cu in different oxidation states. Bonici et al. [120] produced
silicate glasses with Cu and after different thermal treatment obtained e.g., Cu2+ containing glasses at
600 ◦C, CuNPs of spherical shape into glass matrix at 700 ◦C (controlled atmosphere) and a mixed
Cu2+/Cu+/Cu0 NPs-containing glasses at 1050 ◦C.

4. Photocatalytic Application of Gold Nanoparticles

A variety of the noble metals used for catalytic purposes have been widely and intensively studied.
Therefore, a specification is needed to organize the available information. Au is from a catalytic point
of view the “elder” element although, considering that in specific areas of catalysis it was introduced
in the last three decades. Photocatalysis is one of the previously mentioned areas, where Au can play
multiple roles, mostly as a co-catalyst together with semiconductors. This area shows a continuous
increase in interest, which is why the present section focuses on the last three years of Au mediated
photocatalytic reactions. It should be mentioned that other metals and noble metals are also used as
co-catalysts in photocatalytic reactions. The present section will focus on gold, to have a compatibility
with the section discussing Au SPR-based detection applications.

As the official scientific database, the Web of Science shows a high number of publications
appeared which contained the words “photocatalysis” and “gold”, and the trend is still increasing,
due the vast number of available photocatalytic materials (Figure 9). Furthermore, the application of
binary, ternary and quaternary composite photocatalysts also increases dramatically.

One of the most intensively studied materials was graphene. This material does not necessarily
show photocatalytic activity by itself, but it can act as a 2D conductor material of the photogenerated
electrons. This construction was applied when ZnS/CdS/graphene shells and Au were combined.
The graphene acted as the electron transfer element (Figure 10), while Au was the terminal
component, which transferred the electron to the liquid phase. This is possible as Au does not show
any overpotential in the electron transfer processes towards electrophile species. This mechanism
contributed to the H2O2 assisted degradation of phenol under UV-A light [150].
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Figure 9. The increasing trend of Au applicability in photocatalysis (Web of Knowledge, https://apps.
webofknowledge.com, access date: 22 May 2017).

Figure 10. The charge transfer mechanism (left) of the quaternary composite formed from
ZnS/CdS/graphene shells and Au; the degradation of phenol (right) in the presence of the quaternary
composite (Reproduced with permission from Reference [150] published by the Royal Society of Chemistry).

Graphene (G) and graphene oxide (GO) nanostructures were included in composites which were
active in visible light [151], making the prepared material as a potential indoor active (when no UV
light is accessible) photocatalyst. GO played the same role as G in the previous case [150], while
in this case methylene blue was the model pollutant, and the photocatalyst was Si supported SiO2.
The additional role of Au was the plasmonic enhancement, which provided visible light absorption.

As it was shown above, carbon containing nanostructures were applied as electron transfer agents
between the photoactive semiconductor and Au. Based on the facts listed above it is an obvious issue
to exploit the properties of Au directly by using it together with other noble metal NPs or by creating
Au containing alloys.

The main reason for alloying can be multiple, including efficiency increase and cost-related aspects
as well. This was the case when Cu-Au alloys were obtained and deposited on the surface of TiO2.
The presence of Cu was beneficial in both catalytic and economic aspects [152]. The first aspect can
be attributed to the increased interparticle electron density transfer between Cu and Au and it was
proven by photocatalytic hydrogen production experiments (Figure 11).

When two non-alloy NPs were loaded on the surface (Au and Pt) of a semiconductor, such as
g-C3N4 an interesting synergistic effect was observed [153]. Usually, Pt deposited semiconductors
show higher hydrogen production rates compared to Au due to well-known reasons [154]. However,
the presence of both noble metal NPs induces a further enhancement of the activity surpassing even
the performance of the Pt containing composite material [153]. It seems that bi-metallic alloyed
NPs or two metal containing non-alloyed composite material shows the same trend concerning the
activity enhancement, pointing out a necessary content optimization in both cases. Introducing a metal

https://apps.webofknowledge.com
https://apps.webofknowledge.com
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nanoparticle can confer other interesting properties to the semiconductor. Sometimes, besides the
charge separation, also the physical separation of the catalysts from suspensions is required. For this
purpose Ni NPs can be efficiently applied. This was demonstrated recently in Au and Ni containing
ZnO nanorods [155].

