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Abstract: Ochratoxin A (OTA) is a mycotoxin that enhances renal tumor formation in the 
outer medulla of male rat kidney. Direct DNA damage and subsequent mutagenicity may 
contribute to these processes. In this study we have determined whether OTA in the 
absence or presence of activated rat liver microsomes (RLM) or redox-active transition 
metals (Fe(III) or Cu(II)) causes promutagenic DNA damage in the supF gene of the 
mutation reporter plasmid pS189 replicating in human Ad293 cells. In addition, we have 
assessed the mutagenicity of the hydroquinone metabolite (OTHQ) of OTA in the absence 
or presence of cysteine without added cofactors. Our results show that oxidation of OTA, 
either by RLM or by transition metal ions, activates OTA to a directly genotoxic 
mutagen(s). The Fe(III)/OTA system was the most potent mutagen in our experimental 
system, causing a 32-fold increase in mutant fraction (MF) above the spontaneous control 
MF. The Cu(II)/OTA system caused a 9-fold increase in MF, while a 6–10-fold increase in 
MF was observed for OTA in the presence of RLM. The OTHQ metabolite is also 
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mutagenic, especially in the presence of cysteine, in which a 6-fold increase in MF was 
observed. Our data provide further insight into OTA bioactivation that may account for its 
in vivo mutagenicity in male rat kidney.  

Keywords: ochratoxin A; mutagenicity; DNA adduct; genotoxicity; carcinogenesis 
 

1. Introduction 

Ochratoxin A (OTA, Figure 1) is a human toxin produced by Penicillium verrucosum and several 
Aspergillus species [1,2]. It is found in a variety of human foods, including cereal grains, e.g., wheat 
and rye, as well as coffee, beer, and wine [3,4]. OTA has been implicated as a cause of nephropathies 
and urothelial tract tumors in the Balkans [5–7] and in North African countries [8]. The International 
Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen  
(group 2B) [9], and OTA exposure has been associated with cancer of the urothelial tract in  
rats [10, and reviewed in 5] and chicks [11]. OTA has also been proposed as a cause of testicular 
cancer in young men [12,13]. 

OTA is a substrate for photochemical [14–16], electrochemical [17], and transition metal  
ion-mediated [18,19] oxidation. OTA is also a substrate for enzymatic oxidation by microsomal mixed 
function oxidases [20–22] and enzymes with peroxidase activity [23,24]. Exposure to OTA is 
cytotoxic to cultured cells [25–28] as well as in vivo in rodent models [29–31]. The cytotoxicity of 
OTA shows a close correlation with the onset of oxidative DNA damage mediated by the toxin 
through production of reactive oxygen species (ROS) [25,27,28].  

Figure 1. Structure of OTA, OTHQ and the OTB-dG adduct. 
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Studies of OTA-mediated mutagenicity have produced inconsistent results. The original assessment 
in S. typhimurium in the presence of rat liver post-mitochondrial supernatants was negative [32]. 
However, De Groene et al. observed OTA-mediated mutagenesis in NIH 3T3 cells stably expressing 
certain P450s [33,34]. Additional studies by the Obrecht-Plumio et al. in the presence of high dose 
OTA (403–1210 µg/plate), kidney microsomes, NADPH, and arachidonate caused the formation of 
mutagens detectable in S. typhimurium [35]. However, Zepnick and coworkers found negative 
evidence for OTA-mediated mutagenicity [36]. Palma et al. found that OTA-mediated mutagenicity is 
consistent with oxidative DNA damage and that bioactivation of OTA is not a requirement for the 
observed mutagenicity [37]. Several other studies have concluded that enzymatic oxidation of OTA 
does not cause covalent adduction of OTA to DNA [38–40] and that mutagenicity stems from  
by-products of cellular cytotoxicity [41]. However, other recent studies have produced conflicting 
results that indicate that oxidation of OTA in the presence of nucleosides or DNA yields covalent 
OTA-DNA nucleoside adducts [42–44]. Included in these studies is liquid chromatography-mass 
spectrometry (LC-MS) results that support the presence of the nonchlorinated OTB-2′-deoxyguanosine 
(dG) adduct (Figure 1) in male rat kidney [44]. Hibi and coworkers have also demonstrated the 
mutagenicity of OTA in the target tissue (outer medulla) of male rats [45]. In these studies the gpt delta 
transgenic rat model was employed and the reporter gene mutation assay showed significantly higher 
levels of deletion mutations compared to controls using DNA extracted from the outer medulla of male 
rat. The extracted DNA was also examined for 8-oxo-dG formation derived from ROS generation and 
no evidence for 8-oxo-dG formation was found and OTA exposure failed to increase the frequencies of 
GC: TA transversion mutations, which are characteristic of 8-oxo-dG-mediated mutagenicity. The in 
vivo mutagenicity assays reported by Hibi et al. suggest that oxidative DNA damage does not 
contribute to OTA-mediated mutagenicity and favor a direct genotoxic mechanism [45]. 

