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Abstract: Multiple dysregulated signaling pathways are implicated in the pathogenesis of cancer.
The conventional therapies used in cancer prevention/treatment suffer from low efficacy, considerable
toxicity, and high cost. Hence, the discovery and development of novel multi-targeted agents to
attenuate the dysregulated signaling in cancer is of great importance. In recent decades, phytochemicals
from dietary and medicinal plants have been successfully introduced as alternative anticancer agents
due to their ability to modulate numerous oncogenic and oncosuppressive signaling pathways.
Rutin (also known as rutoside, quercetin-3-O-rutinoside and sophorin) is an active plant-derived
flavonoid that is widely distributed in various vegetables, fruits, and medicinal plants, including
asparagus, buckwheat, apricots, apples, cherries, grapes, grapefruit, plums, oranges, and tea. Rutin
has been shown to target various inflammatory, apoptotic, autophagic, and angiogenic signaling
mediators, including nuclear factor-κB, tumor necrosis factor-α, interleukins, light chain 3/Beclin,
B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein, caspases, and vascular endothelial growth factor.
A comprehensive and critical analysis of the anticancer potential of rutin and associated molecular
targets amongst various cancer types has not been performed previously. Accordingly, the purpose
of this review is to present an up-to-date and critical evaluation of multiple cellular and molecular
mechanisms through which the anticancer effects of rutin are known to be exerted. The current
challenges and limitations as well as future directions of research are also discussed.
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1. Introduction

Cancer is a complex and multifaceted disease that is characterized by the unlimited proliferation of
abnormal cells with the ability to attack or spread to the whole body [1]. This disease arises as a result of
homeostasis imbalance between cell survival and cell death [2]. Multiple signaling pathways involved
in the pathogenesis of cancer bolster the need for further research [3,4]. Despite the progress in cancer
research, providing more involved pathways and molecular targets is of great importance. Disturbance
in the expression of tumor suppressor genes, oncogenes, and apoptotic genes play a key role in the
pathophysiological mechanisms of cancer [5,6]. In addition, several inflammatory, oxidative stress,
autophagy, and apoptotic dysregulated pathways are involved in the initiation and development of
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cancer [7–9]. A wide variety of intracellular molecules have been identified to provoke the uncontrolled
proliferation of cancer cells. For instance, in malignant cells, the upregulation of cyclin-dependent
kinase (CDK) and downregulation of tumor suppressor proteins (p53), CDK inhibitors, p21, p27,
and p57 have been identified [10]. The inappropriate regulation of signaling proteins, including
phosphoinositide 3-kinase (PI3K), protein kinase B (PKB, also known as Akt), mammalian target
of rapamycin (mTOR), and mitogen-activated protein kinases (MAPK) as well as the altered
expression of various pro-inflammatory transcription factors, including nuclear factor-κB (NF-κB),
activating protein-1 (AP-1), hypoxia-inducible factor 1 (HIF-1) and signal transducers and activators
of transcription (STAT) families have been reported in tumor cells [11–15]. Chronic inflammation
is considered a key driver of both the initiation and progression of tumorigenesis [16]. Therefore,
targeting the key aberrant proteins and pathways represents a desirable approach to cancer therapy.

Common forms of cancer treatment include surgery, radiotherapy, stem cell therapy, photodynamic
therapy, and chemo/immunotherapies [17,18]. Despite the efficiency of chemotherapy, the demerits
associated with classical cytotoxic treatments, including multiple drug resistance (MDR), high financial
costs, and severe adverse effects, cause a major hurdle in its clinical application [19]. Thus, there
is a dire need to discover new, safe, and more efficacious treatment options to achieve ideal results.
Plant-derived natural products have attained great attention in drug discovery programs. Numerous
drugs used for cancer therapy, including doxorubicin, vinblastine, paclitaxel, and camptothecin,
have been obtained from natural sources [20]. The use of chemo-herbal combination therapy has
been found to increase the anticancer effects of chemotherapeutic agents and to ameliorate drug
resistance and chemotherapy-related adverse effects [21,22]. Natural secondary metabolites have
shown pleiotropic effects and target various cancer hallmarks, including inflammation, cancer cell
proliferation, migration, invasion, angiogenesis, and metastasis [23].

As natural compounds are potential multi-targeted agents in combating cancer, they are of great
interest to prevent associated side effects in treating cancer [24]. Oxidative stress and inflammation
associated with synthetic anticancer agents are implicated in high levels of toxicity, host tissue damage,
and even manifestation of secondary tumors [25]. Growing evidence demonstrates that cytostatic
effects of natural products are derived from their potential in modulating oxidative stress, inflammation,
autophagy and apoptosis, thereby leading to the prevention/reduction of their associated toxicity [26,27].
Indeed, free radical generation and pro-oxidant properties of natural agents seem to underlie their direct
toxicity towards tumor cells. At the same time, antioxidant properties of naturally occurring agents
contribute to their cancer preventive ability and lower toxicity compared to synthesized anticancer
drugs [25].

Rutin, also known as rutoside, quercetin-3-O-rutinoside and sophorin, is a glycoside consisting
of the flavonol quercetin and the disaccharide rutinose. Rutin has also been called vitamin P, as it
is widely distributed in various plants, from vegetables and fruits to medicinal plants, including
asparagus, buckwheat, apricots, apples, cherries, grapes, grapefruit, plums, oranges, and tea. Rutin has
shown ubiquitous pharmacological properties, including antioxidant, anti-inflammatory, antiangiogenic,
pro-apoptotic, and antiproliferative activities, all of which may participate in the prevention and treatment
of cancer [28–34]. Figure 1 displays the chemical structure of rutin and its reversible deglycosylation to
produce quercetin. Amongst previous reviews, Prasad et al. [35] and Ganeshpurkar et al. [36] described
the pharmacological activities of rutin in combating several diseases, with very limited information
related to cancer studies. In another study, Perk et al. [37] reviewed the anticancer effect of rutin
without a specific focus on cancer types. A comprehensive and critical analysis of the anticancer
effects of rutin and associated molecular targets amongst various cancer types has not been performed
before. Therefore, the purpose of this review is to present an up-to-date and critical evaluation
of multiple cellular and molecular mechanisms through which the anticancer effects of rutin are
known to be exerted. The current challenges and limitations, as well as future directions of research,
are also discussed.
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Figure 1. Rutin, a glycoside from quercetin flavonoid. 
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2. Role of Inflammation, Oxidative Stress, Apoptosis, and Autophagy in Cancer Progression

Prevailing studies are revealing the critical roles of inflammation, oxidative stress, apoptosis,
and autophagy in cancer progression. A growing body of evidence has shown that inflammatory
responses are key components of tumorigenesis and cancer promotion [38]. Several inflammatory
mediators, including cytokines, such as interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α),
chemokines, growth factors, and reactive oxygen species (ROS) contribute to the proliferation,
metastasis, angiogenesis, and chemoresistance of cancer cells by activation of transcription factors
like MAPKs, NF-κB, and mTOR [39]. Aberrant regulation of the molecular pathways involved
in inflammation displays a close association with cancer [40]. Targeting impaired inflammatory
molecules represents an attractive approach for cancer therapy [41]. Upon exposure to stressful stimuli,
the upregulation of the aforementioned intracellular signaling pathways triggers the synthesis and
release of inflammatory cytokines, oxidative stress, and carcinogenesis [42]. Constitutive activation of
MAPKs and NF-κB signaling pathways have been reported in several types of cancers [41]. MAPKs
include a family of protein serine/threonine kinases, which are classified into three main subfamilies,
including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 [43].
The MAPKs signaling cascade plays a critical role in inflammation-associated cancers, participating
in cell proliferation, differentiation, and apoptosis [13]. As a parallel pathway to MAPKs, and an
upstream signaling pathway of NF-κB, the PI3K/Akt/mTOR signaling pathway is also linked with
the regulation of inflammation and cancer cells survival [44]. Accumulating data suggest that
there is crosstalk between mTOR activation and inflammatory response, which contributes to the
coupling of cell survival and proliferation in response to environmental stimuli [45]. Accordingly,
mTOR interacts with the upstream molecule mesenchymal–epithelial transition factor (c-met) to
regulate tumor progression. Upregulation of c-met and its ligand, hepatocyte growth factor (HGF),
provokes PI3K/Akt/mTOR, Ras/Raf/mitogen-activated protein kinase kinase (MEK)/ERK/MAPK,
paxillin/Ras-related C3 botulinum toxin substrate 1 (Rac-1), and STATs signaling cascades, thereby
causing inflammation, proliferation, migration, angiogenesis, and metastasis [46,47]. Furthermore,
malignant cells activate PI3K/Akt/mTOR, Ras/Raf/MEK/ERK/MAPK, and AP-1/vascular endothelial
growth factor (VEGF) pathways via growth factor binding to their putative receptors such as insulin-like
growth factor receptor (IGFR), platelet-derived growth factor receptor (PDGFR), and epidermal growth
factor receptor (EGFR) [48].

Compelling studies have also demonstrated that ROS play a fundamental role in crosstalk
between autophagy and apoptosis [49,50]. Oxidative stress, resulting from an imbalance between ROS
production and elimination by enzymatic/non-enzymatic antioxidants including superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH), promotes tumor cell
proliferation, angiogenesis, and metastasis. Surprisingly, new evidence indicates that ROS are not only
able to induce tumorigenesis but also possess tumor-suppressive properties [51]. Considering the dual
role of ROS in cancer, nuclear factor erythroid 2–related factor 2 (Nrf2)-mediated antioxidant response
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may act as an anti- or as a pro-tumorigenesis [52]. It has been reported that ROS amplify transcription
factor AP-1 which, in turn, augments VEGF expression, a trigger of the angiogenesis cascade.