Figure 11. The enhanced activity of Cu/Au—TiO2 NPs in photocatalytic hydrogen production (left);
the high-resolution transmission electron microscopy (HR-TEM) micrograph of the used composite
material (right). (Reproduced with permission from Reference [152] published by Springer).

Noble metals are usually referred to as metallic and sometimes amorphous NPs. However, in
the case of Au rare cases can be found in the literature where the main photocatalyst is an oxide of
a noble metal. The representative example is the case of PdO, which was used with AuNPs for the
efficient removal of tetrodotoxin [156]. The electron mediator was graphene oxide as discussed in the
first case [150].

Most of the scientific work carried out in the field of photocatalysis in the last three years focused
on Au and semiconductor-based materials. One of the interesting non-oxide semiconductors applied
was CdS a material with enhanced visible light activity. The experiments carried out with this material
showed two approaches. One of them used Au as a core, CdS as the shell along with a third component
(e.g., TiO2). The next approach was using bare CdS containing AuNPs on its surface.

The first approach used the Au and CdS in a Z-scheme photocatalyst construction, meaning that
the core-located Au acted more likely as an internal charge separator. The first electron transfer step is
from the main photocatalyst towards Au, which injects it in the valence band of CdS. This induces
a high electron density on the surface of CdS on the high hole density on the main semiconductor.
This mechanism can be applied in photocatalytic hydrogen reduction [157] or in the photoreduction
of CO2 into CH4 or CO [158]. The Z-scheme approach is valid for many important photocatalytic
materials, including TiO2 [158], WO3 [157], g-C3N4 [159], etc. The role of Au in this case is very similar
to the role of GO and G mentioned earlier, providing electron transfer assistance [150]. If the classical
approach was used, then CdS acts as the visible light active photocatalyst, while Au is the electron
transfer end-point [160].

The synergistic effect discussed in the case of Cu/Au [152] and Au/Pt [153] was not a special case,
as this could be valid when a co-catalyst semiconductor and Au are applied together with a photoactive
component. A representative case could be the Au-CuS-TiO2 ternary composite, where Au played its
usual end-point electron transfer role, while CuS was involved in the absorption/activation by visible
light/charge separation, while TiO2 was the main photocatalytic component. This nanoarchitecture
offered the possibility to work quite efficiently under simulated sunlight [161] for the degradation of
oxytetracycline (OTC). For the role of each component, a mechanism was proposed (Figure 12). Besides
CuS, CuO can be also applied together in Au, where the classical composite component contributions
can be considered [162]. However, in this case, a detailed Au content optimization was also carried out
and showed that in each case the content of the individual components was crucial, as showed by the
degradation curves of rhodamine-B (Figure 13).
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Figure 12. The application of Au in Z-scheme photocatalysts for photocatalytic hydrogen production
(left) (Reproduced with permission from Reference [157] published by the Royal Society of Chemistry)
and CO2 photoreduction (right) (Reproduced with permission from Reference [158] published
by Elsevier).

Figure 13. The role of CuS, TiO2 and Au in ternary composites in the degradation of
oxytetracycline(OTC) (left) (Reproduced with permission from Reference [161] published by American
Chemical Society) and the photocatalytic performance of CuO-Au composites in the photodegradation
of rhodamine-B (right) (Reproduced with permission from Reference [162] published by American
Chemical Society).

CuS can be exchanged for a UV active component, such as SnO2. The main essence of the charge
separation mechanism remains the same, meaning that the overall UV efficiency was enhanced. This
could be a logical step as visible light active photocatalysts show in most cases low quantum efficiency.
The efficient degradation of methylene blue was demonstrated by this composite design route [163].

Most of the Au containing composites was used in aqueous media, although there are interesting
applications for gas phase organic compound degradation. Propylene can be efficiently oxidized in the
presence of a photocatalyst and Au to CO2 and water. For this, molecular oxygen is needed directly.
However, it was shown that even if the oxygen receives the electron from Au, the adsorption of ethylene
itself can be hindered by AuNPs with inappropriate size (>10 nm). In some cases this will lead to the
saturation and even decrease of the number of exposed active sites on the base photocatalyst [164].

