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Abstract

To assess the response to vaccination, quantity (concentration) and quality (avidity) of neu-

tralizing antibodies are the most important parameters. Specifically, an increase in avidity

indicates germinal center formation, which is required for establishing long-term protection.

For influenza, the classical hemagglutination inhibition (HI) assay, however, quantifies a

combination of both, and to separately determine avidity requires high experimental effort.

We developed from first principles a biophysical model of hemagglutination inhibition to infer

IgG antibody avidities from measured HI titers and IgG concentrations. The model accu-

rately describes the relationship between neutralizing antibody concentration/avidity and HI

titer, and explains quantitative aspects of the HI assay, such as robustness to pipetting

errors and detection limit. We applied our model to infer avidities against the pandemic 2009

H1N1 influenza virus in vaccinated patients (n = 45) after hematopoietic stem cell transplan-

tation (HSCT) and validated our results with independent avidity measurements using an

enzyme-linked immunosorbent assay with urea elution. Avidities inferred by the model cor-

related with experimentally determined avidities (ρ = 0.54, 95% CI = [0.31, 0.70], P < 10−4).

The model predicted that increases in IgG concentration mainly contribute to the observed

HI titer increases in HSCT patients and that immunosuppressive treatment is associated

with lower baseline avidities. Since our approach requires only easy-to-establish measure-

ments as input, we anticipate that it will help to disentangle causes for poor vaccination out-

comes also in larger patient populations. This study demonstrates that biophysical

modelling can provide quantitative insights into agglutination assays and complement

experimental measurements to refine antibody response analyses.

Author summary

Influenza vaccines are assessed based on the induced antibody response, where antibody

quantity (concentration) and antibody binding strength (avidity) determine the potency

to neutralize the virus. In addition, an increase in avidity indicates a successful germinal

center reaction, which is required for establishing long-term protection. However, the
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hemagglutination inhibition (HI) assay—traditionally used to assess influenza vaccines—

measures a combination of both antibody concentration and avidity, and to separately

determine avidity requires high experimental effort. We developed a biophysical model of

the HI assay, which enables the inference of antibody avidities from measured HI titers

and antibody concentrations. We applied our approach to a vaccinated population of

immunocompromised patients after blood stem cell transplantation and validated our

results experimentally. The model predicted that vaccination induced an increase in avid-

ity in only a few patients and that patients under immunosuppressive treatment show

lower baseline avidities. Since our approach requires only easily measurable data as input,

it can facilitate the investigation of vaccine responses in larger populations. This study

demonstrates that biophysical modelling can complement experimental data and provide

additional details on agglutination experiments and antibody responses.

Introduction

To assess influenza vaccine efficacy, hemagglutination inhibition (HI) titers are traditionally

used as a surrogate for the influenza-neutralization capacity of vaccine-induced antibodies in

serum [1, 2]. The HI assay makes use of the phenomenon that influenza viruses bind with

their surface receptor hemagglutinin (HA) to red blood cells (RBCs) and can cross-link them

to macroscopic cell aggregates in a process called hemagglutination [3]. In the presence of

influenza-binding antibodies that block RBC binding sites, hemagglutination is inhibited. This

allows quantifying the neutralization capacity of serum antibodies in dilution experiments: the

highest serum dilution that fully inhibits hemagglutination is determined, and its dilution fac-

tor is reported as the HI titer [4].

The HI titer measures a combination of both antibody concentration and avidity, where

avidity quantifies the overall strength of a multivalent antibody binding to hemagglutinin epi-

topes involved in virus-RBC interaction (neutralizing binding). When assessing vaccine

response, however, it is important to distinguish between antibody concentration and avidity.

In particular, no increase in avidity following vaccination indicates a hampered formation of

germinal centers (GCs) where B cells undergo affinity maturation and proliferate to long-lived

B cells, providing long-term protection [5, 6].

Avidity measurements of serum antibodies are time-consuming and costly. Commonly

used techniques are surface plasmon resonance (SPR) and elution experiments with chaotro-

pic agents (such as urea) based on enzyme-linked immunosorbent assays (ELISAs). While SPR

experiments require special equipment and long calibration, elution assays are very sensitive

to experimental conditions, and optimal protocols might vary substantially for different sam-

ples [7, 8]. In comparison, measurements of HI titers and serum IgG concentrations are faster

to establish and simpler to perform [9]. HI assays are considered the gold standard and rou-

tinely performed in vaccine studies; they proved to be fast, cheap, and reliable. IgG concentra-

tions can be determined in standardized ELISA experiments. These are suitable for large-scale

serological studies because they can be fully automated and yield highly reproducible results.

Therefore, estimation of avidities from HI titers and IgG concentrations would facilitate influ-

enza antibody response analyses in larger populations.

Here, we present a biophysical model of the HI assay that mechanistically describes the rela-

tionship of neutralizing IgG concentration and avidity to the resulting HI titer, and enables the

inference of neutralizing IgG avidities from HI titers and ELISA-detected IgG concentrations.

We applied our approach to vaccinated hematopoietic stem cell transplantation (HSCT)
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patients, focusing on IgG antibodies specific to pandemic influenza A/California/7/2009

(H1N1pmd09). Despite available vaccines, the case fatality rate for influenza is 17–29% in

these patients [10]. HSCT patients are commonly immunocompromised due to post-trans-

plant immune reconstitution and immunosuppressive treatment against graft versus host dis-

ease. Since patients with low antibody avidities are at risk for fatal infections, we investigated

the association of inferred avidities with three indicators of immunocompromised status as

defined by CDC [11], known to be associated with immune cell proliferation, affinity matura-

tion and antibody production [12]: first two years post transplantation, immunosuppressive

treatment, and chronic graft-versus-host disease (cGVHD) grade according to NIH criteria

[13]. Our model detected that immunosuppressive treatment is associated with lower baseline

avidities, but we did not detect a significant association with cGVHD or the time after trans-

plantation. In addition, our model suggests that vaccination induced affinity maturation of

neutralizing antibodies in only a few patients.

Results

Model of the hemagglutination inhibition (HI) assay

We extended models of antibody-virus interaction [14] and cell-cell agglutination [15] to a

model that mechanistically captures the key processes of the HI assay (Fig 1). The HI assay is

performed in three consecutive steps [4]: (i) Serial dilution of patient serum and 30 min incu-

bation with influenza virus, (ii) addition of RBCs followed by 30 min incubation, and (iii)

determination of the HI titer based on the presence or absence of hemagglutination inhibition

in each serum dilution (Fig 1, top). We represent these steps separately: the model output of

one step serves as input for subsequent steps (Fig 1, bottom).

Step 1 (binding of antibodies to virus). We modeled the binding of IgG antibodies to

virus hemagglutinin (HA) as a diffusion-controlled reversible reaction between IgG molecules

and virus particles (see Methods for details). Each homotrimeric HA receptor has three identi-

cal binding sites for monoclonal IgG, but we assume that one HA trimer accommodates at

most one IgG molecule due to steric hindrance [16–18]. Serum contains a mixture of poly-

clonal IgG antibodies. Thus, after the addition of influenza virus to serum, HA-specific IgG

clones form a mixture of IgG-HA complexes according to their individual dissociation con-

stants (avidities). We assume that any other interactions are negligible because serum samples

are pretreated with receptor destroying enzyme (RDE) to limit unspecific binding. We con-

sider the total concentration of HA-specific IgG and the apparent dissociation constant Kapp
D ,

which is proportional to the ratio of free HA-specific IgG molecules over all formed IgG-HA

complexes at equilibrium. Its inverse 1=Kapp
D is interpreted as the apparent serum IgG avidity.

We compute the fraction of antibody-bound virus at binding equilibrium for each serum dilu-

tion (Fig 1, left) as input for step 2 because 30 min incubation suffices to reach binding

equilibrium.

