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From 2010 to 2019, there has been a dramatic growth in 
public awareness and research on concussion and the risk 
for short- and long-term sequelae among athletes. More 

recently, researchers have increased their focus on examining 
head impact exposure and the potential risks of repeat or 

subconcussive head impacts among this population.9,15,17,18 
Athletes who participate in contact or collision sports, such as 
American football, ice hockey, lacrosse, and soccer, are at 
increased risk for head impacts and are the focus of most 
investigations of head impact exposures.13,35,37,45 Examining 
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head impacts among athletes is critical to evaluating strategies 
to minimize head injuries.

Data on head impact exposure are generally obtained through 
sensor technologies (such as those placed on helmets or in 
mouthguards and skin patches) that have been validated for this 
purpose.11,43 While sensor technologies vary, most are designed 
to collect number, magnitude, and location of impacts. Using 
helmet sensors, data from past studies demonstrate that as 
youth athletes increase in age, the number of impacts and 
magnitude of linear acceleration per athlete also increases 
(Table 1).8,9,15,17,18,41,52,54

While head impacts may or may not result in clinical signs and 
symptoms, previous studies examining youth, high school, and 
college athletes explored the association between head impact 
exposure and the risk for physiological, cognitive, and 
behavioral sequelae. Studies using neuroimaging, such as 
functional magnetic resonance imaging and diffusion tensor 
imaging, observed potential changes among high school 
football players over the course of a single football season. They 
recorded increased cognitive deficits, changes in white matter 
diffusivity measures, and neurological injury as compared with 
a preseason baseline.2,34,50 These changes occurred in the 
absence of identified concussions. However, 2 studies that used 
tests to assess balance, oculomotor performance, reaction time, 
and self-reported concussion symptoms to evaluate for changes 
in performance immediately after the football season did not 
demonstrate changes from baseline measures.38,41 If sustained 
repeatedly, head impacts may lead to pathological changes over 
time that are linked to cognitive and behavioral sequelae.3,30,40,45 

Still, why some athletes experience health effects after long-term 
exposure to repeat or subconcussive head impacts and others 
do not is currently unclear. Duration of exposure of repeated 
head impacts is one area of study. Montenigro et al39 found that 
the more an athlete was athletes were exposed to repeat head 
impacts (that resulted in concussive and nonconcussive events) 
during their athlete career, the greater their risk for cognitive 
impairment, self-reported executive dysfunction, depression, 
apathy, and behavioral dysregulation later in life. Moreover, 
Alosco et al1 found that professional football players who 
started playing the sport prior to age 12 years had an increased 
risk for cognitive impairments (specifically neuropsychiatric and 
problems of executive function) as adults, suggesting that 
negative outcomes may not manifest until later in life. 
Conversely, a study by Brett et al6 found no associations 
between playing football before age 12 years and clinical 
outcomes. Researchers also posit that biological, environmental, 
or lifestyle factors may increase an athlete’s risk for adverse 
health outcomes, such as chronic traumatic encephalopathy, 
later in life.22,23 However, more research is needed to better 
understand the role of these risk factors on health outcomes 
after long-term exposure to head impacts while playing football 
and other sports.

Each year, approximately 1 million high school students42 and 
1.8 million children aged 6 to 12 years play American football,51 
making it one of the most popular sports played by children 
and adolescents in the United States. To minimize the incidence 
of concussion, as well as other head and brain injuries, some 
football programs have implemented interventions aimed at 

Table 1. Head impacts metrics from past tackle football studies,a United States

Authors Age (Years)

Season

Number of Impacts Linear Acceleration Rotational Acceleration

Impacts Across 
the Seasonb

Median (50%) 95% Median (50%) 95%

Daniel et al (2012)17 
and Young et al 
(2014)54

7-8 Mean: 107-161 15-16 38-40 671-686 2052-2347

Cobb et al (2013)15 9-12 Mean: 240 18 43 856 2034

Munce et al (2015)41 11-13 Median: 252 20 57 1407 3929

Daniel et al (2014)18 12-14 Mean: 275 22 54 954 2525

Urban et al (2013),52 
Broglio et al 
(2011),8 and Broglio 
et al (2016)9

14-18 Median: 340-626 22 58-61 973 2481-2729

aThe metrics from these studies are all from the Head Impact Telemetry system (Simbex).
bThis metric represents mean and median values.
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reducing an athlete’s exposure to head impacts. These 
interventions focus primarily on tackling—the activity associated 
with the highest risk for concussion.33 Examples of interventions 
include contact restrictions that limit the amount of tackling 
during practices and modified tackling techniques (such as 
shoulder-style tackling).16 In its statement on Tackling in Youth 
Football in 2015, the American Academy of Pediatrics 
recommended noncontact or flag football programs for young 
athletes who want to play football but are concerned about the 
potential risks for injury.16