The positive results on OTA-mediated in vivo mutagenicity [45] combined with the finding that 
OTA generates the OTB-dG adduct in male rat kidney [44] demonstrates that DNA adduction and 
mutagenicity remains a viable mechanism of action for OTA-mediated renal carcinogenesis [46]. 
These results prompted us to report the current study, in which we address the mutagenicity of OTA in 
cell culture, using the human mutation reporter plasmid pSP189 developed by Seidman [47]. The data 
presented herein indicate that oxidation of OTA, either by microsomal enzymes or by transition metal 
ions, activates OTA to a directly genotoxic mutagen(s). Synthetic ochratoxin hydroquinone  
(OTHQ, Figure 1), an OTA metabolite that forms covalent DNA adducts [43], is also mutagenic. 

2. Experimental Section 

2.1. Reagents 

OTA (≥98%), βNADP, glucose-6-phosphate and glucose-6-phosphate dehydrogenase were 
purchased from Sigma Chemical Co. (St. Louis, MO, USA). Arochlor®-activated rat liver microsomes 
were purchased from In Vitro Technologies, Inc. (Baltimore, MD, USA). Plasmid pSP189 was 
received as a generous gift from Dr. Michael Seidman. The construction and properties of pSP189, 
including its “signature sequence”, have been reported [48]. OTHQ was chemically synthesized as a 
mixture of diastereomers (3(R/S), Figure 1) using the synthetic protocol previously reported [22] and 
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was ≥96% pure based on reverse-phase HPLC analysis. Stock solutions of OTA and OTHQ (13.7 mM) 
were prepared in dioxane. Stock solutions containing 10 mM OTA and 5 mM cupric acetate or ferric 
ammonium citrate (1:2 metal ion:OTA molar ratio) were made in 10 mM MOPS buffer, initially at  
pH 4, then adjusted to 7.4 with NaOH. Coordination of copper ions by OTA was verified by the 
appearance of an absorbance peak at 365 nm [18,49].  

2.2. Treatment of Plasmid PSP189 with OTA 

In general reactions were carried out in 50 mM potassium phosphate buffer, pH 7.4, except those 
involving Cu(II)- or Fe(III)-OTA complexes, in which case the buffer was 50 mM HEPES, pH 7.4. For 
reactions utilizing rat liver microsomes (RLM), a 25 mg/mL microsome suspension and a nucleotide 
regenerating system consisting of 0.7 mM βNADP, 7.7 mM glucose-6-phosphate, plus 1.5 units/mL 
glucose-6-phosphate dehydrogenase were pre-warmed to 37 °C for 5 min. All reactions were carried 
out in 500 µL volumes at 37 °C for 60 min and included 25 µg pSP189, OTA or OTHQ, 625 µg 
activated microsomes and 125 µL nucleotide regenerating system, where appropriate. Reactions were 
quenched by cooling on ice, followed by phenol:chloroform:isoamyl alcohol (24:24:1) extraction, 
chloroform:isoamyl alcohol (24:1) extraction, and ethanol precipitation. Precipitated plasmid was 
washed twice with 70% ethanol, dried, and dissolved in 10 mM Tris-HCl, pH 8 for analysis. 

2.3. Transfection of Target Cells 

Human Ad293 cells, which are immortal, but not malignant, human cells derived from  
embryonic kidney, were grown as a monolayer in Dulbecco’s modified Eagle’s medium  
(Gibco, Grand Island, NY, USA) containing 5% heat-inactivated fetal bovine serum in a humidified 
5% CO2 atmosphere. Target Ad293 cells, grown to ca. 50% confluence in 100 mm3 dishes, were 
transfected with 10 µg pSP189 DNA by the diethylaminoethyl dextran technique [50]. 