Step 2 (hemagglutination). When RBCs are added, virus particles bind reversibly with

free HA binding sites to sialic acid (SA) linked receptors on RBCs. We assume that IgG anti-

bodies and SA-linked receptors do not compete for HA binding sites because the affinity of SA

to HA is in the mM range [19–21], far below the affinity of HA-specific IgGs in the nM range

[22]. The tight binding of the virus to RBCs results from binding multiple SA moieties simulta-

neously [23]. The virus-RBC interactions will eventually induce hemagglutination. We model

it as a coagulation process [24], where RBCs stick together whenever they collide such that

virus particles can cross-link them. Only when a free SA-linked receptor on an RBC meets a

free HA on a virus particle that is simultaneously bound to another RBC, the collision leads to

a successful cross-link. We define a degree of hemagglutination that takes the value 0% without
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any hemagglutination (not a single cross-link), and 100% when all RBCs form a single aggre-

gate. The model predicts a switch-like increase in the degree of hemagglutination with decreas-

ing antibody concentration, consistent with the experimentally observed switch-like behavior

of the assay (Fig 1, middle).

Step 3 (determination of HI titer). After another 30 min incubation, each serum dilution

is inspected for hemagglutination inhibition, and the reciprocal of the maximal dilution that

shows full inhibition is the HI titer (Fig 1, right). To model this binary decision (inhibition or

no inhibition), we classify the outcome by setting a threshold at 25% hemagglutination because

we define 50% hemagglutination as partial inhibition and our model predicts for� 1 HA unit

virus a hemagglutination degree of� 75%. By definition, this is interpreted as full inhibition

Fig 1. Overview of the hemagglutination inhibition (HI) assay (top) and illustrative simulation results (bottom). First step: patient serum is serially

diluted and incubated with a constant amount of influenza virus. The model computes the amount of antibody-bound viral hemagglutinin (HA) for

each serum dilution. Second step: red blood cells (RBCs) are added to each dilution and virus particles with free HA binding sites cross-link RBCs to

cell aggregates. The model predicts a switch-like increase in agglutinated RBCs with decreasing antibody concentration. Third step: the plate is tilted by

90 degrees to detect full hemagglutination inhibition. If none/few RBCs are agglutinated, sedimented RBCs flow down to the rim. By definition, those

wells show full hemagglutination inhibition. The reciprocal of the maximal inhibitory dilution is the HI titer. We classify our simulation results into

inhibition and no inhibition by setting a threshold at 25% hemagglutination. Simulation results show median and interquartile range indicating the

uncertainty due to experimental conditions (RBC concentration, virus concentration, readout time) and model parameters (summarized in Table 1) for

an IgG serum concentration of 25 nM (4 μg/mL) and Kapp
D ¼ 0:1nM.

https://doi.org/10.1371/journal.ppat.1010243.g001
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(S1C Fig), suggesting that differences in hemagglutination degree below 25% or above 75%

cannot be distinguished by eye.

We extracted parameters and their uncertainty ranges from literature for IgG, chicken

RBCs and influenza virus (Table 1). In addition, we established the agglutination rate parame-

ter from hemagglutination inhibition experiments with a serum sample from a healthy volun-

teer (see Methods). Next, we investigated the impact of the assumed parameter ranges on the

simulated hemagglutination degree in a global sensitivity analysis to investigate the robustness

of model predictions to model assumptions and experimental variability.

Sensitivity analysis shows model’s robustness to uncertainties in

parameters and experimental conditions

To infer antibody avidities accurately, the model needs to be sensitive to the experimental data

used as inputs. However, it should not be sensitive to other experimental factors and uncer-

tainties in model parameters. To evaluate the model in this respect, we used Sobol sensitivity

analysis [32], which attributes variance in model output (here: hemagglutination degree) to

the individual model input factors. The more influential the input factor is, the higher is its

contribution to the variance in hemagglutination degree. We considered the ranges for all

model input factors summarized in Table 1. Specifically, for IgG concentration and avidity the

ranges match the experimentally observed ranges for H1N1pmd09-specific IgG after vaccina-

tion in adults [22, 25]. For experimental conditions, we aimed to generously cover experimen-

tal variability. For model parameters, we considered measurement uncertainty and biological

variability as described in the literature. The kinetic rate constants describing the association

and dissociation of HA and sialic acid were not available for H1N1pmd09. These parameters

were sampled from log-normal distributions (Table 1) in agreement with reported values for

HA from another influenza strain [23]. These values correspond to a log-normally distributed

dissociation constant centered at 100 nM and covering a range of approximately 30 nM to 300

nM. This broad range also accounts for widely varying binding constants across influenza

strains [33].

Sensitivity analysis showed that serum IgG avidity and concentration are the most influen-

tial factors for hemagglutination (Fig 2A). Variability in RBC and virus concentration and in

readout time (30–45 min) contribute very little to the total variance. The model is also robust

to uncertainty in all model parameters except for the kinetic agglutination rate of RBCs (kagg),

Table 1. Model parameters and variables. The assumed ranges of uncertainty and biological variability in model parameters and variables are defined by the distributions

used in the sensitivity analysis. Abbreviations are: IgG, Immunoglobulin G; RBC, red blood cell; HA, hemagglutinin; HAU, HA unit; SA, sialic acid.

Description Symbol Value Distribution in sensitivity analysis Reference

Serum IgG concentration A0 Sample-specific Unif(0, 2800) nM (0–420 μg/mL) [25]

Apparent IgG dissociation constant Kapp
D Sample-specific Unif(0.001, 300) nM [22]

Initial virus concentration V0 1.3 � 10−4 nM (4 HAU) Unif(0.9 � 10−4, 2.3 � 10−4) nM (3–7 HAU) [4]

Initial RBC concentration RBC0 3.1 � 10−5 nM Unif(1.6 � 10−5, 6.3 � 10−5) nM [4]

Number of HA receptors per virus r 400 Discrete Unif(300,500) [26, 27]

Number of epitopes per HA receptor e 3 Fixed at 3 [28, 29]

Number of shaded epitopes per bound IgG e� 3 Bernoulli(0.5) with e� 2 {3, 6} [18]

Number of SA receptors per RBC b 4.5 � 105 Discrete Unif(4 � 105, 5 � 105) [30, 31]

Number of shaded SA receptors per bound virus b� 34 Sampled from model See Methods

SA-HA association rate constant kRBCass 2 � 10−6 s−1 Lognorm(log(2 � 10−6), 0.22) s−1 [23]

SA-HA dissociation rate constant kRBCdiss 2 � 10−4 nM−1s−1 Lognorm(log(2 � 10−4), 0.22) nM−1s−1 [23]

RBC agglutination rate constant kagg 2 � 106 s−1 Unif(0.4 � 106, 13 � 106) s−1 Estimated from data

https://doi.org/10.1371/journal.ppat.1010243.t001
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which we varied within the 95% highest probability density interval estimated from our cali-

bration data. Other relevant factors were the ability of IgG to bind two HA receptors simulta-

neously and the number of RBC receptors that are covered by one bound virion. Hence, the

model’s predictions are dominated by the measured input quantities, despite uncertainties in

experimental conditions, mechanisms, and parameters.

The model predicts a clear separation between hemagglutination inhibition and no inhibi-

tion—partial inhibition occurs only within a small range of IgG concentration and avidity (Fig

2B). Thus, the well-known binary nature of the assay is captured. Using an initial virus concen-

tration of 4 HA units as defined by WHO ensures both high sensitivity and robustness,

whereas 8 HA units or more increase robustness but lower sensitivity (S1E Fig). The model

predicts also a yet unknown property of the HI assay: for avidities Kapp
D � 0:03 nM, hemagglu-

tination quantifies a combination of IgG concentration and avidity, but for very high avidities

Kapp
D < 0:03 nM, the assay only detects changes in IgG concentration (Fig 2B).