Apoptosis or type I programmed cell death plays a central role in the pathogenesis of cancer.
As a hallmark of cancer, apoptosis resistance leads to uncontrolled proliferation, cancer cells survival
under hypoxic conditions, and resistance to chemotherapeutic drugs [53]. The underlying mechanisms
by which cancer cells evade apoptosis encompasses the downregulation of pro-apoptotic proteins,
upregulation of anti-apoptotic proteins, and the dysregulation of death receptors and p53-related
signaling pathways [54]. Apoptosis can occur through two well-known apoptotic pathways, including
the mitochondrial pathway (intrinsic) and the death receptor pathway (extrinsic) [55]. The intrinsic
and extrinsic pathways are associated with caspase-9 and caspase-8, respectively. The extrinsic
pathway is initiated through the occupation of cell surface death receptors of the TNF receptor
family and the intrinsic pathway is triggered by cellular stresses [56,57]. Tumor suppressor p53
can regulate the intrinsic pathway of apoptosis through controlling the B cell lymphoma 2 (Bcl-2)
proteins family [58]. Induction of pro-apoptotic BH3-only proteins suppresses the pro-survival Bcl-2
proteins, thereby leading to the upregulation of pro-apoptotic proteins BH3-interacting domain death
agonist (Bid), Bcl-2 antagonist killer (BAK), and Bcl-2 associated X protein (Bax) which, in turn, cause
the outer mitochondrial membrane to become permeable and the release of cytochrome c from the
mitochondria [59]. Cytochrome c then activates cysteine protease enzymes called caspases that are
responsible for cleaving vital cellular proteins [60].

On the other hand, p53 possesses the ability to control the expression of components of the death
receptors pathway. P53 activates the death receptors tumor necrosis factor receptor 1 (TNFR1) and
fatty acid synthase (FAS) to sensitize cells to death ligands TNF-α, Fas ligand (FasL), and TNF-related
apoptosis-inducing ligand (TRAIL), thus facilitating apoptosis [61]. Interestingly, MAPK kinase 4
(MKK4), selective for JNK activation, couples oncogenic stimuli to p53 activation which, in turn, leads
to p21-mediated cell-cycle arrest and/or Bax-mediated apoptosis [62]. TNF-α not only participates in
fostering tumor growth through chronic inflammation but also amplifies apoptosis through activating
the extrinsic pathway. NF-κB also serves as a key factor in inducing apoptosis mediated by TRAIL or
TNF-α [63]. Therefore, impaired activation of NF-κB expedites resistance to apoptosis. TNF-α also
promotes poly (ADP ribose) polymerase (PARP) activation [64], an important enzyme in DNA repair and
programmed cell death. PARP inhibitors expedite ROS production, DNA damage, and programmed
cell death [59]. Phosphatases and tensin homolog (PTEN) is an important tumor suppressor gene
that negatively regulates the PI3K/Akt/mTOR anti-apoptotic pathway. Impairment of the PTEN/

PI3K/Akt/mTOR pathway represses apoptosis and promotes tumorigenesis [65].
Autophagy (programmed cell death type II) is an intracellular regulated process that plays a vital

role in the maintenance of cellular homeostasis by eliminating malformed and unwanted proteins [66].
Aberrant regulation of autophagy contributes toward tumorigenesis. Autophagy acts as a double
edged sword, containing both tumor suppression and tumor promotion characteristics [67]. This dual
role of autophagy poses a great challenge in the development of efficient anticancer drugs. As a
homeostasis control process, autophagy displays cytoprotective properties through the degradation
of misfolded proteins and the clearing of ROS. As a tumor promoter, the stress-hindering activities
of autophagy protect malignant cells from necrosis caused by metabolic stress. Autophagy also
supplies the elevated energy demands of tumor cells, which is necessary for tumor cell survival
and proliferation [68]. Mechanistically, JNK, p38MAPK, and ERK signaling pathways positively
regulate autophagy in malignant cells. Upregulation of these pathways putatively activates autophagy
associated proteins like autophagy-related protein (Atg), Beclin1, and light chain 3 (LC3B) [69–71].
MTOR is a well-known inhibitor of autophagy. As upstream regulators of mTOR, Akt and Forkhead
box O3 (FoxO3) play key roles in the positive regulation of mTOR and inhibition of autophagy [72].

In summary, there are numerous altered signaling pathways identified across several cancer
types. Targeting cross-linked intracellular signaling pathways that are associated with dysregulated
proliferation and cell survival by utilizing multi-targeted agents is an attractive strategy to combat cancer.
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3. Rutin: Sources and Pharmacological Effects

Rutin (3, 3′, 4′, 5, 7-pentahydroxyflavone-3-rhamnoglucoside) is a flavonol glycoside found in a
wide variety of vegetables, fruits, and beverages, including passionflower, grapes, green asparagus,
apples, tea, and wine. A large number of medicinal plants also contain rutin, such as Buckwheat
(Fagopyrum esculentum Moench), Ruta graveolens L., Sophora japonica L., Maranta leuconeura E. Morren.,
and Eucalyptus spp. [73–75], with the former being the most significant source of natural rutin [76].
Rutin has been also isolated from several herbal families, including Polygonaceae, Rutaceae, Fabaceae,
Marantaceae, and Myrtaceae [75,77]. It has been reported that the concentration of rutin varies within
the different parts of plants, becoming elevated after UV-B exposure to protect against radiation [78,79].
Rutin is also called vitamin P or rutoside and contains extensive pharmacological properties,
including neuroprotective [30], hepatoprotective [80,81], cardioprotective [82], and anticarcinogenic
activities [37]. Rutin has also been demonstrated to hamper inflammation, oxidative insults, and platelet
aggregation [83]. The insulin-sensitizing and lipid-lowering properties of rutin support the beneficial
effects of this agent in diabetes mellitus, hyperlipidemia, and cardiovascular disease. The underlying
mechanisms by which rutin counteracts diabetes and its complications include the suppression of
gluconeogenesis, increased glucose uptake, and the abrogation of intestinal glucose absorption [84].
Rutin also reverses endothelial dysfunction through enhancing nitric oxide production and repressing
ROS responsive nucleotide-binding domain-like receptor 3 (NLRP3) [85,86], thereby decreasing the
risk of cardiovascular disease. Rutin has been also reported to combat neurodegenerative diseases by
abrogating neuroinflammation, abnormal protein accumulation, and apoptosis, as well as regulating
microglia and astrocyte activation [87–89]. It has been documented that rutin possesses promising
nephroprotective effects against nephrotoxins, such as cisplatin, vancomycin, and mercuric chloride,
via mitigating inflammation, oxidative damage, apoptosis, and enhancing aquaporin 1 level [90–92].
From another mechanistic perspective, rutin also targets several inflammatory mediators such as NF-κB
and TNF-α, thereby counteracting inflammation-driven disease. The hepatoprotective properties of
rutin in animal models of non-alcoholic fatty liver disease include its ability to mitigate autophagy
corroborated by abrogating key autophagy biomarkers and modulating the expression of lipolytic
and lipogenic genes [93]. In various preclinical models, rutin has been also shown to elevate Nrf2
accompanied by an increase in enzymatic/non-enzymatic antioxidant activities, including SOD,
CAT, and GPx, thereby alleviating the aforementioned diseases.

Rutin can, overall, be regarded as a promising multi-targeted nutraceutical agent that elicits
several health benefits.

4. Methodology for Literature Search on Rutin and Cancer

The present systematic review was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) criteria. PRISMA statement is useful for improving
the reporting of systematic reviews and meta-analyses [94]. A systematic literature search was
performed using the scholarly electronic database, including PubMed, Science Direct, and Scopus.
The last search was made in June 2020. The systematic search in databases was conducted using
the following keywords: “Rutin” and (“cancer” OR “neoplasm” OR “malignancy” OR “carcinoma”
OR “melanoma” OR “leukemia” OR “tumor”) [full text]. It should be mentioned that in the Scopus
database, the aforementioned keywords were found in [title/abstract/keywords]. Out of the initial 2113
articles that were obtained by electronic search, 737 were excluded due to duplicated results, 71 were
excluded because they were reviews, and 919 were irrelevant based on title and/or abstract information.
Additionally, 28 were omitted since they were not in English. Among 358 retrieved articles, 125 were
excluded as they evaluated other pharmacological effects of rutin rather than anticancer effects and 161
were ruled out since they focused on other compounds, not rutin. Finally, 72 reports were included in
this review, as shown in a summary of results in Figure 2.
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5. Anticancer Activities of Rutin

Rutin has been found to counteract several types of cancer through various mechanisms,
e.g., inhibition of malignant cell growth, induction of cell cycle arrest and apoptosis, and modulation
of angiogenesis, inflammation, and oxidative stress, all of which are mediated by regulating multiple
cellular signaling pathways. The pharmacological activities and basic antitumor mechanisms of rutin
in several cancer types are discussed below.

5.1. Rutin and Breast Cancer

Breast cancer is a multifaceted and heterogeneous disease [95]. Based on the presence or absence
of three molecular biomarkers, estrogen receptor-α (ER-α), progesterone receptor (PR), and human
epidermal growth factor-2 (HER2), breast cancer is classified into five distinct molecular subtypes:
(a) luminal A (positive for ER-α and/or PR while negative for HER-2); (b) luminal B (positive for ER-α
and/or PR as well as HER2); (c) HER-2 overexpressing; (d) triple-negative; and (e) normal breast-like
tumors [96,97]. Triple-negative breast cancer (TNBC) is a heterogenetic and aggressive subtype of
breast cancer that is negative for the expression of ER-α, PR, and HER2 [98]. TNBC represents poor
prognosis and outcome due to the lack of ideal target options [99]. Therefore, there exists a dire need
to discover new targeted therapies for counteracting TNBC. Overactivation of c-met and its ligand,
HGF, plays a key role in the initiation and/or progression of TNBC [100]. It has been reported that
c-met/HGF is involved in inducing several downstream effectors of different signaling pathways such
as Ras/Raf/MEK/ERK/MAPK, PI3K/Akt/mTOR, and Rac-1 [46,47]. Targeting c-met/HGF signaling with
novel inhibitory agents is an innovative strategy to combat TNBC. Rutin exhibits anticancer effects on
TNBC cell lines through abrogating c-met/HGF axis and its downstream cascades, including paxillin,
Rac-1, mTOR, and Akt [101] (Table 1). Additionally, rutin was capable of decreasing the average tumor
volume of the TNBC in nude mice [101]. Rutin is therefore a promising c-met inhibitor that may serve
as a suitable option to hamper c-met-dependent malignancies.
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Table 1. Potential anticancer effects and mechanisms of action of rutin based on in vitro and in vivo studies.