2.4. Mutation Analysis 

Low molecular weight DNA was isolated from target Ad293 cells 48 h after transfection by the 
procedure of Hirt [51]. Plasmid DNA was purified and analyzed for the mutant fraction (MF) as 
previously described [52]. Briefly, purified plasmid DNA was treated with 0.1 units/µL Dpn I to 
remove unreplicated plasmid DNA, then used to electrotransform Escherichia coli strain MBM7070. 
MBMB7070 cells contain an amber mutation in lacZ that is suppressed by wild type supF tRNA, 
producing functional β-galactosidase. Transformants were plated on Luria broth plates containing  
50 µg/mL ampicillin plus isopropyl-β-D-thiogalactoside (IPTG) and 5-bromo-4-chloro-3-indoyl-β-D-
galactoside (X-gal, the chromogen). Total (blue + white) and mutant supF-containing (white) colonies 
are enumerated. Mutant (M) white colonies were confirmed by secondary streaking.  

2.5. Statistical Analysis 

Poisson regression was used to assess the effect of treatment on the mean number of M colonies. 
The log of the number of colonies was used as an offset in the models, and pair-wise treatment 
differences were tested using linear contrasts. The Deviance statistic was used to assess goodness of 
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fit, and a likelihood ratio test comparing the log likelihoods from Poisson and Negative Binomial 
models was used to test for overdispersion. Weighted means and standard errors (SE) are presented in 
the text and tables. 

3. Results 

3.1. Activation with Rat Liver Microsomes 

Exposure to OTA did not significantly enhance the mutant fraction (MF) of plasmid pSP189 
replicated in human Ad293 cells above the background value of 3.5 × 10−6 (Table 1). Exposure to  
0.5–5 mM OTA in the presence of activated rat liver microsomes (RLM) enhanced the MF 6–10 fold 
to 3.5 ± 0.93 × 10−5 (Table 1, p < 0.02 for each comparison). However, no dependence of the MF on 
OTA concentration in the range 0.5–5 mM was discernible. Replacing activated RLM with boiled 
microsomes totally abrogated the OTA/microsome associated enhancement of mutagenicity. 

Table 1. Mutagenicity of OTA in the presence of rat liver microsomes.  

Expt. Treatment Colonies M Colonies a MF (×104) b Mean ± SE 
1 Plasmid alone 211267 2 0.09 0.035 ± 0.025
2  81533 0 0.00  
3  274100 0 0.00  
1 1 mM OTA 145467 1 0.07 0.061 ± 0.035
2  48367 1 0.21  
3  295233 1 0.04  
1 RLM + 0.5 mM OTA 165233 3 0.18 0.31 ± 0.087 
2  81767 2 0.24  
3  169300 8 0.47  
1 RLM + 1 mM OTA 104167 2 0.19 0.23 ± 0.072 
2  57767 2 0.35  
3  275867 6 0.21  
1 RLM + 5 mM OTA 88900 2 0.22 0.35 ± 0.093 
2  31333 2 0.64  
3  281700 10 0.36  
1 Boiled RLM + 1 mM OTA 56067 0 0.00 0.032 ± 0.032
2  51567 1 0.19  
3  204900 0 0.00  

a The number of mutant (M) supF-containing (white) colonies; b Mutant Fraction (MF) = number of M 
colonies (white)/total (blue + white) colonies. 

3.2. Mutagenicity of OTHQ 

The OTHQ metabolite of OTA can undergo an autoxidative process to generate the quinone 
electrophile OTQ [22], that reacts with DNA to generate adduct spots, as evidenced by  
32P-postlabeling [43]. Thus, the OTHQ metabolite of OTA was tested for mutagenicity in the absence 
of metabolism. Its mutagenicity was also tested in the presence of 1 equiv. cysteine. These experiments 
were prompted by our earlier findings that the OTQ electrophile reacts covalently with cysteine to 
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form a conjugate that is unstable and undergoes further reactions to afford electrophilic species that 
may react with DNA [16]. A one hour exposure to 1 mM OTHQ senhanced the MF of plasmid pSP189 
replicated in human Ad293 cells 3.6 fold above background to 1.4 ± 0.51 × 10−4 (p = 0.049, Table 2). 
Addition of 1 mM cysteine to 1 mM OTHQ further increased the MF to 6.3 fold above background to 
2.5 ± 0.68 × 10−4 (p = 0.003 vs. background, Table 2). 

Table 2. Mutagenicity of OTHQ in the absence or presence of cysteine. 