Within the linear range for Kapp
D � 0:03 nM, a doubling in IgG concentration or avidity

results in a doubling of the predicted HI titer (Fig 2C). In other words, a two-times lower anti-

body avidity can be compensated by a two-times higher antibody concentration. However,

Fig 2. Model sensitivity and resolution of the hemagglutination inhibition assay for influenza H1N1pdm09. (A) Sensitivity analysis using Sobol

indices. First-order effects show only the linear contribution to the total variance in hemagglutination degree (they sum up to 1), whereas total effects

consider also interactions (see Methods for details). (B) Predicted degree of hemagglutination for different IgG concentrations and apparent

dissociation constants Kapp
D . The red box indicates the usual assay range, bounded by the biological range of Kapp

D ¼ 0:001 � 100 nM, and the gray

dashed line indicates Kapp
D ¼ 0:03 nM. (C) Predicted HI titers for the biological range of influenza-specific serum IgG and Kapp

D . Colored areas

correspond to titers shown on top.

https://doi.org/10.1371/journal.ppat.1010243.g002
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this only applies to the linear range and the exact relationship depends on the considered avid-

ity and concentration ranges (Fig 2C). The model also suggests why HI titers above 8192 (= 13

in log2) are rarely observed. Even for a high serum IgG concentration of 1000 nM (150 μg/

mL), such high titers require antibody avidities in the fM range, but influenza-specific anti-

body affinities in vaccinated healthy adults lie in the nM range [22].

In summary, we conclude that the model yields robust simulation results in the applicable

assay range, and reveals new quantitative aspects of the HI assay: The predicted hemagglutina-

tion degree is not sensitive to uncertainty in model parameters and variability in experimental

conditions. It is mostly determined by the avidity and concentration of serum antibodies (Fig

2A). In conclusion, the model enables to quantitatively relate IgG concentration and avidity to

HI titer.

Inference of neutralizing antibody avidities in HSCT patients

Next, we applied our model to infer avidities from ELISA-detected serum IgG concentrations

and HI titers specific to H1N1pdm09 in HSCT patients (patient characteristics are summa-

rized in Table 2). We used a Bayesian approach that accounts for uncertainties due to ELISA

measurement error and discretization in HI titers (see Methods for details). Model parameters

related to RBCs and virus particles were fixed for all serum samples (Table 1), because our sen-

sitivity analysis (Fig 2A) suggested that differences in HI titer arise mostly from differences in

serum-specific IgG concentration and avidity. All patients received two doses of non-adju-

vanted trivalent seasonal influenza vaccine on d0 and d30 (see Methods). Measurements were

available from 45 patients at five time points before (d0) and after (d7, d30, d60, d180) the first

vaccination with 221 serum samples in total. HI titers and IgG concentrations were signifi-

cantly correlated (Kendall’s τ = 0.69, P< 10−15, rank correlation for ordinal data; Fig 3A).

For serum samples with HI titers below assay resolution (HI titer < 8), we could only infer

an upper bound for the avidity (it could be lower, but not higher). This affected 23 serum sam-

ples from seven patients. Analogously, for serum samples with Kapp
D � 0:03 nM, we could, in

principle, only report a lower bound, but all inferred avidities for our patient cohort exceeded

this threshold. In 24 samples, inferred Kapp
D -values showed very large uncertainty (approxi-

mately ±100%) due to large measurement error in ELISA measurements; we excluded these

samples from further analysis. In the remaining samples, posterior distributions of inferred

avidities were log-normally distributed (S2 Fig) and we determined the uncertainty intervals

due to discretized HI titer measurements and ELISA measurement error by sampling, yielding

an average uncertainty in Kapp
D -values of approximately ±30% (range 20–57%, interquartile

range (IQR) 25–30%).

In summary, we were able to infer 197 avidities from in total 43 patients (89% of analyzed

samples). The inferred avidities ranged from Kapp
D ¼ 0:1 nM to� 22 nM (upper bound), with

a median of 1.7 nM and IQR 0.9–2.5 nM. Inferred avidities and HI titers were significantly

correlated (Kendall’s τ = 0.56, P< 10−15), although the correlation was weaker than for IgG

concentration (Fig 3A).

Inferred avidities correlate with experimentally determined avidities

We validated our model with experimental avidity measurements of 59 serum samples from

12 patients. We performed ELISA-based elution assays that quantify the fraction of IgG

remaining bound after 3h incubation with 4M urea, yielding a measure for the overall binding

strength of serum IgG to H1N1pmd09 in the form of an avidity index between 0 (low avidity)

and 1 (high avidity).
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The inferred and the experimentally determined avidities were significantly correlated

(Pearson’s ρ = 0.54, 95% CI = [0.31, 0.70], P< 10−4, Fig 3B). We detected one outlier patient

(standardized residuals� 3) whose serum did not show HI activity at any time point (Fig 3B),

suggesting that the ELISA detected non-neutralizing IgG in this patient. Experimental and

Table 2. Characteristics of allogeneic hematopoietic stem cell transplant patients (all patients and subset of patients with experimentally determined avidities for

validation of inferred avidities). Abbreviations are: IQR, interquartile range; GVHD, graft-versus-host disease.

All Experimentally validated subset

Total 45 12

Age Median, IQR (years) 58, 44–64 45, 43–67

� 65 years 11 (25%) 4 (33%)

Sex Male 23 (51%) 4 (33%)

Female 22 (49%) 8 (67%)

Underlying disease Acute myeloid leukemia (AML) 17 (38%) 6 (50%)

Acute lymphoblastic leukemia (ALL) 8 (18%) 2 (17%)

Chronic myeloid leukemia (CML) 5 (11%) 1 (8%)

Chronic lymphocytic leukemia (CLL) 5 (11%) 1 (8%)

Multiple myeloma (MM) 5 (11%) 1 (8%)

Plasma cell leukemia (PCL) 1 (2%) 0

Myeloproliferative neoplasms (MPN) 1 (2%) 1 (8%)

Myelodysplastic syndromes (MDS) 2 (4%) 0

Non-Hodgkin lymphoma (NHL) 1 (2%) 0

Time after transplantation median, IQR (years) 4, 2–8 6, 3–8

1–2 years 16 (36%) 2 (17%)

3–5 years 13 (29%) 3 (25%)

> 5 years 16 (36%) 7 (58%)

Transplant source Peripheral blood 40 (89%) 11 (92%)

Bone marrow 5 (11%) 1 (8%)

Donor source Matched related donor 16 (36%) 5 (42%)

Matched unrelated donor 21 (47%) 5 (42%)

Disease statusa Complete remission 42 (93%) 12 (100%)

Stable 1 (2%) 0

Recurrence 2 (4%) 0

Progressive 0 0

Immunosuppressiona None 18 (40%) 2 (17%)

Mild (grade 1) 6 (13%) 2 (17%)

Moderate (grade 2) 14 (31%) 6 (50%)

Severe (grade 3) 7 (16%) 2 (17%)

Immunosuppressive treatmenta Prednisone 13 (29%) 5 (42%)

Tacrolimus 14 (31%) 7 (58%)

Mycophenolate 9 (20%) 3 (25%)

Cyclosporine A 4 (9%) 0

Rituximabb 3 (7%) 0

Chronic GVHD None 15 (33%) 0

Mild (grade 1) 9 (20%) 4 (33%)

Moderate (grade 2) 10 (22%) 6 (50%)

Severe (grade 3) 11 (24%) 2 (17%)

aBefore vaccination,
bwithin the previous six months.

https://doi.org/10.1371/journal.ppat.1010243.t002
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Fig 3. Inference of antibody avidities in HSCT patients. (A) ELISA-detected anti-H1N1pmd09 serum IgG concentration, HI titers and

corresponding inferred apparent dissociation constants Kapp
D from 197 serum samples from 43 HSCT patients. The dashed line indicates the

seroprotection threshold (HI titer� 40). (B) Correlation of inferred and experimentally determined avidities in 59 serum samples from 12 HSCT

patients (Pearson’s ρ = 0.54, 95% CI = [0.31, 0.70]). Data show mean and standard deviation for avidity indices from two experiments (each performed

in duplicates) and the median of the posterior distribution with the uncertainty range due to discretized HI titer measurements and ELISA

measurement error for inferred Kapp
D -values (see Methods for details on inference and S2 Fig for posterior distributions). Avidity indices correspond to

the fraction of H1N1pmd09-specific serum IgG remaining bound after 4M urea treatment. Patient 11 was identified as an outlier, probably because