Often promoted as a safer alternative to tackle football, there 
has been an increase in flag football participation in recent 
years.51 However, examinations of head impact exposures and 
injury risk in flag football programs are currently limited. To 
assess injury rates between youth flag and tackle athletes, 
Peterson et al44 examined injury data from athletes in 1 flag and 
2 tackle football leagues; the overall injury rate for flag football 
leagues exceeded that of tackle leagues, but no differences 
were found for rates of concussion. The only study to examine 
head impact exposure in tackle and flag football compared 
head impact exposure between 25 tackle and 25 flag youth 
football athletes over the course of the season.32 They found 
that tackle football athletes experienced more than 4 times the 
number of head impacts (>14g) per athletic exposure (AE; ie, 
game or practice) compared with flag athletes, and flag athletes 
had reduced odds of experiencing an impact greater than 20g.32

Previous studies examining head impact exposure among 
tackle and/or flag football athletes have had small sample sizes 
and generally were confined to a narrow, typically older, age 
range. Improved understanding of the head impact burden 
among both youth tackle and flag football athletes may inform 
interventions being used by football programs and to further 
promote athlete safety. Our current study seeks to expand on 
existing knowledge by examining head impact exposure among 
a large sample of children aged 6 to 14 years who participated 
in a flag or tackle football league.

Methods
Participants

Institutional review board approval was obtained from the New 
England Independent Review Board. Head impact data were 
collected from 524 male tackle and flag youth football athletes 
(477 tackle and 47 flag athletes) from 36 youth tackle football 
and 6 youth flag football teams in New York (Table 2). Data 
were collected over the course of the tackle (fall 2017) and flag 
(spring 2018) football seasons. Youth tackle football athletes 
were aged 6 to 14 years and flag football athletes were aged 7 
to 14 years. Both football leagues had 4 age-based divisions. For 
tackle football athletes, there were 8 games and an estimated 
average of 19 practices during the regular season (since no 
attendance data were collected for these athletes and there was 
no information on when practices occurred, this number was 
estimated based on the impact data). For flag football athletes, 
there were 7 games and an average of 6 practices during the 

regular season. A randomized controlled trial was implemented 
for the tackle football teams, examining differences between 2 
tackling techniques and the use of robotic dummies. However, 
there were no differences in the number of head impacts 
(median [interquartile range (IQR)]

control
 = 374.50 [111.75-609.25]; 

median [IQR]
treatment

 = 385.00 [154.00-567.00]) or median linear 
acceleration (median [IQR]

control
 = 18.08g [14.32g-26.20g]; median 

[IQR]
treatment

 = 18.53 [14.51-27.28]) between the conditions, and 
so data were combined. Teams that agreed to participate in the 
study worked with the study team to obtain informed consent 
from the athletes’ parents and assent from the athletes.

