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Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments.
Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at
urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source
influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of
development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of
LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences
(such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may
be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future
LURs may be difficult.

1. Introduction

Compliance-oriented air pollution monitoring, even for
population-oriented monitors, is generally conducted at
only a few locations in a city to reflect higher population
exposures. This provides limited information on spatial
variability of urban air pollution [1]. LURs have been
increasingly used in assessing intraurban gradients for
population exposure assessments to support spatial-based
air quality and epidemiological studies. LURs are GIS-
statistical techniques used to estimate spatial distribution of
air pollution concentration gradients in urban areas. In brief,
LURs are multiple regression models with a basic functional
form

Y = b0 + b1 ∗ Traffic + b2 ∗ Population

+ b3 ∗ Point Source · · · ,
(1)

where Y denotes mean pollutant concentration and bi’s are
predictor variable coefficients estimated by the procedure
[2]. The generic variable groups (traffic, population, point
source, and others) may have multiple variables associated
with them (see Table 1). LURs can be linear, semiparametric,
or based on the distribution of pollutant data versus
predictor variables. LURs have progressed with increased use
of passive air sampling and advances in portable samplers [2–
4].

The US Environmental Protection Agency (EPA) has
been involved in LUR studies in El Paso, Detroit, Dallas,
and Cleveland (referred to here as the four cities) to
support air quality and respiratory health studies [5, 6].
These LUR studies were conducted in El Paso and Detroit
during multiweek campaigns during the winter and summer,
respectively. Dallas and Cleveland studies were conducted
during summer and winter seasons; however, in Dallas
the seasons were separated by over a year. LUR results
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Table 1: Group types for potential predictor variablesa.

Predictor variable groups and subgroups from GIS El Paso Detroit Dallas Cleveland

(1) Traffic

Distance to nearest low-traffic road (m)b Xc

Distance to nearest medium-traffic road (m) Xd Xe

Distance to nearest high-traffic road (m) Xf Xf Xg Xh

Traffic intensity within set buffers (vehicles per day/km) X X X X

Length of local roads within set buffers (m) X

Length of secondary roads within set buffers (m) X

(2) Area and point

Open area within set radii (km2) X

Population density within census block group or set radii X X X X

Point source emitters (categorical or continuous) Xi Xi Xi Xj

(3) City specific

Elevation (m) X

Distance to nearest international border crossing (m) X X

Distance to airport (km) X

Distance to lake (km) X

(4) Season X X
a
Specific variables and their sources are detailed elsewhere for El Paso [7], Detroit [8], Dallas [9], and Cleveland [10]. bUnits in parentheses. croad > 10,000

vehicles/day. d≥50,000 vehicles per day. e≥40,000 vehicles/day. f≥90,000 vehicles/day. g≥140,000 vehicles/day. h≥70,000 vehicles/day. iDistance (m) from
emission sources. jEmission sources within set buffers.

from these four cities are published elsewhere [7–10]. This
paper discusses how their development and comparison can
address LUR application across these and potentially other
US cities.

2. Methods

2.1. Cities and Predictor Variables Used. El Paso and Dallas
are in the US state of Texas. El Paso is on the western tip
of Texas and sits between the Rio Grande River and the
Franklin Mountains. The Rio Grande River is part of the
US-Mexico border region; Ciudad Juárez, Mexico’s fourth
largest city, is adjacent to El Paso. Dallas, part of the Dallas-
Fort Worth metroplex, is in north-central Texas and has flat
terrain. Detroit, MI and Cleveland, OH are Great Lakes cities
with heavy industry such as automobile and iron and steel
production and have flat to gently-rolling terrain; Detroit
is a US-Canada border city adjacent to Windsor, ON. As
encountered for many urbanized areas, mobile sources are
a major source of air pollution in the four cities.

