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Abstract
The transmembrane protease serine 2 (TMPRSS2) is a membrane anchored protease that primarily expressed by epithelial 
cells of respiratory and gastrointestinal systems and has been linked to multiple pathological processes in humans includ-
ing tumor growth, metastasis and viral infections. Recent studies have shown that TMPRSS2 expressed on cell surface of 
host cells could play a crucial role in activation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike 
protein which facilitates the rapid early entry of the virus into host cells. In addition, direct suppression of TMPRSS2 using 
small drug inhibitors has been demonstrated to be effective in decreasing SARS-CoV-2 infection in vitro, which presents 
TMPRSS2 protease as a potential therapeutic strategy for SARS-CoV-2 infection. Recently, SARS-CoV-2 has been shown 
to be capable of infecting gastrointestinal enterocytes and to provoke gastrointestinal disorders in patients with COVID-19 
disease, which is considered as a new transmission route and target organ of SARS-CoV-2. In this review, we highlight the 
biochemical properties of TMPRSS2 protease and discuss the potential targeting of TMPRSS2 by inhibitors to prevent the 
SARS-CoV-2 spreading through gastro-intestinal tract system as well as the hurdles that need to be overcome.
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Background

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the cause of current pandemic coronavirus disease 
2019 (COVID-19). The virus is primarily thought to infect 
the lungs to provoke severe acute respiratory syndrome. 
However, recent reports have suggested that the virus could 
infect other organs such as gastrointestinal tract, kidneys and 
liver [1–3].

The SARS-CoV-2 entry mechanism in host cells is medi-
ated by two main pathways which involved two key proteins 
located on the surface of epithelia of the lung and small 
intestine. The first pathway is occurred by engagement of 

SARS-CoV-2 spike (S) glycoprotein with angiotensin con-
verting enzyme II (ACE2), whereas the second is induced 
by the transmembrane protease serine 2 (TMPRSS2) pro-
tease that cleaves the (S) glycoprotein of SARS-CoV-2 to 
generate unlocked fusion- catalyzing form of the virus and 
facilitates its entry to host cells via direct fusion of the viral 
and plasma membrane leading to release of the viral ssRNA 
into the cytoplasm [4].

Recent reports have shown that SARS-CoV-2 could 
potentially infect enterocytes of gastrointestinal tract in 
humans [5]. Indeed, several clinical studies have demon-
strated gastrointestinal manifestations including diarrhea, 
vomiting and abdominal pain in patients infected with 
SARS-CoV-2 [6–8]. In this review, we shed some light on 
the biochemical properties of TMPRSS2 protease and the 
potential use of therapeutics to specifically target TMPRSS2 
and block its function to abrogate the entry of SARS-CoV-2 
into enterocytes of gastrointestinal system.
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Biochemistry of TMPRSS2 protease

The transmembrane protease serine 2 (TMPRSS2) is a 
member of Hepsin/TMPRSS subfamily of type II trans-
membrane serine proteases (TTSP) which also includes 
TMPRSS1 (Hepsin), TMPRSS3, TMPRSS4, TMPRSS5 
(Spinesin) and TMPRSS13 [Mosaic serine protease large 
form (MSPL)] [9]. TMPRSS2 is thought to play a key 
role in prostate epithelial cell biology, and its prominent 
association with prostate carcinogenesis has led to the pro-
posal that it may be a therapeutic or diagnostic marker for 
prostate cancer [10].

The gene encoding TMPRSS2 resides at chromosome 
21, and has 15 exons and an open reading frame of 492 
amino acids [11]. TMPRSS2 gene expression has been 
shown to be positively regulated by androgen hormone in 
prostate cancer cells, where the expression of TMPRSS2 
gene was significantly reduced during androgen depriva-
tion [10]. Later studies conducted to understand mecha-
nisms behind the androgen regulation of the TMPRSS2 
gene expression have identified key androgen receptor 
binding sites (ARBS) at ~ 13 Kb upstream of the TMPRSS2 
gene transcription start site [12].