Type of Cancer Type of Study Cell Type/Animal Model Anticancer Effects References

Breast In vitro
In vivo

Human TNBC cells (MDA-MB-231 and MDA-MB-468)
Female athymic Foxn1nu/Foxn1C mice ↓c-met/ HGF, ↓paxillin, ↓Rac-1 ↓mTOR, ↓Akt, ↓tumor volume [101]

Breast In vitro Human breast cancer cells (MCF-7) ↓Proliferation, ↑apoptosis, ↑cell cycle arrest, ↑PTEN, ↑p53
↑p21 [102]

Breast In vitro
In vivo

Human breast cancer cells (MCF-7)
Female Swiss albino mice

↑Apoptosis, ↓tumor volume, ↓CEA, ↓cholesterol, ↓FAS, ↓MDA,
↑GSH, ↑caspase-3, ↑caspase-7 [103]

Breast In vitro Human TNBC cells (MDA-MB-231) and breast cancer cells (MCF-7) ↑Chemosensitivity, ↓MDR, ↓P-gp ↓BCRP [104]

Breast In vitro Human breast cancer cells (MCF-7) ↑Chemosensitivity [105]

Breast In vitro Human TNBC cells (MDA-MB-231) ↓VEGF, ↓angiogenesis [106]

Breast In vitro Human breast cancer cells (MCF-7) ↑Apoptosis, ↑cell cycle arrest [107]

Breast In vitro Human TNBC cells (MDA-MB-231)
and Human breast cancer cells (MCF-7) ↑Apoptosis, ↑p53, ↑Bax, ↓Bcl-2, ↓VEGF [108]

Breast In vitro Human TNBC cells (MDA-MB-231)
and human breast cancer cells (MCF-7) ↓Proliferation, ↑apoptosis, ↑ROS [109]

Lung In vitro Human lung cancer cells (A549) ↑Cytotoxicity, ↑GSK-3β, ↑TNF-α [110]

Lung In vitro Human lung cancer cells (A549) ↓Migration, ↓fibronectin, ↓collagen type I and IV, ↑ROS, ↓superoxide [29]

Lung In vitro Human lung cancer cells (A549) ↓Single strand DNA break, ↓ROS [111]

Lung In vivo C57BL/6 female mice ↓Lung tumor nodules, ↑life span [112]

Lung In vivo Albino Swiss mice ↓Lung tumor nodules, ↓growth, ↓invasion index [113]

Lung In vitro Human lung cancer cells (A549) ↑Autophagy, ↑Beclin1, ↑Atg5/12, ↑LC3-II, ↓NF-κB, ↓TNF-α [114]

Lung In vitro Human lung cancer cells ↓Proliferation ↓cell cycle, ↓NF-κB, ↓p38 [115]

Colon In vitro Human colon cancer cells (HT-29) ↑Apoptosis, ↑caspase-3, ↑caspase-8, ↑caspase-9 ↑PARP,
↓Bcl-2, ↑Bax [116]

Colon In vitro
In vivo

Human colon cancer cells (SW480)
nu/nu mice ↓Tumor growth ↓angiogenesis, ↓VEGF [117]

Colon In vitro Human colon cancer cells (HT-29)
↑Cytotoxicity, ↓mitochondrial membrane potential,

↑lipid peroxidation,
↓SOD ↓CAT ↓GPx

[118]

Colon In vitro Human colon cancer cells (HT-29) ↓Adhesion, ↓migration, ↑ROS, ↓superoxide [29]

Colon In vitro Human colon cancer cells (HT-29) ↑Apoptosis, ↓Bcl-2, ↑Bax, ↑caspase-3, ↑caspases-8,
↑caspase-9, ↑p53, ↓NF-kB, ↓IKK-α, ↓IKK-β, ↓MAPK [119]

Colon In vitro Human colon cancer cells (SW480) ↑Apoptosis, ↑cell cycle arrest, ↓metabolism [120]

Colon In vitro Human colon cancer cells (HT-29) ↓ cell viability [121]
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Table 1. Cont.

Type of Cancer Type of Study Cell Type/Animal Model Anticancer Effects References

Colon In vitro Human colon cancer cells (LoVo) ↑Apoptosis, ↑cell cycle arrest [107]

Colon In vitro Human colon cancer cells (Caco2) ↓DNA damage [122]

Colon In vitro Human colon cancer cells (Caco2) No effect on DNA repair [123]

Colon In vivo Female CF1 mice ↓Focal areas of dysplasia, ↓hyperproliferation [124]

Colon In vivo Male F344 rats ↓Aberrant crypt foci, ↑apoptosis [125]

Colon In vivo Male F344 rats No effect [126]

Colon In vitro Human colon cancer cells (HCT-8) No effect [127]

Colon In vivo Male F344 rats No effect [128]

Brain In vitro Human
glioblastoma cell line (GL-15) ↓Proliferation, ↑apoptosis, ↓ERK ↑GFAP [129]

Brain In vitro Human
glioblastoma cell line (GL-15) ↓Invasion, ↓angiogenesis, ↓VEGF, ↓TGF-β1 [130]

Brain In vitro Human
glioblastoma cell line (GL-15) ↓Proliferation, ↓invasion, ↓MMP-2, ↑fibronectin, ↑laminin [131]

Brain In vitro Human neuroblastoma cells (LAN-5) ↑Apoptosis, ↓cell cycle, ↓TNF-α,
↓Bcl-2, ↑Bax [132]

Brain In vitro Human glioma cells (CHME) ↑p53, ↑caspase-3, ↑caspase-9, ↑cytochrome c, ↑Bax, ↓Bcl-2, ↑ROS
↓mitochondrial membrane potential [133]

Brain In vitro
In vivo

Human glioblastoma cells (U87-MG, D54-MG, and U251-MG)
BALB/c athymic mice ↑Cytotoxicity, ↑apoptosis, ↓ JNK, ↓autophagy, ↑caspase-3, [134]

Leukemia In vitro Human leukemic cells
(U937, HL-60, KG1, and KG1a) ↑Cytotoxicity, ↑apoptosis, ↓GSK-3β, ↑Akt [135]

Leukemia In vivo Human leukemia HL-60 cells induced leukemia in BALB/c mice ↓Tumor weight, ↓tumor volume [136]

Leukemia In vivo Murine leukemia WEHI-3 cells induced leukemia in BALB/c mice ↓Proliferation, ↓macrophage phagocytosis [137]

Leukemia In vitro Human leukemic cells (THP-1) ↑Autophagy, ↓NF-κB, ↓TNF-α [114]

Leukemia In vitro Human promyelocytic leukemia cells (HL-60) ↓Angiogenesis, ↓VEGF, ↓AP-1, ↓IGF-1R/IRS-1 [138]

Leukemia In vitro Human acute myeloid leukemia cells
(KG1) ↑Cytotoxicity, ↑antioxidant activity [139]

Leukemia In vitro human myelogenous leukemia cells (K562) ↓Single strand DNA break,
↓ROS [140]

Leukemia In vitro human myelogenous leukemia cells (K562) ↑Apoptosis [141]
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Table 1. Cont.

Type of Cancer Type of Study Cell Type/Animal Model Anticancer Effects References

Leukemia In vitro human promyeloleukemic cells (HL-60) No effect [142]

Leukemia In vitro Murine leukemia cells (L1210) No effect [143]

Multiple myeloma In vitro Human multiple myeloma cells (RPMI8226) ↑Cytotoxicity, ↑antioxidant activity [139]

Multiple myeloma In vitro Human multiple myeloma cells (ARH–77) ↑Cytotoxicity, ↓mitochondrial and lysosomal activity [144]

Lymphoma In vitro Dalton’s lymphoma cells ↑Apoptosis, ↓Bcl-xL, ↓c-FLIP, ↓GST, ↓GR [145]

Liver In vitro Rat hepatoma cells (HTC) ↓Proliferation, ↓cell viability [146]

Liver In vitro Human liver cancer cells (HEPG2) ↓Proliferation, ↑apoptosis, ↓CYP3A4, ↓CYP1A1, ↑NQO1, ↑GSTP1 [147]

Liver In vitro human hepatoma cell line (HepG2) ↓ROS, ↓MDA [148]

Liver In vitro human hepatoma cell line (HepG2) ↓GSH [149]

Liver In vitro human hepatoma cell line (HepG2) ↑Cytotoxicity [150]

Liver In vitro human hepatoma cell line (HepG2) ↓DNA damage [122]

Liver In vitro human hepatoma cell line (HepG2) No effect [123]

Liver In vivo Wistar albino rats ↑Membrane bound ATPases [151]

Liver In vivo Wistar rats ↓PARP, ↓DNA polymerase β, ↓DNA ligase [152]

Gastric In vitro Human gastric cancer cells (SGC-7901) ↑Apoptosis, ↑caspase-3, ↑caspase-7, ↑caspase-9, ↓Bcl-2/Bax,
↑p38MAPK, ↑G0/G1 arrest [153]

Prostate In vitro Human prostatic cancer cells (PC3) ↓Proliferation, ↑apoptosis, ↓Bcl-2, ↑p53 [28]

Prostate In vitro Human prostate cancer cells (LNCaP) No effect [154]

Oral In vitro Drug resistance oral carcinoma cells (KBCHR8–5) ↓Wnt/GSK-3β/β-catenin pathway, ↓P-gp [105]

Cervical In vitro cervical cancer cells (HeLa) ↓Proliferation, ↓growth [155]

Ovarian In vitro ovarian cancer cells (OVCAR-3) ↓Proliferation, ↓VEGF [156]

Melanoma In vitro melanoma cells (B16F-10) ↓Angiogenesis, ↓VEGF, ↓IL-1β, ↑TNF-α [157]