LURs were constructed separately in the four cities. A
GIS platform was used to develop predictor variables to be
used in the regression analyses and to select monitoring sites.
In the LURs, the general groups of variables were distance
to roadways, traffic intensity, population density, land use,
emissions levels, and city-specific variables such as distance
to border crossings or distance to Lake Erie (Table 1).
Traffic data were obtained from local county or metropolitan
planning organizations, population figures were obtained
from the latest US Census, and emissions were obtained
from the EPA National Emissions Inventory. Other variables
were obtained from ArcGIS (ESRI, Redlands, CA, USA) and
related databases. Statistical analyses, including development

of LURs, were implemented in SAS version 9.2 (SAS Institute,
Cary, NC, USA).

A large number of GIS variables (typically > 40) were
developed from the databases. For use in the LURs, potential
explanatory variables were selected within their appropriate
variable group to exhibit a reasonable amount of variability
across the geographic study area and have low correlation
with other potential predictors. To select the variables, sepa-
rate correlation analyses for variable groups were conducted,
and the correlations were examined between variables from
different types of groups (e.g., population density and traffic
intensity). Table 1 shows the groups of predictor variables
employed in the LURs for each of the four cities.

Variables chosen as potential predictors were also used
to select monitoring locations. In the LURs, schools or fire
stations were used to represent neighborhood-scale, ambient
exposures. Such sites had secure, free air-flow sampling
locations, and similar sampling heights of approximately
1.5–2 m. Sites were ranked on each potential predictor and
ultimately selected based on their joint predictor variable
ranges and variabilities. Chosen sites had similar correlation
structure among potential predictors as the unmonitored
sites. Cluster analysis was also used to ensure that the
chosen sites adequately covered the mathematical space
defined by the potential predictors. (The mathematical space
is established by the variables’ ranges and their overall
correlation structure.) Figure 1 is an example from El Paso
of how multiple variables were considered jointly in the site
selection process. Note that the chosen school sites (in red)
were representative of all possible school locations (in green)
in El Paso in terms of the joint mathematical space spanned
by the variables distance to the nearest petroleum facility
point source, distance to the nearest border crossing, and



The Scientific World Journal 3

825
7461

14098
20735

400

7715

15029

22344

375

7042

13708

20375

OIL DIST

BRDR
DIS

T

D
IS

T
90

K
P

Figure 1: Example of El Paso school sites chosen (red) to be
representative of all other school sites (green) for the variables of
distance to petroleum facility point source (OIL DIST, m), distance
to nearest road segment ≥ 90, 000 cars/day (DIST 90KP, m), and
distance to nearest border crossing (BRDR DIST). (Blue sites are
compliance sites).

distance to the nearest road segment ≥ 90,000 vehicles/day.
The numbers of monitored sites for each city are presented
in Table 2.

2.2. Passive Samplers. Passive sampling methods, which are
typically employed in LUR studies since they are field
portable and economical, were used. NO2 was sampled with
Ogawa badges (Ogawa & Co., Pompano Beach, FL, USA).
VOC samples were collected using 3 M OVM samplers in
El Paso and PE tubes packed with Carbopack X sorbent
(Supelco, Inc., Bellefonte, PA, USA) in Detroit and Dallas;
no passive VOCs were collected in Cleveland. (Ammonia
and passive aerosol sampling were conducted in Cleveland;
see [10].) These samplers have been evaluated in these
LUR studies and found to be comparable to Federal and
other reference methods [9–12]. At least one compliance site
operated by the local air pollution control agency in each
city also had passive samplers to evaluate their accuracy with
reference methods. Passive measurements at compliance sites
were not used to develop LURs, but rather to evaluate LUR
predictions.

Passive samplers were deployed for week-long sampling
integrals to represent chronic exposures. During the given
studies, passive samples were deployed concurrently at all
sites. Monitoring time frames typically lasted five weeks
during a season; however, sampling in El Paso lasted two
weeks. Ambient monitoring was conducted in El Paso in
November/December 1999, Detroit in summer 2005, Dallas
in summer 2006 and winter 2008, and Cleveland in summer
2009 and winter 2010. All samplers were deployed con-
currently during study periods and housed in appropriate

shelters. Further details on the field sampling and lab analysis
methods are presented elsewhere [9–12].