ELISA detected non-neutralizing IgG; the patient showed no HI activity at any time point. For serum samples without detected HI activity (HI titer< 8;

all five samples from patient 11 and three additional samples from in total two patients), the measured avidity index is plotted against the estimated

upper bound for the inferred avidity and the uncertainty interval reflects the estimated uncertainty of the upper bound due to discretized HI titer

measurements and ELISA measurement error. (C) Example patients with different types of responses to vaccination. In patient 3, we detected an

increase in non-neutralizing IgG on d30. The predicted HI titer for the observed increase in IgG (shown in gray) is twice as high as the actually

observed titer (green). For all 12 patients with experimentally determined avidities see S3 Fig.

https://doi.org/10.1371/journal.ppat.1010243.g003
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inferred avidities distinguished different types of patient responses, for example, where both

IgG concentration and avidity increased after vaccination (patient 1 in Fig 3C) or where an

increase in HI titer was mostly explained by an increase in IgG concentration (patient 2). We

identified one patient that produced non-neutralizing IgG (patient 3): Here, the ELISA

detected an increase in IgG concentration that leads to HI titer doubling according to our

model predictions. However, the HI titer did not increase at any time point (Fig 3C), suggest-

ing that the ELISA-detected IgGs had no HI activity. The inferred Kapp
D -value refers to neutral-

izing IgG-virus interactions only, and its value is biased towards lower avidity if the measured

IgG concentration also includes non-neutralizing IgGs.

Thus, apparent serum avidities inferred by our model-based approach were in good accor-

dance with experimentally determined avidities. However, if non-neutralizing IgG dominates

in serum, the results are not directly comparable because the inferred avidity refers to neutral-

izing IgG with HI activity.

Detection of vaccine-induced affinity maturation in HSCT patients

Next, we compared the vaccine-induced increase in inferred avidities in all investigated HSCT

patients and identified candidates for successful GC formation and affinity maturation (Fig 4).

Since the establishment of GCs takes approximately seven days [6], we considered an increase

in IgG concentration and avidity on d30 or d60 as indicative for GC formation (patients were

vaccinated on d0 and d30; see Methods).

Given the uncertainty in inferred Kapp
D -values, we could detect fold changes in avidity of

approximately > 1.5 or < 0.5 (except for samples below assay resolution with HI titer< 8)

(S4A Fig). Eight patients showed a detectable increase in avidity on d30 and/or d60, of which

only one showed no increase in serum IgG (Fig 4B). This suggests that vaccination induced

GC formation and affinity maturation in seven patients (including patient 1 in Fig 3C). Serum

avidity returned back to baseline on d180 in most of these patients, suggesting that vaccination

failed to induce a sustained production of high-avidity antibodies. Over all patients showing a

detectable increase in avidity at any time point after vaccination (n = 11), we observed a time-

dependent increase with the largest increase on d60, i.e., after the booster dose (Fig 4C), con-

sistent with our understanding of GC dynamics [6].

In summary, although 30 patients showed an increase in serum IgG concentration on d30

and/or d60, only 7/30 patients (23%) are candidates for vaccine-induced affinity maturation,

and 6/30 patients (20%) showed vaccine-induced production of non-neutralizing IgG (such as

patient 3 in Fig 3C). We excluded 4/45 patients as they showed too large measurement uncer-

tainty in ELISA-detected IgG concentration on several time points (see above).

Association with criteria for compromised immune response

Finally, we investigated associations between inferred avidities, IgG concentration and HI

titers with time post HSCT� 2 years, intake of immunosuppressive drugs quantified by

immunosuppression grade ranging from 0 (none) to 3 (severe), and cGVHD grade with the

same range (Fig 4D). We investigated effects on baseline (levels before vaccination) and

response (relative increase) in a multivariable regression analysis with patient-specific random

intercepts, controlling for sex and age. Regression was performed on log2-transformed values

using a model for continuous data for avidity/concentration and a model for sequential ordi-

nal data for HI titers [34]. When analyzing the vaccine-induced increase in avidity, we

excluded non-neutralizing IgG responders (n = 6) because their inferred avidities are not

indicative of affinity maturation (see Methods for details).
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Early transplant patients (time post HSCT � 2 years) showed significantly lower baseline

levels in IgG concentration (−1.92 ± 0.46, P = 1.8 � 10−4) and HI titer (log odds ratio −0.96 ±
0.25, P = 1.2 � 10−4) than patients with HSCT > 2 years (Fig 4D). Since we corrected for

immunosuppression and cGVHD grade, this effect could be explained by differences in

patients’ immune reconstitution and the number of previously received influenza vaccina-

tions. At the time of this study, the annual influenza vaccine contained H1N1pmd09 already

for four years. Therefore, it is likely that patients with HSCT > 2 years acquired durable

H1N1pmd09-neutralizing antibodies in previous seasons. Yet, early transplant patients did

Fig 4. Response to influenza vaccination against H1N1pmd09 in HSCT patients. (A) HI titers and ELISA-detected serum IgG

concentrations in the investigated patient population. Patients were vaccinated on d0 and d30 with a non-adjuvanted trivalent influenza

vaccine. Seroprotection corresponds to HI titer� 40 and seroconversion to a four-fold HI titer increase compared to d0. (B) Fold

changes in HI titer, serum IgG and inferred avidity (1=Kapp
D ) in all patients with a detectable increase in inferred avidity on d30 and/or

d60. (C) Comparison of inferred avidities between patients with a detectable increase in avidity at any time point after vaccination (left),

patients with no detectable increase (middle), and patients with a detectable increase in non-neutralizing IgG (right). We excluded 4/45

patients as they showed too large measurement uncertainty in IgG concentration on several time points. (D) Estimated effects on

baseline levels of criteria for compromised immune response. Effects were estimated in a multivariable regression analysis on

log2-transformed values controlling for sex and age. Time after HSCT was encoded as a binary variable (1 for HSCT� 2 years and 0 for

HSCT> 2 years). Immunosuppression grade and cGVHD grade ranging from 0 (no immunosuppression/cGVHD) to 3 (severe

immunosuppression/cGVHD) were encoded as ordered categorical variables with grade 0 as reference (see Methods for details).

https://doi.org/10.1371/journal.ppat.1010243.g004
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not show significantly different baseline avidities compared to patients with HSCT > 2 years

(0.36 ± 0.45, P = 0.43), potentially because previous vaccinations did not induce (detectable)

affinity maturation. However, patients’ immunization history was unknown and we could

not further investigate this hypothesis. Patients under immunosuppression showed signifi-

cantly lower baseline avidities with an estimated effect size of −0.58 ± 0.19 per immunosup-

pression grade (P = 4.0 � 10−3). This means, that patients with immunosuppression grade 2

showed approximately two-fold lower baseline avidities than patients without immunosup-

pression, while patients with immunosuppression grade 3 showed three- to four-fold lower

baseline avidities (see also S5 Fig).

We did not detect significant differences in the vaccine-induced increase in concentration

or avidity, potentially because the number of responders in the investigated HSCT population

was too low (only 13 patients showed seroconversion, Fig 4A).

Discussion

The HI assay is a well-established gold standard method, and yet, little is known on the rela-

tionship between HI titer, serum antibody concentration, and avidity. Mathematical models of

cell agglutination by antibody cross-linking have been previously reported [15, 35] and applied

to guide the design of immunoassays [36]. We presented an extension to a three-component

system consisting of antibodies, viruses, and cells. Our model captures known properties of

the HI assay and provides a biophysical explanation for why the HI assay has become the gold

standard in serological studies. First, the assay is equally sensitive to both antibody concentra-

tion and avidity. Only for extremely high avidities (Kapp
D < 0:03 nM), it detects only changes

in concentration. Second, the assay is robust to pipetting errors or other experimental variabil-

ity in RBC and virus concentration.