Abbreviations: Akt, protein kinase B; AP-1, activating protein-1; Atg5/12, autophagy related 5/12; Bax, Bcl-2 associated X protein; Bcl-2, B cell lymphoma 2; BCRP, breast cancer resistance
protein; CAT, catalase; CEA, carcinoembryonic antigen; c-FLIP, cellular FLICE-inhibitory protein; C-met, mesenchymal–epithelial transition factor; CYPs, cytochrome P450s; FAS, fatty
acid synthase; GFAP, glial fibrillary acidic protein; GPx, glutathione peroxidase; GR, glutathione reductase; GSK-3β, glycogen synthase kinase; GST, glutathione S-transferase; GSTP1,
glutathione S-transferase Pi 1; HGF, hepatocyte growth factor; IGF-1R, insulin-like growth factor-1 receptor; IKK, IκB kinase; IL, interleukin; IRS-1; insulin receptor substrate-1; JNK, Jun
N-terminal Kinase; LC3-II, light chain 3; MAPK, mitogen-activated protein kinase; MDR, multidrug resistance; MMP-2, metalloproteinase; mTOR, mammalian target of rapamycin; NF-κB,
nuclear factor-κB; NQO1, NADPH quinone oxidoreductase 1; PARP, poly (ADP ribose) polymerase; P-gp, P-glycoprotein; PTEN, Phosphatases and tensin homolog; Rac-1, Ras-related C3
botulinum toxin substrate 1; ROS, reactive oxygen species; SOD, superoxide dismutase; TGF-, transforming growth factor-;TNBC, triple-negative breast cancer; TNF-α, tumor necrosis
factor-α; VEGF, vascular endothelial growth factor; Wnt, wingless/integrated.
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P53 is a well-known tumor suppressor gene that participates in the induction of cell cycle arrest and
apoptosis [158]. Upregulation of p53 promotes p21 activation and subsequently leads to the abrogation
of a myriad of cell cycle proteins, including CDK6, CDK2, CDK4, and cyclin B1 [159,160]. Rutin
promotes cell cycle arrest at the G2/M phase through interfering with p53- and p21-dependent pathways
in ER-α positive-breast cancer MCF-7 cells (luminal A subtype). Additionally, rutin markedly induces
apoptosis through enhancing p53 and PTEN. Rutin synergistically increases the antiproliferative effect
of tamoxifen on ER-α positive-breast cancer MCF-7 cells [102]. Therefore, rutin may be considered a
promising adjuvant agent to increase tamoxifen efficacy in ER-α positive-breast cancer.

From another mechanistic point of view, hypercholesterolemia plays a key role in the progression
of breast cancer [161]. Elevated cholesterol levels are associated with uncontrolled cell growth and
a worse breast cancer prognosis [162]. The upregulation of FAS participates in tumorigenesis by
hampering apoptosis [163]. Rutin abates FAS, elevates antioxidants, and causes cytotoxicity in
MCF-7 cells by inducing caspase-dependent apoptosis [103]. Additionally, rutin illustrates anticancer
effects against Ehrlich ascites carcinoma, an animal model of breast cancer, as observed by mitigating
carcinoembryonic antigen, tumor volume, and cholesterol levels [103].

Prolonged chemotherapy often leads to MDR, which is implicated in the failure of conventional
chemotherapeutic agents [164]. MDR occurs due to the upregulation of several drug efflux transporters
and the failure of apoptotic pathways. Targeting adenosine triphosphate-binding cassette (ABC)
transporters including P-glycoprotein (P-gp/ABCB1), breast cancer resistance protein (BCRP/ABCG2),
and multidrug resistance-associated protein-1 (MRP1/ABCC1) by natural products has been a critical
approach to reverse MDR and restore chemosensitization [165,166]. Chemoresistance to anticancer
therapy is the main cause of tumor recurrence [167]. Therefore, abrogation of chemoresistance can
mitigate the relapsed tumor. As a chemosensitizing agent, rutin can be considered as a promising
nutraceutical agent to alleviate relapsed tumors. It has been found that the formulations containing rutin
and other compounds (arctigenin, arctiin, berberine, berbamine, sanguinarine, and chelerythrine) can
successfully inhibit the tumor resistance to chemotherapy, thereby preventing tumor recurrence [168].
Hydrolyzed rutin, a compound modified via rutin deglycosylation, displayed antiproliferative
effects and diminished anaplasia in a mouse model with recurrent glioblastoma [169]. Interestingly,
rutin amplifies chemosensitivity to cyclophosphamide and methotrexate while reversing MDR by
suppressing P-gp and BCRP pumps in MB-MDA-231 and MCF-7 cell lines using well-characterized
models of TNBC and HER2-negative breast cancer, respectively. From a different anticancer mechanistic
perspective, rutin arrests the cell cycle at G2/M and G0/G1 phases, thereby inducing cell apoptosis [104].
Rutin diminished the resistance to doxorubicin in MCF-7/ADR cells [105]. In addition, rutin showed
the potential to suppress angiogenesis, VEGF synthesis and expression in MDA-MB-231 breast cancer
cells [106]. Interestingly, this phytochemical depicted antitumor effect via cell cycle arrest at S phase
and ROS-mediated apoptosis in MCF-7 cells [107]. Rutin-vanadium complex successfully provoked
apoptosis through interfering with p53, Bax, Bcl-2 and abated VEGF expression in both MCF-7 and
MDA-MB-231 cells [108]. Further research is needed to confirm the potential of rutin as an adjuvant or
synergistic agent in breast cancer therapy.

Controlled release systems are a promising strategy to decrease the fluctuation of drug
concentration, enhance treatment efficacy, and diminish side effects [170]. Fabrication of hydrogels
of both natural and synthetic polymers offers various advantages, as they supply controlled release
and targeting, protect incorporated drugs from degradation and metabolism, and exhibit good
biocompatibility and biodegradable properties [171,172]. The pH-responsive hydrogels incorporated
with rutin and 5-fluorouracil were successfully formulated using natural water-insoluble polymer (Zein)
with the synthetic monomer (acrylic acid). The anticancer effect was evaluated against MDA-MB-231
and MCF-7 breast cancer cell lines. Rutin and 5-fluorouracil loaded pH-sensitive Zein-co-acrylic
acid hydrogels demonstrate a controlled release manner and augment anticancer effects by inducing
apoptosis and ROS generation [109]. Based on these results, pH-sensitive hydrogels may be a suitable
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formulation for oral delivery of anticancer drugs with the intent of attaining the tumor site-responsive
controlled release and thereby decreasing undesirable toxic effects in normal tissues.

5.2. Rutin and Lung Cancer

Lung cancer is the most frequent leading cause of cancer-related death worldwide [173]. Distant
metastasis, resistance to the chemotherapeutic regimens, and the cytotoxicity of the drugs are common
causes of death amongst lung cancer patients [174]. Therefore, there exists an urgent need to discover
non-toxic alternative treatments for chemotherapy responsive lung cancer. In this regard, Wu et al. [110]
revealed that rutin exhibits cytotoxicity against A549 human lung cancer cells through modulating
TNF-α and glycogen synthase kinase-3β (GSK-3β) expression. GSK-3βparticipates in numerous cellular
processes including proliferation, the cell cycle, and apoptosis [175]. Fibronectin and collagen type I
and IV play an important role in the formation of the extracellular matrix, which controls adhesion and
migration of cancerous cells [176]. Rutin hampers the adhesion of A549 cells to Fibronectin and collagen
type I and IV, thereby inhibiting the migration of lung cancer cells. Additionally, rutin enhances ROS
generation and alleviates superoxide production in A549 cells [29]. Rutin hindered the increased effect
of β-carotene on single-strand DNA break induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
in A549 cells. This effect can be ascribed to its antioxidant properties since it abolished ROS level [111].
Rutin repressed lung metastasis induced by B16FlO melanoma cells in mice as observed by decreasing
the lung tumor nodules and enhancing the life span of mice [112]. Similarly, in another in vivo study,
rutin diminished the number of metastatic nodules, growth, and invasion index, thereby ameliorated
lung metastasis induced by B16FlO melanoma cells in mice [113]. From another mechanistic point of
view, rutin induces autophagy in A549 cells corroborated by elevating Beclin1, Atg5/12, and LC3-II
expression. Additionally, rutin mitigates the expression of NF-κB and TNF-α, acting as a modulator
of tumorigenesis [114]. Several transcription factors, namely NF-κB and STAT, have been identified
as direct targets of p38 [177]. P38 is then phosphorylated and activated by MKK3 and MKK6 [178],
inducing inflammation by producing various pro-inflammatory mediators, such as IL-1β, TNF-α,
cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) [177]. The majority of existing
data suggests opposing activity of the p38 signaling pathway with respect to apoptosis and cell cycle
modulation [179]. In an in vitro study, rutin prevented the development of lung cancer by diminishing
NF-κB and p38 expression, arresting the cell cycle [115]. Additional experiments on lung cancer cell
lines and in vivo tumor models should be conducted to further evaluate the beneficial effects of rutin
against lung cancer.

5.3. Rutin and Colon Cancer

Colorectal cancer results from various risk factors, such as inflammatory bowel disease, obesity,
and smoking [180]. Dietary rutin considerably abolishes the viability of human colon adenocarcinoma
HT 29 cells in a concentration-dependent manner. Rutin-mediated inhibition of HT 29 cells is achieved
by augmentation of cleaved caspase-3, caspase-8, caspase-9, and PARP. PARP is an important enzyme
in the detection of DNA damage and programmed cell death [181]. Additionally, rutin upregulates
Bax and downregulates Bcl-2. These findings illustrate that rutin induces apoptosis in HT 29 colon
cancer cells through concomitant activation of the death receptors and mitochondrial pathways [116].

VEGF is considered a key factor in angiogenesis and tumor growth promotion. Therapeutic
intervention involving the inhibition of VEGF has become an innovative strategy for abrogating tumor
metastasis [182]. Rutin exerts cytotoxic effects against SW480 colon cancer cells in vitro, markedly
suppressing tumor growth and diminishing the expression of VEGF in vivo [117]. In another study,
combined treatment of rutin and irradiation sensitized the HT-29 cells to irradiation. Further, concurrent
rutin treatment enhanced apoptotic cells, DNA damage, and lipid peroxidative markers. The antioxidant
performance elicited by concurrent rutin treatment was reduced by inhibiting antioxidant enzymes
(SOD and CAT) and decreasing the mitochondrial membrane potential as cell survival and apoptosis
factor [118]. Therefore, rutin is a suitable candidate to increase the radiotherapy response to colon cancer.
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In an in vitro study, rutin depicted cytotoxic activity on HT-29 cells via increasing ROS generation,
ameliorating superoxide production, impairing cell adhesion, and mitigating migration [29].