3. Results

3.1. Overall Levels. Summary statistics of air pollution data
at monitoring sites from the four cities are shown in Table 2.
NO2 and benzene (representing VOCs) concentrations were
comparable across the cities, but median El Paso levels
were the highest observed. Complex terrain conditions such
as the central valley concentrating emissions from El Paso
and Ciudad Juárez [13–15] may have been a factor in
higher pollutant concentrations encountered there. For NO2,
median levels were lowest in Cleveland during summer. This
may have resulted from higher chemical reactivity in summer
transforming NO2 into secondary products such as ozone.
Another possibility may be that some industrial sources in
Cleveland were shuttered or operating at reduced capacity
during the summer monitoring, but activity increased
during the winter. (Note that median levels were higher
during winter in Cleveland than in summer.) The weekly
passively monitored NO2 levels were below the annual EPA
National Ambient Air Quality Standard of 53 ppb.

3.2. LUR Results. Based on visual inspection of plots of the
air pollution data versus predictor variables and residual
analyses, multiple linear regression models were used for
LURs in Detroit, Dallas, and Cleveland, and semiparametric
regressions (as generalized additive models) were applied in
El Paso. Significant variables (5% level) and model predictive
capacity (as R2) are shown in Table 3 for the NO2 and
benzene LURs from the four cities. Cleveland LUR results
are shown for NO2. (Specific predictor variables and their
coefficients in LURs are presented elsewhere in the models’
results for El Paso [7], Detroit [8], Dallas [9], and Cleveland
[10].) Though generally successful, the LURs yielded low
R2 values (<50%) for NO2 in both seasons and benzene
in winter in Dallas and for benzene in Detroit. R2 values
were highest in El Paso and Cleveland. In El Paso, distinct
gradients from complex terrain may have helped delineate
spatial differences. The Cleveland LURs were able to benefit
from the prior LUR study experiences which suggested a
more refined approach to some of the predictor groups (such
as total emissions within a buffer zone), the addition of new
variable types (such as secondary and local road length), and
the explicit incorporation of season.

As shown in Table 3, traffic influences and point source
emissions were important predictor variables for LURs from
the four cities. City-specific influences such as distance
to an international border crossing were confirmed to be
important for both border cities. Dominant sources such as
traffic and industrial/other point sources were common for
the four cities; reviews of LUR studies have confirmed these
sources as common predictor variables [2, 4, 16]. However,
local influences (such as border crossings) should also be
considered when attempting to derive common exposure
metrics from data collected in different cities.
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Table 2: Median pollutant concentrations (all above method detection limits) in the four citiesa.

Pollutant El Paso (22 schools) Detroit (25 schools) Dallas (24 fire stations) Cleveland (22 fire stations)

NO2 22 (11, 37) 16 (11, 24)
12 (4, 25)b 10 (2, 29)d

14 (2, 22)c 18 (0, 25)e

Benzene 777 (489, 1531) 466 (338, 698)
232 (83, 388)b

Not measured
357 (247, 538)c

a
Medians calculated over all sites and weeks. Units for NO2 in ppb; benzene in ppt. Minimum and maximum values in parentheses.

bSummer 2006.
cWinter 2008.
dSummer 2009.
eWinter 2010.

Table 3: Model R2 and significant variables (5% level) in NO2 and benzene LURs.

Model R2 (%)
El Paso Detroit Dallas Cleveland

NO2 benzene NO2 benzene NO2 benzene NO2

97 93 82 43 34a/48b 72a/49b 96

Distance to nearest low traffic road

Distance to nearest medium traffic road �c � �/ �
Distance to nearest high traffic road �d �/ �/

Traffic intensity within set buffers � �/� �/ �
Length of local roads within set buffers �
Length of secondary roads within set buffers �
Open area within set radii �
Population density within census block group or set radii � � �
Point source (categorical or continuous) � and �e � and � � � �/� �f

Elevation

Distance to nearest international border crossing � � � �
Season �
Seasonal interaction of point source and population density categories �

a
Summer.

bWinter.
cSignificant (5% level) decrease.
dSignificant (5% level) increase.
eDecrease followed by increase.
fCategorical variables (significant 5% level).