The model allows the inference of neutralizing serum avidities from ELISA-detected IgG

concentrations and HI titers, which are simpler, faster, and cheaper to measure than antibody

avidities, especially in larger populations. In our experimental setup where HI titers were

determined in two-fold serial dilutions, we were able to estimate avidities with a precision of

approximately ±30%. A limitation of our approach is that we cannot distinguish whether HI

titers below assay resolution (here: HI titer< 8) correspond to non-neutralizing IgG (which

could potentially have high avidity but not to HA) or to neutralizing IgG below assay resolu-

tion (with low avidity or low concentration). In general, our modelling approach is only appli-

cable to influenza strains and IgG antibodies with HI activity. Influenza strains that show poor

agglutination properties, for instance, in hemagglutination titration assays, might not provide

enough sensitivity and resolution. The detection of both neutralizing and non-neutralizing

IgG (i.e., IgG without HI activity) can bias our results towards lower avidities; this possibility

could be evaluated with SPR or calorimetry measurements. We also neglected IgM antibodies

because IgMs show lower serum concentration than IgGs [37]. When IgM concentration is

high while IgG’s low, for example, on d7 after vaccination in naive subjects, modeling the con-

tribution of IgM to the HI titer may be necessary. Finally, we applied our modelling approach

to the HI assay specific for H1N1pdm09. Further studies are required to understand how it

could be translated to other influenza strains or other agglutination inhibition assays in

general.

Only a few patients showed a vaccine-induced increase in avidity, potentially because the

number of responders was low or because the increase was below our detection limit (fold

change< 1.5). However, we observed consistent effects: among 32 (13) patients with an

increase in serum IgG on d30 or d60 (seroconversion on d60), we identified only seven (five)

candidates for vaccine-induced affinity maturation. Thus, vaccine-induced increases in HI
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titer were mostly explained by increased IgG concentration. These results might not apply to

other populations, especially because hampered affinity maturation is likely in HSCT patients

[12]. The precision of our inference was also sufficient to detect differences in baseline avidities

between patients with and without immunosuppression. Excluding the two patients without

HI activity at any time point from our analysis only slightly affects the detected association

between immunosuppression grade and avidity (−0.39 ± 0.16, P = 0.02).

It is unknown to which extent vaccination against H1N1pmd09 induces affinity maturation

in HSCT patients and it is currently under debate whether poor vaccine-induced affinity matu-

ration is responsible for the poor effectiveness of seasonal influenza vaccines [38–40]. Previous

studies in healthy adults showed that serum avidity against HA1 peaks at 21–28d after vaccina-

tion and decreases almost back to baseline on d180 [25, 41]. We observed a similar behavior

among those HSCT patients that showed a detectable increase in avidity, although, in contrast

to healthy subjects, HSCT patients received a booster dose on d30. We observed the largest

increase in avidity on d60, suggesting that the booster dose might enhance vaccine-induced

affinity maturation.

Interestingly, all patients identified as non-neutralizing IgG producers showed relatively

high HI titers (geometric mean titer = 128, range = 32–1024) and high neutralizing avidities

before vaccination (Fig 4C). Even if we detected both neutralizing and non-neutralizing IgG

on d0 in these patients, this would bias the inferred Kapp
D -values towards lower avidities, mean-

ing that the actual neutralizing baseline avidities could be even higher. This observation sup-

ports computer simulations suggesting that preexisting antibodies that mask

immunodominant epitopes, such as the RBC-binding HA head domain, lead to the produc-

tion of antibodies against less accessible epitopes such as the HA stalk domain [42]. This might

be important for the generation of broadly neutralizing antibodies targeting the HA stalk

domain, which show high potential in vivo despite poor neutralization activity in vitro [43, 44].

Further studies might investigate whether preexisting antibodies with high avidities against the

HA head domain favor the production of HA-stalk antibodies.

Overall, we argue that our biophysical model of the HI assay not only generates detailed

insights and hypotheses on influenza vaccine responses in small patient cohorts as here.

Because the model requires only easy-to-establish measurements as inputs, we anticipate that

it can also refine the analysis in larger vaccine studies, for instance, in screens to identify candi-

dates for affinity maturation for subsequent detailed (but expensive) characterization by meth-

ods such as SPR.

Methods

Ethics statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the

Ethic committee northwest and central Switzerland (EKNZ ID 2014–141). All patients signed

informed consent.

Patient sera

Adult patients that received allogeneic hematopoietic stem cell transplantation (HSCT) at least

one year before were recruited in a prospective cohort study in Switzerland (at the University

Hospital Basel and the Cantonal Hospitals in Aarau and Lucerne) between October 2014 and

January 2015 [45]. Only patients without known vaccine intolerance such as egg protein

allergy or vaccine-associated adverse events were eligible for participation. In total, 57 patients

were recruited; we included 45 of them in the present study based on the availability of serum

samples. Following the standard of care for HSCT patients, each patient received two doses of
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non-adjuvanted trivalent influenza vaccine (TIV), where the second dose was given 30 days

after the first. Serum samples were collected prior to first vaccination (d0) and afterwards (d7,

d30, d60, d180) and stored in aliquots at -80˚C. Almost all patients were in complete remission

(42/45, 93%), and no patient showed progression. Patient characteristics are summarized in

Table 2.

Vaccine composition

Patients received two doses of the non-adjuvanted 2014/2015 trivalent influenza vaccine

(Agrippal, Novartis, Switzerland), comprising inactivated, subunit influenza virus with 15 μg

HA antigen of each vaccine strain: A/California/7/2009 (H1N1pdm09), A/Texas/50/2012

(H3N2) and B/Massachusetts/2/2012 (Yamagata lineage).

HI assay

HI assays were performed according to the WHO manual [4]. Sera were pretreated with recep-

tor destroying enzyme (RDE) (Sigma-Aldrich, C8772) and two-fold serially diluted, covering

dilutions from 1:8 to 1:2048. A 0.75% (v/v) suspension of chicken RBCs (Cedarlane, CLC8800)

and 4 HA units of influenza H1N1pdm09 virus (NYMC-X181) were used to perform the

assay. The reported HI titer is the dilution factor of the highest serum dilution that showed full

hemagglutination inhibition. The protocol has been published in detail [9].

ELISA for influenza-specific IgG detection

ELISA 96-well plates (Thermo Scientific, 442404) were coated with 0.5 μg/mL whole virus

H1N1pdm09 (NYMC-X181, 45 μg HA/mL) at 4˚C overnight. Plates were blocked with 5%

bovine serum albumin (BSA) in PBS for 1h at room temperature (RT). Patient serum samples

were 1:4000 diluted in 0.5% BSA in PBS. Reference serum was 1:1000 diluted (top dilution of

calibration curve) and then six times four-fold serially diluted, yielding a calibration curve

with seven measurements. After blocking and washing with 0.05% TWEEN 20 in PBS, 100 μL/

well of diluted serum samples were added and incubated for 2h at RT. Unbound serum anti-

bodies were removed by washing the plates four times, and bound serum IgG was detected by

70 μL/well of 1:3000 diluted rabbit anti-human IgG antibody linked to horseradish peroxidase

(Agilent, P021402–2) incubated for 2h at RT. After washing, plates were developed with

100 μL/well TMB substrate solution (BD, 555214) for 15 min and stopped with 50 μL/well 2N

H2SO4. Absorbance was measured at 450 and 620 nm. Measurements were background- and

blank-corrected. To obtain a calibration curve, reference measurements were fitted using a

four-parameter logistic equation (log concentration vs log absorbance). All measurements

were performed in duplicates.

Urea elution assay to measure IgG avidities

The ELISA described above was adapted to measure serum IgG avidities against influenza

H1N1pdm09. Each serum was accordingly diluted to obtain a final concentration within the

linear range of the calibration curve. After incubation with serum and washing as described

above, each well was incubated for an additional 3h at RT with either 100 μL/well 4M urea

(treated) or 100 μL/well PBS (untreated). The concentration of bound IgG was determined

using a calibration curve, as described above. The fraction of IgG remaining bound after urea

treatment compared to the untreated wells is reported as the avidity index. Avidities were

determined in two experiments, each performed in duplicates.
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Model derivation

Assay step 1: Binding of antibodies to virus. We model the formation of antibody-epi-

tope complexes, denoted by C, as a diffusion-controlled reaction between viruses and antibod-

ies, following the model of antibody-virus interaction proposed by Groth (1963) [14]. For

complex formation, free antibodies, A, need to successfully collide with free influenza virus

particles, V. In addition, antibody-epitope complex formation depends on the probability of

epitopes being unbound, denoted by ϕ. The dynamics of complex formation is thus given by:

dCðtÞ
dt
¼ kass � AðtÞ � VðtÞ � �ðtÞ � kdiss � CðtÞ ;

where kass and kdiss are kinetic rate constants for association and dissociation, respectively.