TMPRSS2 protein is ~ 70 kDa and comprises several 
domains (Fig. 1): an N-terminal intracellular cytoplasmic 
domain (amino acid residues 1–84), a transmembrane 
region (residues 85–105), and a C-terminal extracellu-
lar region (residues of 106–492) that contains an LDL 
receptor class A- like domain (it represents a binding site 
for calcium), a scavenger receptor cysteine-rich (SRCR) 
domain (involved in binding to extracellular molecules), 
and a serine protease domain that cleaves at arginine (Arg) 

or lysine (Lys) (residues 256–489) [9, 13]. The 70 kDa 
TMPRSS2 is made as a precursor protein (zymogen) 
which has been shown to undergo autoproteolytic activa-
tion in prostate cancer cells [14]. The protease domain of 
TMPRSS2 belongs to the S1 family of serine proteases 
that cleave at Arg or Lys residues, and it shares a high 
degree of amino acid sequence identity with other mem-
bers of TTSP, in particular, the histidine, aspartate, and 
serine residues which are necessary for catalytic activ-
ity [15]. Furthermore, the protein sequence of TMPRSS2 
reveals that it has three Arg residues (Arg240, Arg252, 
and Arg255) near the N-terminus of the protease domain 
of TMPRSS2 [14]. Previous experiments performed using 
site-directed mutagenesis showed that an autoproteolytic 
cleavage of TMPRSS2 could occur primarily at Arg-255 
and resulted in the release of the protease domain (32 kDa) 
to extracellular space [14]. However, the autocleavage pro-
cess of TMPRSS2 has not been reported in other tissues 
than prostate cancer cells, and whether the mechanism is 
tissue specific or it is generally required for TMPRSS2 
activation in various tissues still to be defined.

TMPRSS2 mediates entry of SARS‑CoV‑2 
into human cells

TMPRSS2 protease activity is currently considered as a key 
mechanism for SARS corona virus entry and pathogenesis 
in host cells [16, 17]. Indeed, it has been demonstrated that 
TMPRSS2 cleaves the coronavirus (S) glycoprotein to gen-
erate unlocked, fusion-catalyzing forms of the (S) glyco-
protein at the cell surface of host cells which facilitate rapid 
entry of the virus into cells [18]. Also, Yoshikawa and his 

Fig. 1   Structural domains of 
TMPRSS2 protein. A linear 
map of structural domains of 
TMPRSS2 protein. The C-ter-
minus (COOH end) contains the 
key domains; serine protease 
domain, required for cleavage 
of the virus (S) protein, and 
the scavenger receptor cysteine 
rich domain and LDL class A 
like receptor which are required 
for binding to extracellular 
molecules and calcium binding, 
subsequently. It also contains a 
transmembrane domain (TM) 
for membrane anchoring and an 
intracellular N-terminus (NH2 
end) cytoplasmic tail for appro-
priate intracellular trafficking. 
The figure was created using 
BioRender.com
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colleagues have used TMPRSS2-knockout (KO) mice which 
experimentally infected with SARS-CoV and MERS-CoV, 
and their results suggested that the lack of TMPRSS2 in the 
respiratory airways reduced the severity of lung immuno-
pathology after infection by SARS-CoV and MERS-CoV 
[19]. Just recently, it has been shown that the TMPRSS2-
expressing kidney epithelial cell line (VeroE6) was highly 
susceptible to SARS-CoV-2 infection [20], indicating that 
the TMPRSS2 protease activates the viral (S) glycoprotein 
for direct membrane fusion mechanism and is crucial for 
virus entry into host cells.

On the other hand, it is widely accepted that the human 
angiotensin converting enzyme II (ACE2) is involved in 
SARS-CoV-2 binding and entry into human target cells [21]. 
Briefly, the receptor-binding domain (RBD) of the SARS (S) 
glycoprotein binds to the tip of subdomain I of ACE2 [22], 
which then induced endocytosis of the virus that ends up in 
endosomal compartments, where an increase in H + influx 
into the endosome activates cathepsin L enzymes which 
activate viral (S) glycoprotein and facilitate viral membrane 
fusion and release of ssRNA out of the endosome [4].

It has been suggested that TMPRSS2 may also play a 
role in ACE2-mediated entry of SARS-CoV. Indeed, Heu-
rich and his colleagues have shown that the co-expression 
of TMPRSS2 and ACE2 in 293T cells resulted in cleav-
age of ACE2 with a generated C-terminal ACE2 fragment 
of ~ 13 kDa which can be detectable in cell lysates, and the 
cleavage of ACE2 by TMPRSS2 resulted in augmented 
SARS-CoV entry into host cells [18]. Interestingly, SARS-
CoV (S) glycoprotein binding to ACE2 could also induce 
cleavage of ACE2 by TMPRSS2, and it has been suggested 
that the SARS-CoV (S)-mediated shedding of ACE2 may 
increase the cellular uptake mechanism of virus particles by 
endocytosis [18, 23].

In conclusion, upon SARS-CoV-2 binding to the cell 
surface of a host cell, TMPRSS2 could induce viral entry 
into the cell by two proposed mechanisms; firstly by direct 
SARS-(S) glycoprotein cleavage, which activates the (S) 
glycoprotein for membrane fusion. Secondly by cleavage of 
ACE2, which then augments viral uptake through the recep-
tor mediated endocytosis/cathepsin L-dependent pathway 
(Fig. 2).