Table 3 indicates both consistent and mixed responses
to different predictor variables across the cities studied. For
example, pollutant concentrations exhibited an (a priori)
expected increase with traffic intensity and population
density when these were found to be significant. However,
both significant increases and decreases of pollutant levels
were found with respect to the distance from high traffic
volume and medium traffic volume roadways and distance
to the nearest border crossing, depending upon the city and
pollutant. Furthermore, Table 3 suggests differing behavior
with respect to proximity to point sources.

These apparent inconsistencies may in part be due to
characteristics of the local road networks within the cities,
partly to the varying definition of the predictor variables
between the cities, and seasonal effects. For example, in
Detroit and Dallas, NO2 levels are influenced by distance
to both medium and high traffic volume roads, but the
effects are in opposite directions in the two cities. In Detroit,

NO2 increases as distance to a high traffic road increases
but decreases the farther from a medium traffic road;
however, in Dallas, the roles of the roadways are reversed
in summer. This may simply be a reflection of both the
overall numbers of medium and high traffic roads as well
as their relative locations in the two cities. Seasonal effects
were an influencing factor in Cleveland LURs. Dallas may
have indicated seasonal effects, but the seasonal data were
from different years. El Paso and Detroit sampling was for
only one season. Data collection in these from two seasons
within the same year may have tempered the inconsistencies
noted above.

Another factor contributing to the apparent inconsisten-
cies in Table 3 may be related to the varying meaning of
point source proximity from city to city. For example, in El
Paso, the only type of point source considered (aside from
a border crossing) was a petroleum facility, whereas in the
other cities no restriction was made with respect to the type
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of facility. In addition, point source influence in Cleveland
was expressed via emissions intensity which accounted for
all facilities within a fixed radius buffer, whereas only the
simple distance to a facility was used in other three prior
cities. While this varying definition with respect to point
sources allowed the subsequent LUR modeling to benefit
from the lessons learned previously, it does complicate the
interpretation when comparing results across the cities.

LUR modeling revealed spatial gradients for all pollu-
tants. For example, NO2 was generally higher in downtown,
industrial, central valley, and high traffic areas of cities
where such emission activities would be located (Figure 2).
Comparison of LUR predictions to passive measurements
at compliance sites indicated general agreement given the
generally low concentrations with percent differences of 0–
33% for NO2 and 4–32% for benzene. Spatial differences
were also noted for benzene which tended to be influenced
both by traffic and point sources in the three cities where it
was measured (see Table 3).

3.3. Evaluation of Common Variables. Transferability of
LURs to different study areas has been suggested as a
cost-effective alternative to developing new LURs; LURs
transferred to similar types of cities have been evaluated
with limited success [2, 17, 18]. Comparison of model
power of transferred LURs versus locally developed LURs
suggested variables from where monitoring was performed
were preferred [17, 18].

To this end, we evaluated common variables considered
for LURs in Detroit and Cleveland to determine whether
LUR variables had similar values that could be transferable
between the two cities. We did this comparison using
these cities since they were geographically similar and had
similar emission sources. NO2 was used with the variables
to evaluate distribution. Summer data from Cleveland
were compared with Detroit measurements that were also
collected during summer.

Figures 3(a)–3(e) display scatterplots for NO2 using
common variables in Detroit (D) and Cleveland (C).
Variables such as traffic intensity within 500 m radius
(Figure 3(a)), distance to road segment with a traffic volume
of at least 70,000 vehicles per day (Figure 3(b)), and PM2.5

emission sources as tons per year within 2500 m radius
(Figure 3(c)) showed similar distributions between the two
cities. However, dichotomous relationships between cities
were seen for road length variables for local roads within
1000 m (Figure 3(d)) and secondary roads within 500 m
(Figure 3(e)). Figure 3(d) reveals a large number of zeros
for local roads in Detroit; most roads were not designated
as “local” near Detroit sites. Road length variables were
calculated from ArcGIS databases so the potential for mis-
classification with these variables is based on classification
codes internal to ArcGIS databases. (Road length variables
were not applied in the Detroit LURs.)