Note that some IgG antibodies bind bivalently to hemagglutinin, resulting in higher antibody

affinities compared to their monovalent Fab fragments due to lower macroscopic dissociation

rates [46, 47]. This antibody valency is lumped into the macroscopic dissociation constant

kdiss.

The total number of epitopes is proportional to the total virus concentration Vtot1
(where ‘1’

indicates the first step of the assay), the average number of hemagglutinin receptors per virus,

r, and the number of identical binding sites per hemagglutinin, e (e = 3 since hemagglutinin is

a homotrimer). With e� being the number of epitopes bound or shaded by one antibody mole-

cule, the fraction of unbound epitopes is:

�ðtÞ ¼
e � r � Vtot1

� e� � CðtÞ
e � r � Vtot1

:

We assume that cross-linking of virus particles by antibodies is rare for the considered con-

centrations, such that the concentration of virus particles V remains approximately the same

during the experiment, i.e., V � Vtot1
. In addition, the mass balance for antibodies is

Atot1
¼ AðtÞ þ CðtÞ. Substituting into the dynamics of complex formation leads to:

dCðtÞ
dt
¼
kass
e � r
� ½Atot1

� CðtÞ� � ½e � r � Vtot1
� e� � CðtÞ� � kdiss � CðtÞ :

Since the average number of epitopes per virus particle e � r is constant, the dynamics is

equivalent to a reversible bimolecular reaction following mass action kinetics with apparent

dissociation constant Kapp
D ¼ e � r � kdisskass

: We assume that antibody-virus binding is fast, such

that after the incubation time the system is at steady-state. At steady-state, the complex con-

centration Ceq fulfills

0 ¼ ½Atot1
� Ceq� � ½e � r � Vtot1

� e� � Ceq� � Kapp
D � Ceq :

We exploit the analytic solution to this quadratic equation in Ceq to compute the fraction of

covered hemagglutinin epitopes at equilibrium, θ, defined as:

y ¼
e� � Ceq

e � r � Vtot1
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to obtain:

y ¼
erVtot1

þ e�Atot1
þ Kapp

D

2erVtot1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2r2V2
tot1
þ Kapp

Dð Þ
2
þ e�2A2

tot1
� 2erVtot1

e�Atot1
þ 2Kapp

D erVtot1
þ 2Kapp

D e�Atot1

q

2erVtot1

:

ð1Þ

Assay step 2: Hemagglutination. When RBC suspension is added to the system, two pro-

cesses happen simultaneously: viruses bind to SA-linked receptors on RBCs with their free

hemagglutinin binding sites, and RBCs stick together and form aggregates whenever they col-

lide such that virus particles are able to cross-link them.

For virus binding to SA-linked receptors, we assume mass-action kinetics, leading to:

dVðtÞ
dt
¼ � kRBCass � ð1 � yÞ � r � VðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

free virus sites

�½1 � rðtÞ� � b � RBCtot2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
free RBC sites

þ kRBCdiss �
b
b�
� rðtÞ � RBCtot2

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
bound RBC sites

: ð2Þ

Kinetic constants for association and dissociation are denoted as kRBCass and kRBCdiss . We assume

e = e� = 3 [17] to define the contribution of the concentration of hemagglutinin receptors that

are not covered by antibodies (free virus sites) to the association rate. Association further

depends on the amount of RBC binding sites that are not yet covered by virus, defined by the

fraction of covered sites, ρ(t), the average number of SA-linked surface receptors each RBC

carries, b, and the total concentration of RBCs in step 2 of the assay, RBCtot2
. For the dissocia-

tion term, we assume that one virus particle covers on average b� binding sites, since influenza

virus particles are approximately 60-times smaller than RBCs (see below). The correction by b�

reflects the definition of the fraction of covered RBC binding sites (making the term for bound

RBS sites equivalent to the concentration of bound virus, Vtot2
� VðtÞ):

rðtÞ ¼
b� � ½Vtot2

� VðtÞ�
b � RBCtot2

: ð3Þ

To capture RBC aggregation, let Bk denote the concentration of agglutinating particles

(individual RBCs and RBC aggregates) consisting of k cells, with a maximum aggregate size N.

To describe the dynamics, we use the Smoluchowski coagulation equation [24], where the rate

of agglutination is proportional to an agglutination rate constant kagg and the number of avail-

able cross-linking sites ρ(t)(1 − ρ(t))(1 − θ)2, which is proportional to the number of mutual

pairs of free binding sites on colliding RBCs and can be interpreted as a cross-linking probabil-

ity:

dBkðtÞ
dt

¼ kaggrðtÞð1 � rðtÞÞð1 � yÞ
2 1

2

X

iþj¼k

KijBiðtÞBjðtÞ � BkðtÞ
XN

i¼1

KikBiðtÞ

 !

:

For the special case Kij = Kik = K, where the kernel is independent of the particle size,

there is a simple analytical solution for the discrete size distribution of aggregates. Let
PN

i¼1
BiðtÞ ¼ BNðtÞ denote the total concentration of particles, and BNðt ¼ 0Þ ¼ RBCtot2

the

concentration of particles before agglutination. In addition, from mass conservation follows:
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PN
k¼1

kBkðtÞ ¼ RBCtot2
: Summing over all values of k then yields:

dBNðtÞ
dt

¼ kaggrðtÞð1 � rðtÞÞð1 � yÞ
2 K

2

� �

� RBC2
tot2
� K � RBC2

tot2

� �

¼ � kaggrðtÞð1 � rðtÞÞð1 � yÞ
2 K

2

� �

� RBC2
tot2

:

Integrating once gives:

BNðtÞ ¼
RBCtot2

1þ
kagg
2

� �

rðtÞð1 � rðtÞÞð1 � yÞ2RBCtot2
t
:

ð4Þ

Here, we set K = 1 such that the effect of K is lumped into kagg because we estimated kagg

from data (see below).

Assay step 3: Determination of HI titer. We define the degree of hemagglutination as:

hðtÞ ¼ 1 �
BNðtÞ
RBCtot2

 !

� 100 ; ð5Þ

such that it takes values between 0% and 100%. If there is no hemagglutination, the concentra-

tion of agglutinated particles is the same as the initial concentration of RBCs (BNðtÞ ¼ RBCtot2
)

and the degree of hemagglutination is 0%. If all RBCs are agglutinated, there is only one agglu-

tinating particle in the system and BN(t) = 1/NA � 109 nM, where NA is Avogadro’s number.

Since NA� 6 � 1023, BN� 10−15� 0 nM such that h(t) = 100%.

Model implementation

To obtain the degree of hemagglutination h(t) in Eq 5, we compute θ from Eq 1, ρ(t) for any

time point t in assay step 2 from Eqs 2 and 3, and the corresponding BN(t) from Eq 4.

In addition, the total concentration of antibodies is given by

Atot1
¼ 0:5 � dp � dj � A0 ;

where A0 is the initial serum antibody concentration, dp is the serum predilution factor, d the

serial dilution factor and j the considered dilution step. The total concentrations of virus are

Vtot1
¼ 0:5 � V0 and Vtot2

¼ 0:5 � Vtot1
;

because each assay step involves adding equal volumes of solution; V0 is the initial virus con-

centration. Analogously,

RBCtot2
¼ 0:5 � RBC0 ;

where RBC0 is the initial concentration of RBCs.

The model is implemented in the R package himodel (https://gitlab.com/csb.ethz/

himodel).

Model parameters and initial conditions

All model parameters and initial conditions could be either extracted or derived from litera-

ture (summarized in Table 1), except for the agglutination rate of RBCs (kagg), which we esti-

mated from data as described below.