There is increasing evidence that inflammation is implicated in the proliferation, survival, invasion,
angiogenesis, and metastasis of tumor cells [183,184]. Targeting the inflammatory signaling pathway by
rutin provides an attractive strategy for cancer prevention and treatment. Rutin effectively ameliorates
the expression of biomarkers of the NF-κB inflammatory pathway, including NF-κB, IκB kinase (IKK)-α,
and IKK-β in HT-29 colon cancer cells [119]. This indicates that rutin may play a critical role in the
prevention of inflammation-mediated cancers. MAPKs are involved in modulating numerous cellular
activities related to cancer progression, including inflammatory cascades, proliferation, differentiation,
and apoptosis [13], supporting the use of potent MAPKs inhibitor agents. Rutin hinders tumor growth
in vitro through interfering with p38MAPK and MAPK activated protein kinase 2 (MK-2). Moreover,
rutin ameliorates apoptosis by targeting apoptosis-related proteins, including caspase-3, caspase-8,
caspase-9, Bax, Bcl-2, and p53 [119].

Dysregulated metabolism contributes to tumor initiation and progression [26,185]; therefore, their
regulation in cancer is of great importance. Rutin ameliorates the metabolism of colon cancer SW480
cells, increases apoptosis, and arrests the cell cycle at the sub-G1 phase. Analysis of microRNAs,
long noncoding RNAs, messenger RNAs, and transcription factors revealed that these promising
effects were associated with the modulation of dysregulated intracellular signaling pathways involved
in glucose, lipid, and protein metabolism, extrinsic and intrinsic apoptosis, reticulum stress responses,
and cell cycle stages [120]. Future studies should investigate the proposed panel in other cancer models.
Rutin encapsulated in low methoxyl pectin beads abolished cell viability of HT-29 colon cancer cells [121].
It presented antitumor effects via cell cycle arrest at S phase and ROS-mediated apoptosis in LoVo colon
cancer cells [107]. Rutin also protected colon cancer Caco2 cells against hydrogen peroxide-induced
DNA damage; however, it did not enhance the DNA repair process [122,123]. Deschner et al. [124]
indicated the potential of rutin in repressing azoxymethanol (AOM)-induced colonic neoplasia as seen
by decreasing focal areas of dysplasia and abrogating hyperproliferation of colonic epithelial cells.
In another in vivo study, rutin hindered aberrant crypt foci and induced apoptosis in AOM-induced
rat colon cancer [125]; however, Dihal et al. [126] showed that rutin in contrast to its aglycone,
quercetin, exerted no protective effect against AOM-induced colorectal carcinogenesis in rats. In this
line, rutin did not hamper methylcholantrene (MCH)-mediated CYP1A1 activation, as an enzyme
metabolizing precarcinogenic agents, participates in carcinogenesis of intestinal cells (HCT-8) [127].
In another study, rutin could not hinder the development of AOM-induced rat colon cancer and
augmented tissue inhibitor of metalloproteinase 1 (TIMP-1) expression, a biomarker of colorectal
cancer progression [128]. Overall, further biological and biochemical effects of rutin in colon cancer are
needed in-depth clarification in future studies.

5.4. Rutin and Brain Cancer

Due to low targeting and negligible permeability of anticancer agents through the blood–brain
barrier, brain cancer is an aggressive and devastating neoplasm that is difficult to treat [186]. As a part
of the MAPK family, ERK is aberrantly upregulated in cancers expediting the survival, proliferation,
and migration of cancer cells [187]. Additionally, ERK participates in crosstalk between programmed
cell death and autophagy [188]. ERK plays a key role in TNF-induced autophagy, inhibition of
which enhances cellular sensitivity to TNF-induced apoptosis [189]. Discovering and developing
new agents to hinder ERK activity is a promising anticancer strategy. Rutin displays pro-apoptotic
and antiproliferative effects on human glioblastoma cell lines (GL-15) by diminishing the level of
ERK1/2 phosphorylation. Additionally, rutin stops the cell cycle at the G2 stage and stimulates
differentiation of GL-15 cells towards an astroglial phenotype, characterized by the upregulation of
glial fibrillary acidic protein (GFAP), an astrocyte neurobiomarker [129]. Rutin inhibited the invasion
and angiogenesis of GL-15 cells corroborated by mitigating the VEGF and transforming growth factor
(TGF)-β1 [130]. In another study, it also exerted an antiproliferative effect on GL-15 cells accompanied
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by an anti-invasive activity with regard to the potential of this nutraceutical agent in decreasing
metalloproteinase (MMP-2) expression, as well as enhancing the expression of extracellular matrix
proteins including fibronectin and laminin [131].

MYCN oncogene is a characteristic feature of an advanced and aggressive neuroblastoma stage,
representing a poor prognosis [190]. MYCN is a desired target for counteracting neuroblastoma.
Rutin obviously abrogates MYCN expression and suppresses the migration and invasion of human
neuroblastoma cells, LAN-5. Rutin promotes apoptosis corroborated by a decrease of Bcl-2 expression
and Bcl-2/Bax ratio. Additionally, rutin blocks cell cycle progression at the G2/M stage and ameliorates
inflammation through the attenuation of TNF-α secretion [132]. Therefore, rutin may be considered a
suitable candidate for the treatment of MYCN-dependent tumors.

Rutin exhibits an apoptotic effect on human glioma CHME cells through inducing ROS generation
and abating mitochondrial membrane potential. A promising apoptotic effect of rutin was further
corroborated by the upregulation of p53, caspase-3, caspase-9, cytochrome c, and Bax as well as
the downregulation of Bcl-2 [133]. In addition to the critical role of apoptosis in preventing cancer,
autophagy plays an important role in the maintenance of cellular homeostasis and metabolism
management [191]. Autophagy can represent both oncogenic and cancer suppressive features, thereby
acting as a double-edged sword in cancer cells [192]. Considering the dual function of autophagy
in tumorigenesis, both suppression and promotion of this pathway have attracted attention as a
promising cancer treatment. The JNK pathway exhibits a multifaceted role in regulating autophagy,
apoptosis, and DNA damage [193]. Rutin interestingly mitigates JNK activity both in vitro and in vivo,
thereby amplifying the cytotoxic effect of temozolomide through blocking JNK-mediated autophagy.
Rutin reinforces the apoptosis effect of temozolomide corroborated by the overexpression of cleaved
caspase-3 [134].

5.5. Rutin and Leukemia/Multiple Myeloma/Lymphoma

Acute myeloid leukemia is a heterogeneous and aggressive malignancy characterized by the
accumulation of immature myeloid hematopoietic cells [194]. The pivotal role of GSK-3β in preserving
quiescent hematopoietic stem cells makes it a promising therapeutic target in acute human leukemia [195].
Rutin triggers apoptosis of leukemic cells and promotes cell quiescence through activating Akt and
inhibiting GSK-3β. Rutin suppresses the survival of adherent leukemic cells, thus it may be considered
as a promising therapeutic agent to combat cell adhesion-mediated drug resistance in acute myeloid
leukemia [135]. Rutin decreases tumor weight and volume in human leukemia HL-60 cells in a murine
xenograft animal model [136]. In another in vivo study, rutin reduces liver/spleen weight, abolishes
proliferation, and augments the activity of macrophage phagocytosis, thereby inducing an immune
response in WEHI-3-induced leukemia model in BALB/c mice [137]. Interestingly, rutin exhibits
anticancer effects on the leukemia THP-1 cells by promoting autophagy and diminishing inflammation
corroborated by decreasing NF-κB and TNF-α [114]. Belonging to the c-Jun subfamily, AP-1 is a
well-known transcription factor that plays a critical role in the positive regulation of VEGF [196].
AP-1 activity can be regulated by transcription factors, such as ERK, p38, and JNK [197]. ROS promotes
VEGF as a trigger of the angiogenesis cascade [198]. On the other hand, activation of insulin-like
growth factor 1 receptor (IGF-1R)/insulin receptor substrate-1 (IRS-1) signaling pathway amplifies
the activity of AP-1, which, in turn, stimulates VEGF expression [199]. Targeting the VEGF signaling
pathway by naturally occurring compounds appears to be a promising antiangiogenic approach
to combat tumor growth. Rutin and vitamin E synergistically suppress VEGF in HL-60 cells.
This beneficial effect was mainly attributed to the downregulation of AP-1 and IGF-1R/IRS-1.
Antioxidant activity from a combined treatment of rutin and vitamin E (confirmed by decreasing ROS
generation) plays a partial role in the decrease of VEGF secretion [138]. Rutin-zinc complex contains
antioxidant and cytotoxicity activity against leukemia (KG1) and multiple myeloma (RPMI8226)
cell lines [139]. ROS scavenging properties of rutin caused a protective effect of this compound
against hydrogen peroxide-induced single-strand DNA break in human myelogenous leukemia cells
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(K562) [140]. Rutin exhibited anticancer effect through reinforcing susceptibility of K562 cells to
natural killer cell-mediated apoptosis [141]. However, Shen et al. [142] revealed that rutin exhibited
no apoptosis effect in human promyeloleukemic HL-60 cells compared to its aglycone, quercetin.
On the other hand, rutin combined with cytarabine decreased the antiproliferative effect of cytarabine
in L1210 leukemia cells [143]. In another study, rutin caused a cytotoxicity in ARH–77 multiple
myeloma cell line and mitigated mitochondrial and lysosomal activity [144]. Rutin promotes apoptosis
and abrogates GSH levels in Dalton’s lymphoma cells. According to a molecular docking study, rutin
acts as a potential suppressor of anti-apoptotic proteins, namely Bcl-xL and cellular FLICE-inhibitory
protein (c-FLIP), and antioxidant enzymes, such as GST and glutathione reductase [145]. Further
studies should be performed to verify the in silico results.