Until now, simple compounds were considered as composite partners for Au in different
photocatalytic processes. Modern photocatalysis is unimaginable without mixed oxides, a new
category of photocatalytic materials, with special properties. Among them, Bi2MoO6 is one of the
newly investigated ones. Together with GO, Bi2MoO6 and Au are showing an extraordinary visible
light response, shown in the photocurrent values (Figure 14) and enhanced degradation results for the
removal of rhodamine-B [165].
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Figure 14. The photocurrent response of Bi2MoO6 and the composite materials (S1–S3) (Reproduced
with permission from Reference [165] published by Elsevier).

The enhanced visible lights response is one of the key properties of Bi2O3·MxOy mixed oxides.
Bi2WO6 is also a member of the above-mentioned category, but in the case of this material also
near-infrared (NIR) photocatalytic activity in the degradation of methyl orange was achieved, with the
help of rod shaped AuNPs. The as obtained composites contained Bi2WO6 nanoplates and Au as
shown in Figure 15. The NIR activation was attributed to the plasmon band position of the Au
nanorods which were located in the NIR (band maximum at 900 nm) [166]. This is rather important as
the sunlight contains a large amount of IR/NIR light as well.

Figure 15. (a) TEM micrographs of Bi2WO6nanosheets; (b) HRTEM micrograph of Bi2WO6 nanosheets.
Inset: Fourier transformed electron diffraction pattern of Bi2WO6; (c) TEM and (d) HRTEM micrographs
of Au nanorods (AuNRs); (e) TEM and (f) HRTEM micrographs of Au NR/Bi2WO6 heterostructures.
(Reproduced with permission from Reference [166] published by John Wiley and Sons).

Not only can the photocatalytic enhancement be achieved by the deposition of Au, but in specific
cases it can contribute as the mediator in the generation reactions of reactive compounds, such as
H2O2 [167]. As the position of the valence band and the conduction band of BiVO4 permits the
production of O2, which in the presence of H+ and an electron source (photoelectrons generated by
the semiconductor and accumulated and transferred on the surface of Au) can be transformed to
H2O2 (as shown in the equations below), and this can be converted to OH, an extremely reactive
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species. Furthermore, this charge separation mechanism can be further enhanced if the BiVO4 crystals’
morphology is controlled and manipulated to obtain exposed {001} facets which can separate in the first
instance spatially the photogenerated electrons, facilitating the faster transfer towards the AuNPs [168]
(Figure 16).

2H2O + 4h+ → O2 + 4H+ (1)

O2 + 2H+ + 2e- → H2O2 (2)

Figure 16. The mechanism of H2O2 generation (left) (Reprinted with permission from Reference [167]
Copyright (2016) published by American Chemical Society) and the enhanced electron transfer
mechanism, when shape-tailored BiVO4 was applied (right) (Reproduced with permission from
Reference [168] published by Elsevier).

Some of the mixed oxides can crystallize relatively easy in the form of hierarchical microstructures
built from smaller nanocrystals. This structure is usually capable of generating a relatively high
amount of charge carriers, which can recombine relatively easily. If Au was used, the activity of these
nanostructures can be enhanced as it was proven for the case of Bi2O2CO3 [169]. Furthermore, if the
aspect ratio of Au was manipulated, then the light absorption and photoactivity of Bi2O2CO3 can be
further tuned [170]. The same strategy was proven to be valid also in the case of BiOX photocatalyst,
which emphasizes the important role of Au in the enhancement of the photoactivity of hierarchical
nanostructures [171,172].