PLOS PATHOGENS Model-based inference of neutralizing antibody avidities

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010243 January 31, 2022 17 / 26

https://gitlab.com/csb.ethz/himodel
https://gitlab.com/csb.ethz/himodel
https://doi.org/10.1371/journal.ppat.1010243


RBC concentration (RBC0). Following the WHO protocol [4], a 0.75% (v/v) suspension

of chicken RBCs is used to measure HI titers against H1N1pdm09. This corresponds approxi-

mately to 1.875 � 106 cells/mL [48]. Given that 1 mol corresponds to 6.022 � 1023 cells, the

molar concentration is approximately RBC0 = 3.1 � 10−5 nM. To determine the effect of pipett-

ing errors, we set the RBC concentration range in the sensitivity analysis to 0.375%–1.5% (v/v)

suspension, which corresponds to approximately 1.6 � 10−5–6.3 � 10−5 nM.

Number of sialic acid-linked receptors on RBC (b). Influenza hemagglutinin binds to

SA-linked surface receptors of RBCs. Human H1 influenza viruses bind preferentially to α2!

6 linked SA [49], which occurs on the surface of chicken RBCs mainly in N-linked glycans [30,

31]. Chicken RBCs contain a mixture of α2! 3 and α2! 6-linked glycans in a ratio of

approximately 60:40–50:50 [30]. The total number of N-glycan on RBCs has been estimated to

be 1 � 106 [31]. Thus, we assume that the average number of receptors that can interact with

hemagglutinin is 0.45 � 106. Chicken RBCs also have SA-linked O-glycans such as glycophorins

[50] on their surface, but most of them contain α2! 3-linked SA. Therefore, we neglect them.

Steric virus factor (b�): Number of sialic acid-linked receptors covered by bound viri-

ons. Influenza virions are approximately 60-times smaller than RBCs [51]. To model the

binding of virions to RBCs, we need to take into account that bound virions cover multiple

SA-linked receptors. We estimated the average number of covered α2! 6 SA-linked recep-

tors, b�, from simple geometry. We assume that SA-linked receptors are uniformly distributed

on RBCs. Their estimated surface area ranges from 140–160 μm2 and we assume an average

surface area of ARBC = 150 � 106 nm2 [52, 53]. The virus-covered area is determined by the

virus’ diameter. Most influenza virions are spherical with a diameter ranging from 84–170 nm

and mean diameter d = 120 nm [51]. We estimate the shaded area from the circle area, which

yields:

b� ¼
pðd=2Þ

2

ARBC
� b � 34 : ð6Þ

In the sensitivity analysis, we sample b� assuming d* Unif(84, 170), ARBC * Unif(130 �

106, 170 � 106), and b* Unif(0.4 � 106, 0.5 � 106), where d has unit nm, ARBC has unit nm2 and

b is unitless.

Virus concentrations (V0). To ensure the reproducibility of the HI assay, the same

amount of virus particles must be used in each experiment. Therefore, virus concentration is

measured in HA units, an operational unit that is determined in the so called HA titration

assay, where virus is titrated against a constant amount of RBCs (same amount as used in the

HI assay, i.e. 50 μL of 0.75% (v/v) RBC suspension are added to 50 μL serum-virus dilution).

The amount of virus that agglutinates an equal volume of standardized RBC suspension is

defined as 1 HA unit [4]. Electron microscopy data show that partial hemagglutination occurs

at 1:1 binding (on average, one virus particle binds to one RBC) [48]. We assume that full hem-

agglutination requires at least 2:1 binding. We used the rate equation for virus-RBC binding

(Eq 2) to determine the virus concentration that leads to 2:1 binding with 0.5 � 3.1 � 10−5 nM

RBC (S1A Fig): 3.2 � 10−5 nM. Assuming that this virus concentration corresponds to 1 HA

unit in our model simulations, 4 HA units are approximately V0 = 1.3 � 10−3 nM. In the sensi-

tivity analysis, we varied V0 in the range of 3–7 HA units.

Agglutination rate (kagg). We inferred the agglutination rate of RBCs from hemaggluti-

nation inhibition experiments with a serum sample from a healthy volunteer that also served

as our reference serum for the ELISA experiments (see below). We applied the inference pro-

cedure described in the next section. We used a broad uniform prior for kagg * Uniform(105,

109), set the coagulation kernel K to 1 and fixed all remaining parameters to the values in
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Table 1. The kagg posterior distribution was approximately log-normal (centered at around

2 � 106 s−1 with 95% credibility interval of approximately 0.4 � 106–13 � 106 s−1) with slightly

heavier tail towards larger kagg values since hemagglutination reaches saturation at approxi-

mately 30 min (S1B Fig). Data at earlier time points would be needed to infer kagg with higher

precision. We set kagg = 2 � 106 s−1; the precision suffices as we are interested in hemagglutina-

tion at� 30 min.

Inference of neutralizing antibody avidities

Given a measured IgG antibody concentration Ai of serum sample i (with estimated log mean

μA,i and log standard deviation σA,i) and the corresponding HI titer determined in an HI assay

with j = 1, . . ., J dilution steps, serum predilution factor dp, and serial dilution factor d, the gen-

erative model to infer the posterior distributions for Kapp
D;i is defined as follows:

Kapp
D;i � LognormalðmK ; s2

KÞ

Ai � LognormalðmA;i; s2
A;iÞ

A0;ij ¼ Ai � dp � dj

yij ¼ fyðA0;ij; K
app
D;i Þ

rij ¼ frðyijÞ

hij ¼ fhðrij; yijÞ

pij ¼ logit� 1
ðaðhij � h0ÞÞ

yij � BernoulliðpijÞ:

Here, A0,ij is the final concentration of diluted serum IgG at dilution step j. It gives rise to

sample- and dilution-specific θij, ρij, and hij as defined by Eqs 1, 3 and 5 (here abbreviated for

convenience with fθ, fρ and fh and with time dependencies dropped).

To determine the HI titer, each serum dilution j is inspected for hemagglutination inhibi-

tion, and the reciprocal value of the minimal dilution that shows full inhibition is the HI titer.

We treat the binary decision at each dilution step (inhibition/no inhibition) as a Bernoulli pro-

cess with inhibition probability pij, a shorthand notation for P(yij = 1 j hij). The indicator vari-

able yij takes the value 0 if the hemagglutination degree hij is above a certain threshold h0 (no

inhibition) and 1 otherwise (inhibition):

yij ¼
0; if hij > h0 ðno inhibitionÞ ;

1; if hij � h0 ðinhibitionÞ :

8
<

:
ð7Þ

This binary decision is modelled by a logistic function with steepness parameter α and

inflection point h0. The conditional likelihood for yTi ¼ ðyi1; yi2; . . . ; yiJÞ over all J dilutions is

then given by a product of Bernoulli likelihoods:

Pðyi j K
app
D;i ;AiÞ ¼

YJ

j¼1

pyijij � ð1 � pijÞ
ð1� yijÞ

ð8Þ

and the full posterior is:

P Kapp
D;i ;Ai j yi

� �
¼

PðKapp
D;i ÞPðAiÞPðyi j K

app
D;i ;AiÞ

PðyiÞ
: ð9Þ
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We sampled posterior distributions using the Metropolis-Hastings algorithm [54] with

6000 iterations, burn-in size of 1000 samples, and 5 chains. We used a broad log-normal prior

for Kapp
D;i centered at 1 nM with log mean μk = 0 and log standard deviation σK = 4. To define

the value of h0, we investigated the relationship between HA units and hemagglutination

degree in our HA titration simulations. The model predicted that the hemagglutination degree

is>75% for�1 HA unit (S1C Fig), which by definition corresponds to full hemagglutination.

Thus, assuming symmetry, we consider h0 = 25% a reasonable estimate, also assuming that dif-

ferences below 25% cannot be distinguished by eye. However, a different value for h0 does not

affect the interpretation of our results: it would shift the posterior distribution of all samples

either towards lower avidities (for larger h0) or higher avidities (for smaller h0). The steepness

parameter α affects the width of the posterior distribution. Here, we set α = 15 and then inves-

tigated the relationship between posterior distribution and resulting HI titer by sampling. We

sampled 500 times from the joint posterior distribution of Kapp
D;i and Ai for all patient sera i and

predicted the resulting HI titer to investigate the uncertainty in Kapp
D;i due to discretization of HI

titer measurements and ELISA measurement error. On average, approximately 55% of samples

resulted in the observed HI titer, whereas approximately 95% of samples also included HI titers

one dilution step higher or lower than the actually observed HI titer.