5.6. Rutin and Liver Cancer

Chronic liver diseases, including persistent viral hepatitis and alcoholic and nonalcoholic fatty
liver disease are common causes of liver cancer [200]. Approximately 90% of liver cancers are recognized
as hepatocellular carcinomas (HCCs) and 10% are cholangiocarcinomas (CCAs) [200]. Due to the
asymptomatic feature of this disease, a diagnosis is made at an advanced stage and therefore
therapeutic approaches remain ineffective [201]. A deeper exploration of the biology of HCC and CCA,
regarding the development of potential therapies, is desperately needed. Rutin induces DNA damage,
suppresses uncontrolled proliferation, and decreases cell viability in HTC hepatic cells. Additionally,
rutin exhibits a protective effect against the procarcinogenic agent, benzopyrene, through decreasing
DNA damage [146]. In another study, rutin dramatically promoted early/late-stage apoptosis and mitigated
proliferation, invasion, and colony formation of HEPG2 cells [147]. An imbalance between phase 1
and phase 2 metabolism implicates toxicity through oxidative insults. Agents that hinder phase 1
metabolism, such as cytochrome P450-produced reactive intermediates, or that augment phase 2
metabolism, such as antioxidant enzymes, are considered potential protective agents against chemical
carcinogenesis [202]. Treatment by rutin abrogates cytochrome P450-dependent CYP3A4 and CYP1A1
enzymes in addition to enhancing the antioxidant enzymes NADPH Quinone Dehydrogenase1 (NQO1)
and glutathione S-transferase Pi 1 (GSTP1) [147]. Rutin favorably augmented antioxidant performance
by mitigating ROS generation and malondialdehyde concentration in HepG2 cells [148]. In contrast,
prolonged treatment of rutin caused a depletion of GSH in HepG2 cells and acted as a pro-oxidant,
resulting in cell death [149]. Interestingly, rutin caused a significant cytotoxic effect on HepG2 cancer
cells [150]. Rutin protected HepG2 cells against hydrogen peroxide induced DNA damage; however,
it did not enhance the DNA repair process [122,123]. In an in vivo study, rutin hampered liver
tumor markers, including α-fetoprotein and carcinoembryonic antigens, in nitrosodiethylamine and
phenobarbital administered rats. Additionally, rutin enhances the declined level of membrane bound
ATPases [151]. Na+/K+, Ca2+, and Mg2+ ATPases play a key role in the transportation of the electrolytes
sodium, potassium, calcium, and magnesium across membranes [203]. The lipid peroxidation activity,
which is often raised when in a cancerous state, plays a deleterious effect on ATPase activities and
electrolyte levels [204], while electrolyte imbalance contributes to cancer progression [205]. Rutin
reverses common electrolyte abnormalities, including hyperkalemia, hyponatremia, hypercalcemia,
and hypomagnesemia in hepatocellular carcinoma-bearing rats [151]. Upregulation of enzymes
involved in repairing DNA damage, including PARP, DNA polymerase β, and DNA ligase participate
in tumorigenesis [206–208]. Modulation of these parameters is a promising way of controlling cancer.
In an in vivo experiment, rutin interestingly hampered DNA damage and the activity of repair enzymes
induced by hepatocarcinogens, namely aflatoxin B1 and N-nitrosodimethylamine [152].

5.7. Rutin and Gastric Cancer

Gastric cancer is a result of various genetic and environmental factors. Helicobacter pylori infection,
smoking, dietary habits, and obesity are important risk factors influencing the development of gastric
cancer [209]. According to the World Health Organization, gastric cancer is classified into three
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categories, such as adenocarcinoma, signet ring-cell carcinoma, and undifferentiated carcinoma [210].
Another most common classification system, the Laurén classification, categorized gastric cancer into
two groups, namely intestinal and diffuse types [211]. Despite a multitude of advances achieved
in treatment of gastric cancer, adverse effects and resistance to chemotherapeutic agents limit their
therapeutic efficacy [212]. Therefore, new alternative strategies to overcome these challenges and
the design of novel drugs for targeting gastric cancer therapy are needed. P38MAPK is a key factor
in modulating various functions of tumor cells, including differentiation, invasion, proliferation,
and apoptosis [213], attracting further interest as an auspicious therapeutic target for cancer
therapy [214]. Rutin mitigates the proliferation of human gastric adenocarcinoma SGC-7901 cells,
arrests tumor cells at G0/G1, upregulates caspase-3, caspase-7, and caspase-9, and lowers the Bcl-2/Bax
ratio. These effects are attributed to the upregulation of the p38 signaling pathway. Concomitant
treatment with rutin and oxaliplatin displays synergistic anticancer effects, allowing a decrease in the
dose of oxaliplatin, thus decreasing toxicity [153].

5.8. Rutin and Prostate Cancer

Prostate cancer represents the second most commonly diagnosed cancer among men [215].
Prostate cancer is a result of both genetic and environmental factors; however, the main etiology
is still unclear [216]. The combined use of chemotherapeutic drugs and nutraceutical agents is a
promising solution for enhancing anticancer effects, as well as ameliorating drug resistance and
chemotherapy adverse effects [217]. A combination of 5-fluorouracil (5-FU) and rutin synergistically
acts as a potential cytotoxic agent against PC3 prostate cancer cells. Furthermore, combined treatment
hampers cell proliferation, augments apoptosis, downregulates Bcl-2 signaling protein, and upregulates
p53 expression [28]. Overactivation of Bcl-2 proto-oncogene plays a critical role in abrogating cell
apoptosis and tumor suppressor protein p53 activity [61]. Further investigations should be conducted
to evaluate the combined effects of rutin and 5-FU in the regulation of other pro-apoptotic signaling
pathways. Voltage gated K+ channels (IK) participates in modulating numerous cellular activities
related to cancer progression [218]. IK current inhibitors may be considered as suitable target of cancer
therapy; however, George et al. [154] demonstrated that rutin presented no modulatory effect on IK
current in human prostate cancer cell line (LNCaP). Future studies should be performed to evaluate
the influence of novel anticancer compounds on IK current.

5.9. Rutin and Other Cancers

It has been well-stablished that augmentation of wingless/integrated (Wnt)/GSK-3β/β-catenin
signaling pathway plays a key role in upregulation of P-gp in various cancer types [219]. Rutin enhanced
doxorubicin-mediated cell cycle arrest at G2/M phase through interfering with Wnt/GSK-3β/β-catenin
signaling pathway, thereby alleviated the overexpression of P-gp in drug resistant oral carcinoma KB
cells [105]. Rutin-Cu (II) complex suppressed the growth and proliferation of cervical cancer cells
(HeLa) in a time- and concentration-dependent manner [155]. Ovarian cancer is considered a second
leading cause of gynecologic cancer death among women [220]. Although the chemotherapy and
surgical procedures are applied in ovarian cancer therapy, the five-year survival rate is poor, less than
50% [221]. Rutin exerted an acceptable potential in abrogation of cell proliferation and VEGF expression
of ovarian cancer OVCAR-3 cells [156]. Rutin also demonstrated antiangiogenic effects against B16F-10
melanoma cell-induced capillary formation in an animal model. In addition, rutin downregulated the
expression of VEGF, IL-1β and enhanced the expression of TNF-α in tumor associated macrophage.
Therefore, antiangiogenic activity of rutin can be attributed to the modulation of these cytokines and
growth factors [157].

6. Nanostructured Formulations of Rutin in Combating Cancer

Despite the encouraging anticancer properties of rutin in preclinical studies, there are certainly
obstacles in its clinical transition. Rutin has poor solubility, high metabolism, low gastrointestinal
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absorption, and limited bioavailability, therefore limiting the capability to achieve effective
concentrations in tumor tissues [32,222]. A promising way to overcome these challenges is encapsulating
the agent into various forms of nanosized delivery vehicles. Nanotechnology offers the potential to
deliver bioactive phytochemicals and nutraceutical agents directly to the desired locations, such as
tumor tissues, thereby providing maximum therapeutic activities of these compounds [19,223–226].
Nanostructured carriers can passively accumulate in solid tumors by an enhanced permeability
retention effect [227,228]. Active targeting is attained by attachment of a targeting ligand to the
nanoparticles (NPs) surface that binds to its receptor expressed on tumor cells, thereby increasing
site-specificity and controlled drug delivery to the cancer tissue [229].

Rutin encapsulated in folic acid conjugated keratin NPs promotes cell death in MCF-7 breast
cancer cells while exhibiting less toxicity in healthy cells [230] (Table 2). Additionally, the actively
targeted nanoformulation decreases tumor cell migration, elevates rutin uptake in cancer cells,
and boosts apoptosis through ROS production and mitochondrial potential loss. An in vitro study
indicated that the nanoformulation selectively targets breast cancer cells [230]. However, in vivo
studies are needed to confirm the active targeted delivery of folic acid conjugated keratin NPs.

Nanoemulsions are thermodynamically stable systems that are favorable vehicles for enhancing
solubility, intestinal uptake, and bioavailability of lipophilic drugs [231,232]. Rutin-based nanoemulsion
dramatically promotes cytotoxicity in PC3 prostatic cancer cells through inducing ROS and apoptosis.
The rutin nanoemulsion is more effective against prostate cancer when compared to rutin suspension.
Optimized rutin nanoemulsion exhibits thermodynamic stability and an efficient drug release
profile [233]. Rutin nanoemulsion may be a suitable candidate to be evaluated in in vivo models of
prostate cancer.

Table 2. Rutin based nanoscale drug delivery systems for counteracting several types of cancer.

Nanoformulation
Model

Type of
Cancer

Type of
Study

Cell Type/Animal
Model Outcomes References

Folic acid-conjugated
keratin NPs Breast In vitro Huma breast cancer cells

(MCF-7)

↑Apoptosis, ↓migration,
↑ROS, ↓mitochondrial
membrane potential

[230]

Nanoemulsions Prostate In vitro Human prostatic cancer
cells (PC3) ↑Apoptosis, ↑ROS [233]

Ionic liquids-NPs Renal In vitro Human renal cancer cells
(786-O)

↑Cytotoxicity, ↑sub-G1
population, ↑solubility [234]

Eudragit S100
nanospheres Colon In vitro Human colon cancer cells

(HCT 116) ↑Cytotoxicity ↑solubility [235]

Keratin NPs Cervical In vitro Human cervical cancer
cells (Hela) ↑Cytotoxicity [236]

PLGA NPs Liver In vivo Albino male
Wistar rats

↓IL-1β, ↓TNF-α, ↓IL-6 ↓NF-κB,
↑SOD, ↑CAT, ↑GSH, ↑GPx,
↑membrane-bound enzymes

[237]

PLGA nanospheres Breast In vitro Human TNBC cells
(MDA-MB-231) ↓Proliferation, ↑apoptosis, ↑ROS [238]

Chitosan NPs Breast In vitro Human TNBC cells
(MDA-MB-231) ↑Apoptosis, ↑cell cycle arrest [239]

ZnO NPs Breast In vitro Human breast cancer
cells (MCF-7) ↑Cytotoxicity [240]

Chitosan/copper
oxide nanocomposites Lung In vitro Human lung cancer cells

(A549) ↑Cytotoxicity, ↑apoptosis [241]

Fucoidan
NPs Cervical In vitro Human cervical cancer

cells (Hela)

↑DNA fragmentation, ↑cell cycle
arrest, ↑ROS, ↓mitochondrial

membrane potential
[242]
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Table 2. Cont.