As it was presented until now, only simple semiconductors and mixed oxides were considered as
partners for Au in photocatalytic reactions. However, in recent years, non-conventional mineral-like
photocatalysts were reported in the literature. Among them, an interesting example is that of Cu2FeSnS4

a quaternary chalcogenide, which was already applied in solar light conversion devices. Together with
Au as a core, Cu2FeSnS4 can act as an extremely efficient water-splitting agent [173]. The construction
plan of the composite was quite similar to the one applied in the case of CdS, when Au was applied
in Z-scheme photocatalytic systems [157]. The build-up of the composites is shown in the TEM
micrographs (Figure 17). Another interesting case was the Au/Bi2O3/FeVO4 ternary composite [174],
where the Au showed the same role as in the case of BiVO4 [167].

Figure 17. TEM micrographs of Au/Cu2FeSnS4 core/shell NPs (Reprinted with permission from
Reference [173] Copyright (2015) published by the American Chemical Society).
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Until now, those materials were considered with Au, which did not cover most of publications.
The second most dominant Au containing photocatalytic composite is the one with ZnO. This material
presents a major advantage compared to the other semiconductors, namely that it can be easily
shape-tailored using a vast number of synthesis methods. Therefore, the effect of Au can be different for
each of the obtained crystal morphologies. One of the most frequent geometries of ZnO is the rod/wire
form [175,176]. In this construction, several beneficial properties of the composites can be exploited.
If un-doped, the Au/ZnO nanorod composite is an excellent visible light active photocatalyst [177] but
when doped with Cu it shows an enhanced photoluminescence spectrum [176]. The mechanism of
enhanced photoluminescence is presented below on Figure 18.

Figure 18. Schematic illustration of the possible mechanism of the UV enhancement involving the
processes of (1) virtually generating green luminescence (GL) at Cu dopant, (2) transferring energy from
the virtual GL of Cu-doped ZnO to localized surface plasmon resonance (LSPR) of Au NPs, (3) exciting
LSPR of Au upon receiving the transferred energy from the virtual GL, and generating plasmonic hot
electrons as a result of nonradiative decay of the LSPR, (4) transferring hot electrons from Au to the
conduction band of Cu-doped ZnO, and (5) excitons radiative recombination at Cu-doped ZnO into
UV emission (Reproduced with permission from Reference [176] published by John Wiley and Sons).

Another crystal geometry which is quite abundantly used in case of ZnO is sheet-/plate like.
The ZnO structure in this case is also crystalline, while the deposited AuNPs were situated on the
surface of sheet. The composite build-up shows similarities with graphene-based composite materials.
The charge carriers can travel on the surface of the semiconductor to the Au nanoparticle, which is
again the end-point electron transfer entity. As the recombination was inhibited, high degradation
rates and efficient H2 production was observed [178]. Nevertheless, the presence of Au on a specific
semiconductor surface can be achieved by selective deposition of specific crystallographic planes,
similar to BiVO4 [168]. In this case [179], the electron rich crystallographic plane will also host the Au.
In the case of ZnO this is the so-called polar facet.

Hierarchical ZnO materials are also possible, as in the case of Bi2WO6, permitting a high amount
of charge carrier generation, while the presence of Au can efficiently hinder the recombination
process. This approach can yield high efficiency photocatalysts with an activity of 10 times higher than
commercial powders [180].

Crystallographic plane development is also a focus for ZnO as stated previously. Also, 3D particles
are a subject for this technique. The {002} plane family is also one of the most active ones in case of ZnO
for photocatalytic applications, that is why obtaining particles with this specific plane was attempted
(Figure 19). Obviously, the presence of Au can maximize the exploitability of these facets as it was
shown by Ranasingha and coworkers [181]. In some cases, the approach listed previously for CdS
and chalcogenides were proven to be useful when focusing on the synthesis of core-shell Au-ZnO
NPs [182].
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Figure 19. Hierarchical ZnO nanostructures (a,b) with AuNPs (c,e,f) used in the degradation of
rhodamine-B (d) (Reproduced with permission from Reference [180] published by Elsevier).

The most abundant semiconductor oxide which was used together with Au is TiO2. Even in the
last three years, when a high variety of other semiconductors appeared, this oxide still dominates the
scientific work in the field of photocatalysis and Au. This subject may constitute separately the essence
of a separate review paper.