Fig. 2   TMPRSS2 mediated entry of SARS-CoV-2 into host cells. 
Upon SARS-CoV-2 binding to the cell surface, TMPRSS2 could 
potentially activate the virus entry into host cells by at least two 
main pathways. (Left) TMPRSS2 on the host cell surface mediates 
the proteolytic cleavage of the viral (S) protein which induces direct 
fusion of the viral and plasma membrane leading to release of the 
viral ssRNA into the cytoplasm. (Right) Alternatively, TMPRSS2 

may cooperate with host cell receptor ACE2 in activation of SARS-
CoV-2 (S) protein which then stimulates receptor mediated endocy-
tosis, subsequently SARS-CoV-2 ends in endosomal compartments, 
where a decrease in endosomal pH stimulates cathepsin L enzymes 
which further cleave and activate viral (S) glycoprotein and facilitate 
the release of the viral ssRNA into the cytosol. The figure was created 
using BioRender.com
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TMPRSS2 and SARS‑CoV‑2 infection 
of gastrointestinal tract system

Having that both ACE2 and TMPRSS2 are highly 
expressed in the gastro-intestinal tract (GIT), in particular 
by intestinal epithelial cells, which makes this region as 
a target for many enteric viruses including SARS-CoV-2. 
Indeed, SARS-CoV-2 could potentially infect the GIT sys-
tem in humans [5]. In fact, it has been reported that some 
patients infected with SARS-CoV-2 have demonstrated 
gastrointestinal manifestations such as diarrhea, vomit-
ing and abdominal pain [6, 7, 24]. Additionally, in the 
first case of COVID-19 infection confirmed in the United 
States, Holshue et al., 2020 have shown the detection of 
SARS-CoV-2 RNA in a stool specimen collected from the 
patient on day 7 of the patient’s illness [25]. In a recent 
study conducted on 73 hospitalized patients infected with 
SARS-CoV-2 in China, it has been reported that about 
half of the patients tested positive for SARS-CoV-2 RNA 
in stool samples [2]. Also, in the same study, using immu-
nofluorescent microscopy imaging technique, Xiao and 
his colleagues have shown that ACE2 protein was abun-
dantly expressed in the glandular cells of gastric, duode-
nal, and rectal epithelia of a hospitalized patient infected 
with SARS-CoV-2 [2], which further supports the entry 
of SARS-CoV-2 into host GIT cells.

In another study, Lee et al., have utilized the human 
intestinal cell line (C2BBe1), characterized by high lev-
els of TMPRSS2 and ACE2, to study the role of ACE2 
and TMPRSS2 in SARS-CoV-2 infection of GI tract. The 
authors found that the cells demonstrated persistent infec-
tion with SARS-CoV-2 and robust viral propagation [26]. 
It’s noteworthy to mention that the C2BBe1 cells are brush 
border expressing cells with microvilli resembling the 
brush border of human intestinal epithelia [26].

On the other hand, Zang and colleagues have shown that 
TMPRSS2 and TMPRSS4 serine proteases could facilitate 
the SARS-CoV-2 infection of human duodenum enteroids, 
isolated from human subjects and cultured in vitro, by induc-
ing cleavage of the (S) glycoprotein and enhancing mem-
brane fusion [27]. Also, they showed that human intestinal 
epithelial cells were predominantly infected by SARS-
CoV-2 from the apical surface compared to the basolateral 
side [27]. Moreover, the co-expression of TMPRSS2 with 
ACE2 resulted in enhanced infectivity of SARS-CoV-2 
in HEK293 cells [27]. Strikingly, recent studies have 
found high degree of co-expression correlation between 
ACE2 and TMPRSS2 in different human tissues, including 
salivary and thyroid glands, kidney, gallbladder, colon duo-
denum, small intestine [28] and lung tissues [29].

To sum up, there are several evidences coming from 
different research labs and clinical studies which claim 

the potential capability of SARS-CoV-2 to infect the 
GIT by a specific mechanism, and it seems that ACE2 
and TMPRSS2 are main players in this mechanism. But, 
how could SARS-CoV-2 provoke GIT disorders is still 
to be elucidated, it could be the binding of the virus on 
the apical surface of intestinal enterocytes mediated by 
ACE2-TMPRSS2 system may cause a deregulation of 
the sodium dependent transmembrane transporters such 
as Na + /H + exchangers (NHEs) and sodium-glucose 
transport protein (SGLT1) located along the intestine that 
results in GIT manifestations such as diarrhea and abdomi-
nal pain [30, 31]. However, further research is necessary 
to validate such hypothesis.