Mouthguards

Youth football athletes were equipped with the Vector 
MouthGuard (manufactured by Athlete Intelligence). The 
mouthguard measured magnitude of head acceleration and was 
optimized for impacts between 10g and 200g. As flag football 
athletes in this study did not wear helmets, mouthguards 
allowed for the assessment of head impacts using a consistent 
method. The mouthguard was fitted for each athlete’s bite 
through a standard boil-and-bite process for a secure custom fit. 
The mouthguard used a triaxial accelerometer to measure peak 
linear acceleration and a triaxial angular rate gyroscope to 
measure peak rotational kinematics.11 Data acquisition was 
triggered when the sensor measured 3 consecutive samples 
greater than 10g in any axis. When triggered, the 
instrumentation stored 16 ms of pretrigger and 80 ms of 
posttrigger data on the mouthguard’s memory chip. Coaches or 
their designee uploaded the data using Athlete Intelligence’s 
sideline receiver and base station (product #350-00003). To 
determine impact (total = 186,239) versus nonimpact (total = 
1,405,808) events, events were classified 2 ways. First, to reduce 
the likelihood of false-positive impacts, a capacitive in-mouth 
sensor determined when the mouthguard was present in the 
mouth. Thus, impacts that occurred outside an athlete’s mouth 
were removed. Second, a support vector machine classifier  
was used to reject nonimpact events, such as chewing, 
clenching, and drinking. From previous studies, the sensor  
has been shown to have high validity compared with an 
anthropomorphic test device and is consistent with what is seen 
in another mouthguard sensor and helmet sensors.4,11,21,25,46 For 
example, peak linear acceleration measurements across all 128 
impact sites were highly correlated between the mouthguard 
sensor and an anthropomorphic test device (r2 = 0.96) and 
demonstrated a 9.9% ± 4.4% average normalized root mean 
square error (±SD) for impact time traces for linear acceleration. 
For more in-depth information about the sensor and sensor 
validation, refer to Camarillo et al11 and Snyder and Haensly.49 
Impacts were not verified using video.

Data Analysis

The analysis solely included head impacts collected during the 
regular football season because of differences in pre- and 
postseason activities between flag and tackle football programs. 
The analysis excluded data from impacts (n = 3,857, accounting 
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for 2% of the data) with an inconsistent time stamp (eg, a head 
impact occurred prior to or after a practice or game) due to 
sensor error. The statistical packages OpenBugs Version 3.2.3 
and SAS Version 9.4 were used for analyses. Descriptive 
measures of frequency and central tendency (median ± IQR) 
were calculated for head impact metrics (Table 3). Head impact 
exposure was quantified in terms of number of head impacts 
(≥10g) and high-magnitude impacts (≥40g). While there are no 
definitive threshold parameters for concussive events,20 these 
thresholds were chosen as they are consistent with current 
literature.12,17,18,52 In addition, the linear acceleration 50th and 
95th percentile impacts for each athlete were calculated and 
then averaged across athletes. For head impact exposure, 
estimates of interest based on regression models developed 
using Bayesian methods with 95% credible intervals (ie, 95% 
probability that the effect falls within that range) were run to 
estimate differences between tackle and flag athletes. A Poisson 
distribution was used to estimate number of impacts for tackle 
and flag effects and adjusted for player-level random effects. For 
50% and 95% linear acceleration, the model assumed a Student  
t distribution to address overdispersion. A zero inflated Poisson 
distribution was used to estimate high-magnitude impacts. We 
examined a variety of models for each outcome including the 
effect of athlete age and team-level effects. In all cases, 
inclusion of these terms did not substantially change the 
estimates of interest. Thus, the more parsimonious model was 
selected. Additional details on the underlying assumptions, 
handling of missing values, identification of outliers, fitting 
approaches, and goodness-of-fit evaluations used in the 
modeling process are provided in the Supplemental Appendix 
(available in the online version of this article).

Results

There were 186,239 head impacts (10g-200g) recorded during 
the regular football seasons: 185,695 for tackle football and 544 
for flag football. Of these, there was a median of 378.00 ± 
470.00 head impacts per tackle football athlete and 8.00 ± 12.50 
head impacts per flag football athlete (Table 3). On average, per 
AE, there were 9.19 (8.18-10.32) impacts for a tackle athlete and 
0.63 (0.43-0.92) impacts for a flag athlete (Table 4); a tackle 
football athlete had 14.67 (9.75-21.95) times more impacts  
per AE compared with a flag football athlete. The linear 

acceleration 50th percentile impact for each athlete, averaged 
across athletes, was 18.15g (95% CI, 17.95-18.34) for a tackle 
football athlete and 16.84g (15.57-18.21) for a flag football 
athlete. The 95th percentile of linear acceleration per athlete, 
averaged across athletes, was 52.55g (51.06-54.09) for a tackle 
football athlete and 33.51g (28.23-39.08) for a flag football 
athlete. Examining high-magnitude impacts (≥40g), a tackle 
football athlete is estimated to sustain approximately 100 
impacts per 100 AEs, whereas a flag football athlete is estimated 
to sustain approximately 4 impacts per 100 AEs. This translates 
to a tackle football athlete sustaining 23.00 (13.59-39.55) times 
more ≥40g impacts per AE compared with a flag football 
athlete.