Nanoformulation
Model

Type of
Cancer

Type of
Study

Cell Type/Animal
Model Outcomes References

Chitosan/poly (acrylic
acid) nanogel Liver In vivo Male albino rats

↓proliferation, ↓angiogenesis,
↓VEGF, ↑Bax, ↓Bcl-2,
↑p53, ↑caspase-3

[243]

Nanosized polymeric
micelles Leukemia In vitro human myelogenous

leukemia cells (K562) Low cytotoxicity [244]

Abbreviations: Bax, Bcl-2 associated X protein; Bcl-2, B cell lymphoma 2; CAT, catalase; GPx, glutathione peroxidase;
GSH, glutathione; IL-6, interleukin-6; NF-κB, nuclear factor-κB; NPs, nanoparticles; PLGA, poly (lactic co-glycolic
acid); ROS, reactive oxygen species; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α; VEGF, vascular
endothelial growth factor.

Ionic liquids are salts with a melting point below 100 ◦C which enhance the solubility of poorly
water-soluble drugs [245,246]. Ionic liquids are composed of organic cations, such as imidazolium,
pyrrolidinium, pyridinium, tetraalkylammonium, or tetraalkylphosphonium, along with organic or
inorganic anions, including tetrafluoroborate, hexafluorophosphate, and bromide [247]. Interestingly,
hybrid ionic liquids contain active pharmaceutical ingredients and ionic liquids, which are promising
strategies to improve their solubility, bioavailability, and biological effects. For instance, ionic
liquid-based formulations enhanced the solubility and anticancer activities of several compounds,
such as curcumin and paclitaxel [248,249]. Rutin-loaded ionic liquid–NPs were fabricated by a
double-emulsion method and were found to exhibit cytotoxic effects against 786-O human renal
cancer cells through amplifying sub-G1 population. Ionic liquids increased the solubility of rutin and
enhanced its incorporation into water/oil/water emulsion, thereby providing a controlled delivery
system [234].

The development of stimuli-responsive nanocarriers is another promising solution for the targeted
delivery and site-specific triggering of the release of anticancer agents [250,251]. Stimuli-sensitive
nanocarriers rapidly release anticancer drugs in response to environmental stimuli, such as pH,
temperature, redux, and enzymes [252,253]. Eudragit S100 is a pH-sensitive copolymer that dissolves
at colon pH and is extensively engaged for drug targeting to the colon [254,255]. Rutin-loaded
eudragit S100 nanospheres display pH-sensitive activity that can effectively achieve rutin into the
colon. The pH-sensitive nanospheres significantly increase the solubility of rutin and provoke its
cytotoxic activity against human colon cancer HCT 116 cells vs. rutin suspension [235]. Biodistribution
and in vivo studies should be conducted to better understand the anticancer potential of rutin-loaded
pH-sensitive nanospheres.

As another delivery system, protein-based NPs possess certain advantages, since they are
inherently biocompatible, stable, and have a potential for surface functionalization and covalent
attachment of ligands for targeted drug delivery [256]. Keratin is a natural protein that is abundantly found
in human hair [257]. Biocompatible and stable keratin NPs incorporated with dual phytocompounds,
rutin and quercetin, were successfully fabricated. According to an in silico study, the keratin-based
NPs eagerly dock into binding pockets of H-Ras P21 proto-oncogene. This report has been supported
by an in vitro study in which the nanoformulation caused significant cytotoxicity in Hela cervical
cancer cells [236].

Consistently, poly (lactic-co-glycolic acid) (PLGA) NPs also attain special attention in biomedical
applications as they represent desirable features, including biocompatibility, surface modifiability,
controlled delivery, and targeting [258]. Oral administration of rutin-loaded PLGA NPs ameliorates
diethylnitrosamine-induced HCC. This beneficial effect is mediated by decreasing pro-inflammatory
cytokines, including IL-1β, TNF-α, and IL-6, as well as abrogating the NF-κB inflammatory cascade.
From another mechanistic point of view, the nanoformulation restores membrane-bound enzymes
and mitigates the enhanced level of hepatic enzymatic and α-glutamyl transferase (GGT). PLGA NPs
also enhance endogenous antioxidant activity (confirmed by increasing the content of SOD,
CAT, GSH, and GPx), suggesting its protective effect against HCC [237].
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In addition to the previous goals, nanocarriers offer a potential strategy for efficient delivery of
combination anticancer drugs to overcome MDR and decrease the frequency of drug administration
during combination therapy of anticancer agents [259,260]. The co-delivery of benzamide along with
rutin through PLGA nanospheres synergistically suppresses the proliferation of MDA-MB-231 cells in
the G0/G1 phase through empowering apoptosis and ROS generation. The polymeric nanospheres
provide a sustained release of chemotherapeutic agents, augment therapeutic efficiency, and target a
MDR associated phenotype TNBC [238]. Chang et al. [239] revealed that rutin–chitosan nanoconjugates
could promisingly induce apoptosis and cell cycle arrest in TNBC. The fabricated nanoconjugates
markedly stop TNBC growth at a concentration of 12.5 µg/mL.

In recent years, metal-based biocompatible NPs have attracted scientific interest as they are
cost-effective, eco-friendly, easy to synthesize, and simple to modify and functionalize the surface [261,
262]. Metal NPs possess various applications in the treatment of several diseases, including cancer [263].
Biosynthesized zinc oxide (ZnO) NPs using rutin display higher cytotoxic effect against MCF-7 breast
cancer cells vs. rutin alone [240]. In another study, chitosan functionalized copper oxide (CuO)
nanocomposites were biosynthesized using rutin and exhibited antiproliferative activity, provoking
apoptosis in the human lung cancer cell line A549 [241]. Further mechanistic studies are needed to
confirm the promising effects of rutin-loaded metal NPs in the treatment of cancer.

Fucoidan, a natural sulfated polysaccharide, possesses widespread applications in the treatment of
cancer, inflammatory disease, and bacterial infections [264–266]. Fucoidan is able to form complexes
with different drugs using reactive functional groups to increase their solubility, absorption, and
bioavailability [267,268]. The nanosized rutin-fucoidan complex is biocompatible in normal cells and
provides sustained release of compounds from the mixture at a pH of 5.5. Additionally, the complex
synergistically boosts growth effects, arrests the cell cycle, and enhances apoptosis through ROS
production, mitochondrial potential loss, and DNA fragmentation in HeLa cervical cancer cells [242].
The development of such complex formulations can be considered as a promising solution to
counteract cervical cancer, amongst other cancer types. Rutin-loaded chitosan/poly (acrylic acid)
nanogel enhanced bioavailability of rutin and significantly reinforced antiproliferative, antiangiogenic
(by reducing VEGF), and apoptotic effects (by increasing p53, caspase-3, and Bax as well as mitigating
Bcl-2), indicating potential antitumor activity of the nanoformolation against diethylnitrosamine
(DENA)/carbon tetrachloride (CCl4)-induced hepatocarcinoma in rats [243]. However, both free rutin
and rutin-loaded nanosized polymeric micelles displayed low cytotoxicity in sensitive K562 and
resistant K562/ADR cells [244].

Overall, experimental results demonstrate that the properties of nano drug delivery systems have
been able to overcome pharmacokinetic limitations of rutin, underscoring its promising effects in
chemotherapy. Further research needs to be performed to design surface-modified nanoformulations
of rutin to attain optimized drug delivery systems. Various novel drug delivery systems of rutin and
their effects on improving pharmacokinetic limitations are depicted in Figure 3.
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7. Conclusions

The plant kingdom offers a tremendous source of alternative anticancer drugs. Among natural
entities, rutin, a glycosylated flavonoid, possesses several significant biological activities with the
prevailing evidence now being focused on its anticancer effects. Rutin has been shown to employ
multiple mechanisms to impede cancer initiation and progression by modulating various dysregulated
signaling pathways implicated in inflammation, apoptosis, autophagy, and angiogenesis (Figure 4).
Specifically, the tumor-inhibitory effects of rutin have been shown to be exerted through the regulation
of various signaling pathways, such as PI3K/Akt/mTOR, NF-κB, Nrf2, ERK, p38 MAPK, and JNK.
This bioactive natural agent potentially interferes with several intracellular signaling molecules,
including TNF-α, ILs, LC3/Beclin, Bax, Bcl-2, caspases, and VEGF. In particular, extensive studies
have revealed that rutin targets various therapeutically important molecules, such as p53, Bax, Bcl-2,
caspase-3, caspase-9, NF-κB, Akt, TNF-α, Atg5, Beclin, GSH, and SOD (Figure 5). Several cancer
types, including breast cancer, glioblastoma, prostate cancer, lung adenocarcinoma, gastric cancer,
hepatocellular carcinoma, leukemia, and colon cancer, are impacted by rutin. Most of the current
anticancer evidence of rutin is focused on in vitro models of cancer, with very limited in vivo studies.
Despite various preclinical mechanistic studies on the anticancer effects of rutin, lack of well-designed
randomized clinical trials on the therapeutic activities and safety of rutin escalates the need toward
more clinical investigations. The possible pharmacokinetic limitations of rutin underscore the need for
developing appropriate delivery systems. Additional studies and engineering methods are required to
design surface modified nanostructures of rutin to achieve targeted drug delivery systems against
cancer. A further area of research on novel molecular targets and signaling pathways of rutin, as well
as providing well-controlled clinical trials, will develop its clinical applications in the prevention and
treatment of several cancer types.
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Figure 5. Main molecular targets influenced by rutin in cancer. Akt, protein kinase B; Atg, autophagy-related
gene; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; GSH, glutathione; IKK, IκB kinase;
JNK, Jun N-terminal Kinase; LC, light chain; NF-κB, nuclear factor-κB; ROS, reactive oxygen species;
SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α.