Targeting of TMPRSS2 to prevent 
SARS‑CoV‑2 entry to GI tract enterocytes—
potential drugs

Inhibition of TMPRSS2 could prevent SARS-CoV-2 entry 
into human lung cells and hence the viral respiratory infec-
tion. Indeed, it has been found that knocking-out of mouse 
tmprss2 gene protected against SARS-CoV infection [19]. 
Although multiple types of research investigated the influ-
ence of inhibiting TMPRSS2 on SARS-CoV-2 infection 
in the lung [32, 33], still there are no reported studies to 
show clearly the effect of targeting TMPRSS2 on the SARS-
CoV-2 mediated GIT infection. However, it has been sug-
gested that targeting of TMPRSS2 and TMPRSS4 could 
be potentially used to reduce the GIT infection induced by 
SARS-CoV-2 virus [27].

Generally, most of drugs available against TMPRSS2 can 
be classified into two main categories: drugs that inhibit 
TMPRSS2 activity by either direct chemical interaction 
between the drug inhibitor and TMPRSS [34] or down 
regulate the mRNA expression of the TMPRSS2 gene [35]. 
Drugs that showed inhibitory activity against TMPRSS2 
and are used currently as mucolytic, anti-inflammatory, 
and anticoagulant drugs. For example, bromhexine and 
its potent metabolite ambroxol are used clinically to sup-
press excess pulmonary mucosal secretions and hence sup-
press the productive cough [36]. Bromhexine and ambroxol 
reduce the secretion of inflammatory mediators, such as 
interleukins and tumor necrosis factor-alpha (TNF-α), 
therefore bromhexine and ambroxol have an anti-inflam-
matory effect [37]. Additionally, ambroxol was found to 
suppress the proliferation of influenza virus in mouse lungs 
[38]. Interestingly, bromhexine has been demonstrated to 
inhibit TMPRSS2 using both in vitro and in vivo methods 
[39], indicating that the drug could be utilized as protec-
tive agents against SARS-CoV-2 infection. Just recently, 
it has been shown that bromhexine reduced clinically the 
SARS-CoV-2 infection in a clinical trial conducted in Iran 
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[40]. Notably, the drug significantly reduced the intensive 
care unit (ICU) transfer, intubation, and the mortality rate 
in patients with COVID-19 [38]. However, it was observed 
elsewhere that both bromhexine and ambroxol can cause 
a GIT disturbance, such as nausea, vomiting, and diarrhea 
[41]. Unfortunately, these unwanted side effects of bromhex-
ine and ambroxol may worse the clinical symptoms among 
SARS-CoV-2 infected patients, who may be already suffer 
from GIT problems [42].

Aprotinin, camostat, and nafamostat are anti-coagulant 
drugs that used clinically in the treatment of thrombotic 
diseases [43, 44]. In fact, camostat is used in Japan for 
treatment of pancreatitis [45]. These drugs inhibit plasmin, 
kallikrein, and thrombin and also have anti-inflammatory 
activity through reducing the levels of interleukin-6, inter-
leukin-8 and TNF-α [46, 47].

Strikingly, in a recent study using in silico methods, 
it has been pointed out that aprotinin can inhibit the ser-
ine protease activity of TMPRSS2 [48]. Also, it has been 
reported that aprotinin inhibited the replication of SARS-
CoV-2 in non-small-cell lung cancer (Clu-3) and colon car-
cinoma (Caco2) cells and primary bronchial epithelial cells 
[49]. Additionally, aprotinin decreased the rate of mortality 
caused by influenza infection using in vivo mouse models 
[50]. In fact, aprotinin is used clinically, in Russia, for treat-
ment of mild to moderate influenza [50]. Since TMPRSS2 
plays a major role in the entry of both influenza and SARS-
CoV-2 virus, it can be speculated that aprotinin can protect 
clinically against SARS-CoV-2 infection by inhibiting the 
activity of TMPRSS2.