discussion

Tackle football athletes sustained a greater number of head 
impacts per AE and were at increased risk for high-magnitude 
impacts compared with flag football athletes. Health care 
providers may consider these findings when consulting with 
youth and parents during football preparticipation medical 
examinations, especially those athletes with an increased risk 
for concussion (eg, athletes with a history of concussion).31

Differences in head impact exposure risk between tackle and 
flag football athletes may be explained by the nature of the 
game (tackling is part of regular game play) and differences in 
the athletes who play tackle versus flag football. Tackling 
increases an athlete’s risk for head impacts and contributes to 
approximately two-thirds of concussions among high school 
football athletes.26,33 Moreover, a study by Kontos et al26 found 
that almost half (45%) of concussions in tackle football result 
from head-to-head contact. Both linear and rotational 
acceleration play a role in sustaining a concussion.7 While the 
exact contribution of each type of acceleration on concussion 
and concussion severity is not clear yet, some evidence suggests 
that linear acceleration is related to the compression of cerebral 
tissue, while rotational acceleration is involved in shearing of 
cerebral neurons (for more information about the biomechanics 
of head impacts, concussion, and the role of sensors please see 
Broglio et al7). As tackling is not part of flag football, an 
athlete’s exposure to head impacts is reduced. Tackle football 
may also draw more parents and athletes who are less 
apprehensive about athlete-to-athlete collisions. Tackle football 

Table 3. Descriptive statistics for the number of impacts across the season by tackle and flag athletes, ages 6 to 14 years, United 
States, 2017 and 2018

Type of Football Impacts Across the 
Season (mean ± SD)

Impacts Across the Season 
(median ± interquartile range)

No. of Impacts 
(range)

Linear Acceleration 
(range)

Tackle 389.30 ± 280.35 378.00 ± 470.00 1-1170 13.43-80.7

Flag 11.57 ± 11.89 8.00 ± 12.50 0-43 12.01-55.18
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Table 4. Model estimates for tackle versus flag athletes’ outcome variables, ages 6 to 14 years, New York, United States,  
2017 and 2018

Outcome Estimates Season

No. of impacts Average rate of impact per AE (95% CI)

  Tackle 9.19 (8.18-10.32)

  Flag 0.63 (0.43-0.92)

 Rate ratio

  Tackle/flag 14.67 (9.75-21.95)

 Probability ≥1 impact

  Tackle 1

  Flag 0.47 (0.35-0.60)

Linear acceleration (50%) Average 50th percentile (95% CI)

  Tackle 18.15 (17.95-18.34)

  Flag 16.84 (15.57-18.21)

 Increase in 50th percentile

  Tackle vs flag 1.31 (−0.08 to 2.59)

  Degrees of freedom 3 (2-4)

 Probability 50th percentile greater during games

  Tackle ≥ Flag 0.97

Linear acceleration (95%) Average 95th percentile (95% CI)

  Tackle 52.55 (51.06-54.09)

  Flag 33.51 (28.23-39.08)

 Increase in 95th percentile

  Tackle vs flag 19.06 (13.38-24.45)

  Degrees of freedom 6 (4-12)

 Probability 95th percentile greater during games

  Tackle ≥ flag 1

High-magnitude impacts (≥40g) Average rate of impact per AE (95% CI)

  Tackle 1.01 (0.90-1.13)

  Flag 0.04 (0.03-0.07)

 Rate ratio

  Tackle/flag 23.00 (13.59-39.55)

 Probability ≥1 impact

  Tackle 0.63 (0.58-0.67)

  Flag 0.04 (0.03-0.07)

AE, athletic exposure.
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players who were less cautious tended to incur higher 
magnitude hits.54 Differences in head impact exposures between 
tackle and flag football athletes may also result from factors 
such as variations in practice intensity, coaching style (including 
the types of practice drills), and athletic intensity, as well as 
differences in positions and helmet usage.8,12,24,26,36 Mihalik 
et al36 found that helmet-only practices are associated with more 
frequent and higher magnitude head impacts. Greater head 
impact exposure among helmeted athletes may be attributed to 
perceived injury susceptibility (eg, wearing a helmet will protect 
an athlete from injury, and thus they are more apt to collide 
with opposing players).29