Reference serum

The concentration of H1N1pdm09-specific IgG antibodies was determined in ELISA

experiments relative to a reference serum collected from a healthy volunteer on day 7 after vac-

cination with 2014/2015 TIV (Agrippal, Novartis, Switzerland), showing an HI titer of 512.

Since the absolute reference concentration could only be determined by mass spectrometry,

which was not feasible in this study, we estimated the concentration based on reported

H1N1pdm09-specific IgG concentrations in vaccinated healthy adults with similar HI titers

[25]. We set the reference concentration to 100 μg/mL (670 nM), yielding an estimated avidity

for the reference serum of 0.4–0.8 nM, consistent with observed affinities for post-vaccination

serum IgG for H1N1pdm09 in healthy adults [22].

Identification of patients with increase in avidity and increase in non-

neutralizing IgG

For each inferred Kapp
D value, we identified the uncertainty interval due to ELISA measurement

error and dichotomization in HI titers by sampling from the joint posterior distribution (see

above) and considered non-overlapping intervals as a significant change in Kapp
D . To detect

patients that produced non-neutralizing IgG after vaccination, we identified patients that

showed no increase in HI titer while showing an increase in serum IgG that resulted in a sig-

nificant decrease in avidity (S4A Fig).

Sensitivity analysis

Sobol sensitivity analysis attributes variance in model output to individual model input factors

using variance decomposition [32]. Given k model inputs, the total variance V(y) in model

output can be decomposed as:

VðyÞ ¼
X

i

Vi þ
X

i

X

j>i

Vij þ . . .þ V12...k ; ð10Þ

where Vi = V(E(Y|xi)) is the variance with respect to the distribution of input factor xi. The sec-

ond-order interaction term Vij = V(E(Y|xi, xj)) − Vi − Vj captures the part of the effect of xi and
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xj that is not described by the first order terms Vi, Vj and so on. The relative contribution of

each term to the unconditional variance V(y) serves as a measure of sensitivity. For instance,

Vi will be large, if xi is influential. The first order Sobol sensitivity index is defined as

Si ¼
Vi

VðyÞ
: ð11Þ

To obtain the total contribution of xi, that is the sum of all terms in the variance decomposi-

tion that include xi, we compute the total contribution to variance V(y) due to all factors but xi,
denoted by x−1. The total Sobol sensitivity index for xi is then given by

STi ¼
VðyÞ � VðEðyjx� 1ÞÞ

VðyÞ
: ð12Þ

We used Monte Carlo estimation to estimate Sobol indices [55, 56] implemented in the R

package sensitivity [57] with n = 10000 random samples of model input vector xT = (x1,

x2, . . ., xk) and 10 bootstrap replicates to estimate confidence intervals. Input variables were

assumed to be independent of each other. We considered k = 12 inputs sampled within a bio-

logically reasonable range (Table 1).

Statistical analysis

Serum IgG and inferred Kapp
D values were available for 43 patients at five time points (t = 0, 7,

30, 60, 180 days) with 197 observations in total. To estimate the effects of a patient’s immune

state on serum IgG and avidity (1=Kapp
D ), we used a linear mixed model with patient-specific

random intercepts that takes the following general form:

yij ¼ b0 þ xTijb1 þ gi þ �ij;

gi � N ð0; s2
g
Þ;

�ij � N ð0; s2
�
Þ;

where yij is the log2-transformed IgG concentration or 1=Kapp
D value, respectively, of patient i

at time point j, xij is a p-dimensional vector of p covariates, β0 is an intercept term, β1 is a vector

of fixed effects, γi the random patient-specific intercept, and �ij models the within-patient mea-

surement error. We modeled the observed rise and fall of serum IgG and 1=Kapp
D value after

vaccination using a second-degree polynomial. To distinguish time trends in avidity between

neutralizing and non-neutralizing IgG responders, we added a dummy variable for neutraliz-

ing response when analyzing response in avidity. Time post HSCT� 2 years, cGVHD grade,

and immunosuppression grade were added as fixed effects on intercept to investigate effects

on baseline, and on slope to investigate effects on response. Time post HSCT� 2 years was

encoded as a binary variable (1 for� 2 years, 0 for> 2 years). Both cGVHD and immunosup-

pression grade were encoded as numerical variables with values 0, 1, 2, 3, such that grade 0 is

the reference level, and there is a linear increase in effect with increasing grade. To control for

potential confounders, we corrected for sex and age. For model selection, the full model with

fixed effects on slope and intercept was fitted using maximum likelihood estimation imple-

mented in the lmer4 package [58] and type II ANOVA by Satterthwaite’s approximation pro-

vided by the lmerTest package [59].

We detected no significant effects on response and therefore removed the fixed effects on

slope and refitted the final models using restricted maximum likelihood estimation to obtain

unbiased estimates [58]. Residuals indicated that the normality assumption was satisfied (S4B

Fig). Confidence intervals were computed via the Wald method provided by lme4. To
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compare the results with HI titers, we estimated the effect of time post HSCT� 2 years,

cGVHD grade, and immunosuppression on HI titers controlling for age, sex, and time after

vaccination using a generalized linear regression model for sequential, ordered data [34]. The

model was fitted using maximum likelihood estimation implemented in VGAM [60].

Supporting information

S1 Fig. Simulation results for the HA titration assay with influenza H1N1pdm09 and

model sensitivity. (A) Binding kinetics of virus particles to red blood cells. We assume that

full hemagglutination requires at least two bound virus particles per cell. (B) Hemagglutination

kinetics. (C) For HA units� 1, the hemagglutination degree is > 75%, which is by definition

interpreted as full hemagglutination. Gray areas and error bars indicate the uncertainty due to

uncertainty in model parameters. (D) Performing the HI assay with 4 HA units balances sensi-

tivity and robustness. There is a clear distinction between inhibition and no inhibition. (E) In

addition, the assay detects with 4 HA units lower antibody concentrations than with� 8 HA

units.

(TIF)

S2 Fig. Marginal posterior distributions of the apparent dissociation constants in 43

patients (197 posteriors in total). Some posteriors show larger variance due to larger mea-

surement error in ELISA-detected IgG concentration. Here, for samples with HI titer< 8, the

shown posterior distributions correspond to the inferred avidity when assuming HI titer = 4

(affected 23 serum samples from seven patients).

(TIF)

S3 Fig. HI titer, ELISA-detected anti-H1N1pmd09 serum IgG concentration, inferred

apparent dissociation constant and experimentally determined avidity index in twelve

patients. Avidity indices correspond to the fraction of H1N1pmd09-specific serum IgG

remaining bound after 4M urea treatment. Data show mean and standard deviation for serum

IgG and avidity indices and the median of the posterior distribution with the uncertainty

range due to discretized HI titer measurements and ELISA measurement error for inferred

apparent dissociation constants Kapp
D . Most patients showed either little or no increase in avid-

ity. In some patients, the measured avidity decreased and then returned back to baseline on

d180, potentially because the vaccine-induced short-lived antibodies were more sensitive to

urea treatment, resulting in antibody denaturation.

(TIF)

S4 Fig. Vaccine response analysis in 43 patients (197 samples in total). (A) Fold change in

inferred avidity and serum IgG concentration after vaccination. Error bars indicate uncer-

tainty in fold change due to uncertainty in inferred Kapp
D -values. Shading indicates regions with

qualitatively different responses to vaccination. (B) Residual plots of the regression models

used to investigate associations of criteria for compromised immune response with avidity and

serum IgG concentration.

(TIF)

S5 Fig. Inferred avidity, serum IgG concentration, and HI titers by time after transplanta-

tion, immunosuppression grade, and cGVHD grade in 43 patients (197 samples in total).

Note that data show one-dimensional associations, whereas regression analysis was performed

with a high-dimensional model simultaneously accounting for time after transplantation,

immunosuppression/cGVHD grade, and correcting for sex and age.

(TIF)
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