On the other hand, camostat and nafamostat can inhibit 
TMPRSS2 through chemical interaction with Asp435, 
Ser441, and His296 residues which are essential for proper 
protease activity of TMPRSS2 protein [51]. Also, the com-
pounds were shown to reduce the rate of SARS-CoV-2 entry 
into Calu-3 lung cells, simian kidney Vero E6 cells, and 
cervical cancer HeLa cells [17]. Furthermore, it was found 
that nafamostat inhibited MERS-CoV (S) protein-mediated 
viral entry to the lung cells [52], which shares similar serine 
protease activity with the SARS-CoV-2 virus. Notably, both 
camostat and nafamostat drugs have mild to moderate distur-
bance to the gastro-intestinal tract [53]. Making these drugs 
as promising candidates to prevent SARS-CoV-2 infection 
of GIT system. However, camostat is considered relatively 
safer than nafamostat, which may cause agranulocytosis, 
hyperkalemia, anaphylaxis, and cardiac arrest [54, 55].

Searching for natural and safer drugs, Roomi and Khan, 
used in silico methods for discovering potential natural com-
pounds that can inhibit TMPRSS2 [48]. They found sev-
eral natural compounds, such as salannin, deacetylsalannin, 
nimbolin, nobiletin, pinostrobin, sakuranetin, umuhengerin 
and eucalyptin, which bind with variable affinity to different 
amino acid residues in TMPRSS2 protein. However, further 

in vitro and in vivo experiments are needed to confirm these 
in silico findings.

On the other side, it can be proposed that drugs that down-
regulate TMRPSS2 expression may be useful in decreasing 
SARS-CoV-2 entry and infection, compared with drugs that 
up-regulate TMRPSS2 expression may exacerbate SARS-
CoV-2 infection. It is found that sexual hormones modulate 
the expression of TMPRSS2 gene [56]. Usually, the sexual 
hormones are prescribed clinically in the treatment of hor-
monal disturbance, hypogonadism, and as contraceptives 
[57]. Besides, athletes used to take androgenic drugs, such 
as oxandrolone for performance enhancement [58]. It was 
found that estradiol, genistein and phytoestrogen could down 
regulate TMPRSS2 mRNA expression [59]. These drugs 
act by modulating the nuclear estrogen receptor expression. 
Additionally, it has been shown that the androgen recep-
tor antagonist enzalutamide down regulated significantly 
the mRNA expression of the TMPRSS2 gene [59]. On the 
other hand, testosterone, synthetic androgens, and estrogen 
receptor antagonist fulvestrant up-regulated significantly the 
mRNA expression of the TMPRSS2 gene [59]. Moreover, 
Chu et al., have demonstrated that androgen receptor (AR) 
negative prostate cancer (PCa) cells showed hypermethyla-
tion and low expression levels of TMPRSS2 gene, compared 
to AR-positive prostate cells which displayed hypomethyla-
tion and low expression levels of TMPRSS2 gene [35]. Inter-
estingly, treatment of the AR-negative prostate cells with the 
5-Aza-2ʹ-deoxycytidine (an inhibitor of DNA methylation) 
reversed the low expression levels of TMPRSS2 [35]. The 
authors found that the activation of nuclear androgen recep-
tor reduced epigenetically the methylation of TMPRSS2 
gene which lead to an increase in TMPRSS2 mRNA expres-
sion [35]. In another study, it was also observed through 
analyzing human post-mortem lung tissues that the level of 
TMPRSS2 mRNA expression is inversely correlated with 
estrogen treatment [59]. Indicating that estrogen treatment 
may reduce the expression of TMPRSS2 and consequently 
inhibit the entry of the virus into cells. Interestingly, emerg-
ing global data shows that men appear to be at higher risk 
of SARS-CoV-2 infection and mortality than women [60, 
61]. Thus, we think that sex hormones including estrogen 
and androgen may play a role in COVID-19 disease by at 
least the regulation of TMPRSS2 expression and subsequent 
effect on virus entry mechanism into host cells.

Conclusion

The recent findings of potential GIT infection by SARS-
CoV-2 has opened a new door for potential fecal-oral 
transmission route of the virus and for developing new 
strategies to prevent the transmission of the virus, as 
well as finding new therapeutics for COVID-19 disease. 
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The identification of compounds that specifically targets 
TMPRSS2 and selectively partition into the gastroin-
testinal tract would be of high interest given the recent 
evidences demonstrating the key mechanism of the virus 
entry mediated by TMPRSS2 localized in this region that 
can impact SARS-CoV-2 disease. There are many of prom-
ising potential drugs available that have been described 
in the literature with capability to inhibit TMPRSS2 
(Table 1) either by direct inhibition of the enzyme such 
as bromhexine, ambroxol, camostat and nafamostate, or 
by deregulation of TMPRSS2 gene expression including 
enzalutamide, estradiol and genistein. However, there are 
issues and challenges before using these drugs clinically 
that need to be considered carefully such as safety and 
bioavailability of the drugs, as well as using of proper 
delivery methods to deliver the drugs successfully to spe-
cific target regions.
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