4. Discussion and Conclusions

LURs were successfully developed from passive sampling
networks in the four cities. Considered conjointly, the studies

confirm flexibility and universality of traffic and other
urban source variables in LURs for predicting air pollutant
concentrations. As with the measured pollutants, predictor
variables should be collected from the local study area for
reliable spatial predictions.

Gaseous air pollutants were generally similar across the
cities, but higher levels in El Paso may have been due
to complex terrain concentrating pollutants from El Paso
and Ciudad Juárez. Traffic, point source, and population
counts were important predictors in the LURs despite major
differences in geographic characteristics between the four
cities. These variable groups were similar to those used
in other LURs [4, 16]. Variables calculated from such
data should be considered as potential predictors when
developing candidate variables for LURs in other cities as
well as developing common exposure metrics. However, city-
specific influences (such as border crossings and elevation)
can also be important. The potential misclassification of GIS
data such as primary, secondary, and local roads can result in
variable differences between cities that can adversely affect
commonality with other areas. In addition, results from
Dallas and Cleveland suggest that season can also play a role
in predicting pollutant concentrations [9, 10].

LURs were developed during their respective monitoring
periods, and prior experience was used to inform the
subsequent efforts. For example, traffic variables in El Paso,
Detroit and Dallas used distance to roads carrying various
vehicle counts and traffic intensity. In Cleveland, categories
of local and secondary road lengths within various buffers
were added to better capture the potential total impact of
traffic. Point source emission variables in El Paso, Detroit,
and Dallas included the distance from the nearest large
emitters of a given pollutant; this was revised for Cleveland
by using emissions densities within various buffer sizes, thus
incorporating all available emissions information.

The potential of differential seasonal impacts was
explored in Dallas, though unfortunately the relatively large
gap between the actual field monitoring periods precluded a
definitive conclusion regarding potential seasonal effects. In
Cleveland, however, season was explicitly used as a predictor
itself and as an interacting factor with other predictors. El
Paso and Detroit LURs could not use season as a predictor
since data were only measured during winter and summer,
respectively.

Finally, common types of predictor variables can be
applicable in LURs from city to city. However, coefficients
in LUR models can be significant or not, and even common
significant predictor variables (e.g., distance to nearest
road) can have opposite effects depending on city-to-city
differences in source and pollutant measures. In addition,
transferability of variables or LURs from one city to another
may be problematic due to differences in how GIS data are
defined. Differences in roadway characteristics may not be
incorporated into the definition of the predictor variables.
For example, considerations such as elevated and depressed
roadways, tunnels, or overpasses were not considered in
defining the GIS variables used in these four cities. In
addition, it was noted that the definition of local and
secondary road categories was different between Detroit and
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Figure 2: LUR predicted NO2 concentrations: (a) El Paso; (b) Detroit; (c) Dallas summer; (d) Dallas winter; (e) Cleveland (average of
summer and winter). NO2 gradients are the same scale in all cities for comparison.

Cleveland, despite their geographic and emission similarities.
Though extracted from the same standard ArcGIS databases
routinely used to develop road network variables for LURs,
it was apparent that different criteria had been used to
categorize roads as local or secondary in the two cities.

Inherent misclassification of roads could only be rectified by
transportation surveys. Caution should be exercised when
evaluating similarities or differences of such variables from
city to city. Another complicating factor for the transferabil-
ity question is the importance of city-specific factors; for
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Figure 3: NO2 concentration using common variables in Detroit (D) and Cleveland (C).

example, El Paso and Detroit have border crossings unlike
Dallas and Cleveland.

In conclusion, neighborhood-scale spatial gradients were
encountered in the pollutants confirming the influence of
traffic and other urban influences. Traffic and other urban
variables were important predictors in the LURs although

city-specific influences and season of the year may also be
important. However, transferability of specific variables or
LUR predictive equations from one city to another may be
problematic due to intercity differences and data availability
or comparability. Thus developing common predictors in
future LURs may be difficult.
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