Cancers 2020, 12, 2276 21 of 34

Author Contributions: Conceptualization, Z.N. and M.H.F.; writing—original draft preparation, Z.N., S.F., K.N.,
and M.H.F.; Software, Z.N., and S.F.; writing—review and editing, Z.N., S.F., M.H.F., C.E.W., and A.B; revising,
Z.N., S.F., M.H.F., and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole
genomes. Nature 2020, 578, 82–93. [CrossRef]

2. Chen, Y.; Henson, E.S.; Xiao, W.; Huang, D.; McMillan-Ward, E.M.; Israels, S.J.; Gibson, S.B. Tyrosine kinase
receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy
in hypoxia. Autophagy 2016, 12, 1029–1046. [CrossRef]

3. Fakhri, S.; Abbaszadeh, F.; Jorjani, M.; Pourgholami, M.H. The effects of anticancer medicinal herbs on
vascular endothelial growth factor based on pharmacological aspects: A review study. Nutr. Cancer 2019,
1–15. [CrossRef]

4. Ochwang’i, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal plants
used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151,
1040–1055. [CrossRef]

5. Slattery, M.L.; Herrick, J.S.; Mullany, L.E.; Samowitz, W.S.; Sevens, J.R.; Sakoda, L.; Wolff, R.K.
The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer.
Genes Chromosomes Cancer 2017, 56, 769–787. [CrossRef]

6. Croce, C.M.; Reed, J.C. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res. 2016, 76, 5914–5920.
[CrossRef]

7. Monkkonen, T.; Debnath, J. Inflammatory signaling cascades and autophagy in cancer. Autophagy 2018, 14,
190–198. [CrossRef] [PubMed]

8. Postovit, L.; Widmann, C.; Huang, P.; Gibson, S.B. Harnessing oxidative stress as an innovative target for
cancer therapy. Hindawi 2018. [CrossRef] [PubMed]

9. Mileo, A.M.; Miccadei, S. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic
strategies. Oxid. Med. Cell Longev. 2016, 2016. [CrossRef] [PubMed]

10. Williams, G.H.; Stoeber, K. The cell cycle and cancer. J. Pathol. 2012, 226, 352–364. [CrossRef] [PubMed]
11. Huang, J.; Gao, L.; Li, B.; Liu, C.; Hong, S.; Min, J.; Hong, L. Knockdown of hypoxia-inducible factor 1α

(HIF-1α) promotes autophagy and inhibits Phosphatidylinositol 3-Kinase (PI3K)/AKT/Mammalian target
of rapamycin (mTOR) signaling pathway in ovarian cancer cells. Med. Sci. Monit. 2019, 25, 4250–4263.
[CrossRef] [PubMed]

12. Amani, H.; Ajami, M.; Maleki, S.N.; Pazoki-Toroudi, H.; Daglia, M.; Sokeng, A.J.T.; Di Lorenzo, A.; Nabavi, S.F.;
Devi, K.P.; Nabavi, S.M. Targeting signal transducers and activators of transcription (STAT) in human cancer
by dietary polyphenolic antioxidants. Biochimie 2017, 142, 63–79. [CrossRef] [PubMed]

13. Peluso, I.; Yarla, N.S.; Ambra, R.; Pastore, G.; Perry, G. MAPK signalling pathway in cancers: Olive products
as cancer preventive and therapeutic agents. Semin. Cancer Biol. 2019, 56, 185–195. [CrossRef] [PubMed]

14. Park, M.H.; Hong, J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches.
Cells 2016, 5, 15. [CrossRef] [PubMed]

15. Atsaves, V.; Leventaki, V.; Rassidakis, G.Z.; Claret, F.X. AP-1 transcription factors as regulators of immune
responses in cancer. Cancers 2019, 11, 1037. [CrossRef]

16. Marelli, G.; Sica, A.; Vannucci, L.; Allavena, P. Inflammation as target in cancer therapy. Curr. Opin. Pharmacol.
2017, 35, 57–65. [CrossRef]

17. Mohammadi, M.; Jaafari, M.; Mirzaei, H.; Mirzaei, H. Mesenchymal stem cell: A new horizon in cancer gene
therapy. Cancer Gene Ther. 2016, 23, 285–286. [CrossRef]

18. Fujishiro, T.; Nonoguchi, N.; Pavliukov, M.; Ohmura, N.; Kawabata, S.; Park, Y.; Kajimoto, Y.; Ishikawa, T.;
Nakano, I.; Kuroiwa, T. 5-Aminolevulinic acid-mediated photodynamic therapy can target human glioma
stem-like cells refractory to antineoplastic agents. Photodiagnosis Photodyn. Ther. 2018, 24, 58–68. [CrossRef]

http://dx.doi.org/10.1038/s41586-020-1969-6
http://dx.doi.org/10.1080/15548627.2016.1164357
http://dx.doi.org/10.1080/01635581.2019.1673451
http://dx.doi.org/10.1016/j.jep.2013.11.051
http://dx.doi.org/10.1002/gcc.22481
http://dx.doi.org/10.1158/0008-5472.CAN-16-1248
http://dx.doi.org/10.1080/15548627.2017.1345412
http://www.ncbi.nlm.nih.gov/pubmed/28813180
http://dx.doi.org/10.1155/2018/6135739
http://www.ncbi.nlm.nih.gov/pubmed/29977457
http://dx.doi.org/10.1155/2016/6475624
http://www.ncbi.nlm.nih.gov/pubmed/26649142
http://dx.doi.org/10.1002/path.3022
http://www.ncbi.nlm.nih.gov/pubmed/21990031
http://dx.doi.org/10.12659/MSM.915730
http://www.ncbi.nlm.nih.gov/pubmed/31175269
http://dx.doi.org/10.1016/j.biochi.2017.08.007
http://www.ncbi.nlm.nih.gov/pubmed/28807562
http://dx.doi.org/10.1016/j.semcancer.2017.09.002
http://www.ncbi.nlm.nih.gov/pubmed/28912082
http://dx.doi.org/10.3390/cells5020015
http://www.ncbi.nlm.nih.gov/pubmed/27043634
http://dx.doi.org/10.3390/cancers11071037
http://dx.doi.org/10.1016/j.coph.2017.05.007
http://dx.doi.org/10.1038/cgt.2016.35
http://dx.doi.org/10.1016/j.pdpdt.2018.07.004


Cancers 2020, 12, 2276 22 of 34

19. Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.;
Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical
perspective. Int. J. Nanomed. 2017, 12, 2689. [CrossRef]

20. Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic
and chemopreventive agents. Med. Princ. Pract. 2016, 25, 41–59. [CrossRef]

21. Castillo, R.R.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica-based nanocarriers for co-delivery
and combination therapy against cancer. Expert Opin. Drug Deliv. 2017, 14, 229–243. [CrossRef]

22. Khurana, R.K.; Jain, A.; Jain, A.; Sharma, T.; Singh, B.; Kesharwani, P. Administration of antioxidants in
cancer: Debate of the decade. Drug Discov. Today 2018, 23, 763–770. [CrossRef] [PubMed]

23. Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise.
Semin. Cancer Biol. 2016, 40–41, 1–3. [CrossRef] [PubMed]

24. Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A. Multi-targeted agents in cancer cell
chemosensitization: What we learnt from curcumin thus far. Recent Pat. Anticancer Drug Discov. 2016, 11,
67–97. [CrossRef] [PubMed]

25. Korkina, L.; De Luca, C.; Kostyuk, V.; Pastore, S. Plant polyphenols and tumors: From mechanisms to
therapies, prevention, and protection against toxicity of anti-cancer treatments. Curr. Med. Chem. 2009, 16,
3943–3965. [CrossRef] [PubMed]

26. Fakhri, S.; Khodamorady, M.; Naseri, M.; Farzaei, M.H.; Khan, H. The ameliorating effects of anthocyanins
on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol. Res. 2020, 159, 104895.
[CrossRef] [PubMed]

27. Braicu, C.; Zanoaga, O.; Zimta, A.-A.; Tigu, A.B.; Kilpatrick, K.L.; Bishayee, A.; Nabavi, S.M.;
Berindan-Neagoe, I. Natural compounds modulate the crosstalk between apoptosis-and autophagy-regulated
signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin. Cancer Biol. 2020, in press.
[CrossRef]

28. Satari, A.; Amini, S.A.; Raeisi, E.; Lemoigne, Y.; Heidarian, E. Synergetic impact of combined 5-fluorouracil
and rutin on apoptosis in PC3 cancer cells through the modulation of P53 gene expression. Adv. Pharm. Bull.
2019, 9, 462. [CrossRef]

29. ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin inhibits proliferation,
attenuates superoxide production and decreases adhesion and migration of human cancerous cells.
Biomed. Pharmacother. 2016, 84, 1972–1978. [CrossRef]

30. Song, H.-l.; Zhang, X.; Wang, W.-z.; Liu, R.-h.; Zhao, K.; Liu, M.-y.; Gong, W.-m.; Ning, B. Neuroprotective
mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of
p38 mitogen activated protein kinase pathway. Neural Regen Res. 2018, 13, 128.

31. Gautam, R.; Singh, M.; Gautam, S.; Rawat, J.K.; Saraf, S.A.; Kaithwas, G. Rutin attenuates intestinal toxicity
induced by Methotrexate linked with anti-oxidative and anti-inflammatory effects. BMC Complement.
Altern. Med. 2016, 16, 99. [CrossRef] [PubMed]

32. Yang, C.-Y.; Hsiu, S.-L.; Wen, K.-C.; Lin, S.-P.; Tsai, S.-Y. Bioavailability and metabolic pharmacokinetics of
rutin and quercetin in rats. J. Food Drug Anal. 2005, 13. [CrossRef]

33. Zheng, Y.; Zhao, Z.; Fan, L.; Meng, S.; Song, C.; Qiu, L.; Xu, P.; Chen, J. Dietary supplementation with rutin has
pro-/anti-inflammatory effects in the liver of juvenile GIFT tilapia, Oreochromis niloticus. Fish. Shellfish Immunol.
2017, 64, 49–55. [CrossRef] [PubMed]

34. Khajevand-Khazaei, M.-R.; Mohseni-Moghaddam, P.; Hosseini, M.; Gholami, L.; Baluchnejadmojarad, T.;
Roghani, M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via
suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur. J. Pharmacol. 2018, 833,
307–313. [CrossRef]

35. Prasad, R.; Prasad, S.B. A review on the chemistry and biological properties of Rutin, a promising nutraceutical
agent. Asian J. Pharm. Pharmacol. 2019, 5, 1–20. [CrossRef]

36. Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi. Pharm. J. 2017, 25, 149–164.
[CrossRef]

37. Perk, A.A.; Shatynska-Mytsyk, I.; Gerçek, Y.C.; Boztaş, K.; Yazgan, M.; Fayyaz, S.; Farooqi, A.A. Rutin mediated
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