The only previous study comparing flag versus tackle football 
impacts found that tackle football athletes had 4.61 times more 
impacts (>14g) per AE compared with flag athletes. In addition, 
flag football athletes also had reduced odds of sustaining impacts 
greater than 20g.32 Consistent with Lynall et al,32  our results also 
found that tackle football athletes were more likely per AE to 
experience a head impact and sustain greater magnitude impacts 
over the course of a football season. However, in our study, a 
tackle football athlete may sustain 14.67 times more impacts ≥10g 
during an AE compared with a flag football athlete. Some reasons 
for the discrepancy in findings may be due to a lower threshold of 
the sensor (10g vs 14g) as well as due, more likely, to different 
metrics being analyzed (number of impacts per AE vs likelihood 
of sustaining at least 1 impact per AE). In addition, because our 
study used a mouthguard sensor while Lynall et al32 used a sensor 
embedded in a headband or skullcap, the metrics of 2 studies may 
not be directly comparable.4,11,46

While more research is needed to determine the effect of 
repetitive, lower magnitude head impacts, high-magnitude head 
impacts are associated with a greater risk for concussion47 and 
with changes to brain functional and structural integrity.48 Youth 
tackle football athletes in the current study sustained an 
estimated 23.00 times more high magnitude (≥40g) impacts per 
AE as compared with a flag football athlete. Our findings also 
suggest that for high-magnitude impacts, a tackle football 
athlete is expected to sustain approximately 100 impacts at ≥40g 
per 100 AEs, while a flag football athlete is expected to sustain 
approximately 4 impacts at ≥40g per 100 AEs.

Over the past decade, some sports programs have initiated 
steps to mitigate exposure to head impacts through contact 
restrictions and rule changes. The US ice hockey governing 
body prohibits body checking for athletes younger than 13 
years, while the US soccer governing body prohibits heading 
instruction until athletes are 11 years old.53 One of the major 
criticisms of these rules is a concern that lack of experience 
with contact sport play may lead to greater risk of concussion 
for athletes once contact is introduced. However, delaying the 
introduction of body checking in ice hockey did not result in an 
increase in head impacts once body checking was introduced.10 
Moreover, other studies5,19 have shown a 3-fold increase in 
concussion rates in leagues where body checking was permitted 
versus prohibited (though see Krolikowski et al27 for an 
exception). A recent survey14 found that most US parents 

support age restrictions for tackling in football. However, 
previous research has found a lack of access to flag football in 
some communities.28 This may limit options for some parents 
making football participation decisions for their child and may 
contribute to health inequities, placing some youth football 
athletes at increased risk for injury.28

This study has several limitations. First, there are likely 
differences in athlete characteristics between those who choose 
to play tackle versus flag football, and this may have affected 
the results. However, we attempted to address athlete-level 
differences for impact risk beyond those associated with the 
type of football through modeling of player-level random 
effects. Second, head impacts were not video verified. This may 
have resulted in the inclusion of some invalid head impact 
exposures. Third, the study did not collect attendance data 
(exposure) for the tackle football teams. We assumed a tackle 
football athlete was present at each session in which any athlete 
on the team had a recorded impact. This assumption results in 
an underestimate of the rate of impacts per AE for tackle 
football and represents a conservative estimate comparing the 
relative risk of impacts with flag football athletes. Fourth, the 
95% credible interval for the ≥40g high-magnitude rate ratio was 
wider than for other estimates, indicating greater uncertainty. 
The large number of flag football athletes who did not sustain a 
≥40g impact, as well as the lower number of flag football 
athletes, may have contributed to this uncertainty. This limited 
our ability to assess even higher impacts (≥60g or ≥80g). Fifth, 
an uneven distribution of playing time among athletes, and 
variations in the length of games and practices, may also 
explain some of the variation in the risk of sustaining head 
impact exposure. These factors were not available for inclusion 
in comparisons between flag and tackle football. Finally, 
concussion risk was not assessed as a part of this study. Further 
investigation, especially at the youth level, is warranted.

conclusion

Athletes who played tackle football sustained a greater number 
of head impacts and were at increased risk for high-magnitude 
impacts, in comparison with flag football athletes. Flag football 
athletes are exposed to fewer head impacts and this may result 
in lower concussion risk, making it a safer alternative for youth 
football athletes.
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