Also in the case of this material, the shape manipulation of AuNPs was essential [183,184], where
the electron transfer properties of Au was the determining issue. However, TiO2 can sometimes be
present along with a quite unconventional material, such as NaYF4 together with Au. This material
is among the rarest which is active in the UV, visible and near infrared region [185]. Each of the
irradiation regions activates the composite differently, as shown in Figure 20. When UV irradiation is
applied, the active component is TiO2, while Au acts as the charge separator. When visible light was
the irradiation source, the SPR effect generated hot electrons were injected in to the conduction band
of titania, causing visible light activity. In the case of near-infrared irradiation a double excitation was
considered, as NaYF4 provoked UV and visible light fluorescence.

Figure 20. A schematic illustration of the photocatalysis mechanisms under (A) UV; (B) visible; and
(C) NIR irradiation, respectively.(Reproduced with permission from Reference [185] published by John
Wiley and Sons).
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It was also considered that, besides the above-mentioned shape-tailoring approaches, the novelty
concerning TiO2-Au nanocomposites will decrease with time. However, innovative approaches are
still published, including the sandwiched TiO2-Au-TiO2 structures [186]. In this approach, the ternary
structure was refused and just TiO2 was used. When sunlight was used, the already discussed SPR
mechanism and the charge separation mechanism were considered simultaneously.

5. Concluding Remarks and Future Perspective

Sometimes, at first sight, the three research areas (nanosensing, bioceramics and photocatalysts)
discussed in this work have very few aspects in common. However, there are bridging materials such as
AuNPs, which through their LSPR and high electron transfer properties can be applied in various ways.
This shows that a solution to a problem in one field can be solved from the knowledge acquired from
the another. An interesting example can be that the NIR/IR activity of photocatalysts was achieved by
using Au nanorods which were already applied in different immunosensors. As this example shows,
it is mandatory to present the applicability of some nanomaterials (in our case dominantly Au) in
multiple fields to point out the possibilities and solutions scattered throughout different research fields.

The development of highly sensitive, selective, and reliable Au-based nanosensors will undoubtedly
further enable early diagnosis, improve diseases treatment, increase the overall survival and diminish
societal costs. Moreover, considering the Au’ surface versatility which provides many possibilities
for functionalization, the capability to finely tune their surface properties, size, shape as well as
aggregation state together with the ability to improve their plasmonic response, we are confident that
different design Au-based nanosensors will be more and more translated into clinical use in smart
disease diagnostics.

Bioactive glass and glass ceramics represents an important group of biomaterials usable as
implant, tissue engineering scaffold for hard and soft tissue regeneration or in drug delivery systems,
but may be also designed to have at least double function: the one given by the bioactive glass or
glass ceramic itself, namely to favor the tissue repair and at least one of the followings given by the
incorporation of metal NPs (i) selective release in the body of NPs with antibacterial effect (Ag, Au,
Cu); (ii) release in the body of functionalized NPs as carriers for drug delivery (Au functionalized with
different biomolecules through Au-N weak linkage), (iii) protein immobilization (Au functionalized
with different biomolecules strong Au-S bonds) and (iv) enhance proliferation rate of keratinocytes
cells (Au).

It is clear that from the photocatalytic point of view noble metals can play multiple roles, including
charge separation, surface plasmon resonance enhanced visible light activation and electron mediator.
The most intensively investigated material for this purpose was Au. In the last three years, it was
shown that classical approaches have been applied repeatedly (e.g., the combinations with TiO2),
with different strategies (shape-tailoring of the AuNPs and that of semiconductors, core-shell and
sandwich construction modes), while at the same time new materials (e.g., NaYF4) or high performance
electron conductors (e.g., graphene) were applied as composite partners. It was shown that the most
efficient route to enhance the photoactivity of Au containing composites is the application of ternary-,
quaternary composites, in which each of the components has a specific role, starting from the charge
generation, electron mediator and ending in the terminal electron transfer material, while in some
cases adsorption enhancers were also included in the composites. The future of this research area
looks “golden” as these approaches are taken/applied and developed by the ones working in this
field, while simultaneously new materials are included and developed. The most problematic issue,
however, remains the price of Au. In this aspect intensive research is also being carried out in order to
replace Au partially or totally with other cheaper alternatives.
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