Expt. Treatment Colonies M Colonies MF (× 104) Mean ± SE
1 Plasmid alone 40150 2 0.50 0.39 ± 0.22 
2  18050 1 0.55  
3  19600 0 0.00  
1 1 mM cysteine 30500 3 0.98 0.73 ± 0.28 
2  32700 3 0.92  
3  32700 1 0.32  
1 1 mM OTHQ 12400 4 3.2 1.41 ± 0.45 
2  29200 3 1.0  
3  29350 3 1.0  
1 1 mM OTHQ + 1 mM cysteine 11200 6 5.4 2.45 ± 0.60 
2  29050 7 2.4  
3  29050 4 1.4  

3.3. Mutagenicity of OTA-Transition Metal Ion Complexes 

The mutagenicity of OTA in the presence of Fe(III) and Cu(II) was also determined, given that 
OTA is oxidized by Fe(III) into the quinone electrophile OTQ [22] that provides a rationale for the 
mutagenicity of OTHQ (Table 2). OTA also reacts with dG in the presence of Fe to generate the  
OTB-dG adduct shown in Figure 1 [53], and forms an OTA-Fe complex that has been implicated in 
lipid peroxidation mediated by the toxin [54]. OTA also forms a complex with Cu(II) [18,49] that can 
facilitate oxidative DNA strand scission [18,19]. Thus, we were interested to determine whether OTA 
would show mutagenicity in the presence of these redox-active transition metal ions. For  
these experiments, OTA was kept in a two-fold excess over the transition metal in the  
non-metal-coordinating HEPES buffer pH 7.4. Both Fe(III) [54] and Cu(II) [18] form 1:1 complexes 
with OTA and at pH 6.0 the equilibrium binding constant (K1:1) for Cu(II) is ~2.5 × 106 M−1 [18], 
while a K1:1 value ~2 × 108 M−1 has been determined for Fe(III) binding [54], suggesting complete 
metal ion coordination by OTA under our experimental conditions. Free Fe chelated to 
diethylenetriamine-pentacetic acid does produce a small dose dependent increase in MF in the 
mutation reporter plasmid assay [55]. In these experiments, 5 mM Fe showed a 3-fold increase in MF 
compared to control, while 0.1 mM Fe failed to enhance the MF [55]. Free Cu(II) has also been shown 
to act as a mutagen [56]. In our experiments, exposure to 1 mM Fe(III):2 mM OTA enhanced the MF 
of plasmid pSP189 replicated in human Ad293 cells 32-fold above background to 2.5 ± 0.52 × 10−4  
(p = 0.001, Table 3). Exposure to the 1 mM Cu(II):2 mM OTA complex enhanced mutagenicity to a 
lesser extent, ca. 9-fold above background to 7.1 ± 2.7 × 10−5 (p = 0.041, Table 3).  
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Table 3. Mutagenicity of transition metal ion/OTA complexes. 

Expt. Treatment Colonies M Colonies MF (× 104) Mean ± SE 
1 Plasmid alone 12100 0 0.00 0.080 ± 0.080
2  37200 0 0.00  
3  76050 1 0.13  
1 1 mM Cu(II)/2 mM OTA 10067 1 0.99 0.71 ± 0.27 
2  50700 3 0.59  
3  38350 3 0.78  
1 1 mM Fe(III)/2 mM OTA 24800 12 4.8 2.52 ± 0.52 
2  35600 4 1.1  
3  34650 8 2.3  

4. Discussion 

There has been considerable debate whether OTA is directly genotoxic [38,39,44,46,57,58]. OTA 
can promote oxidative DNA damage through ROS generation that causes cytotoxicity [25,27,28] and 
oxidative DNA damage has been proposed to play an important role in carcinogenicity [41]. However, 
other lines of evidence favour DNA adduction by OTA [23,42–44,46,57]. The in vivo mutagenicity 
findings for OTA do not support oxidative base damage as the initiation event and favour direct 
genotoxicity in OTA-induced renal carcinogenicity [44]. However, the link between DNA adduction 
and OTA-mediated mutagenicity has not been firmly established [46].  

The data presented here demonstrate that OTA is activated to a species that is a directly genotoxic 
mutagen. The free toxin lacked mutagenicity in the absence of external cofactors, such as RLM  
(Table 1) or redox-active transition metal ions (Table 3). These findings differ from the mutagenicity 
data presented by Palma et al., which suggested that bioactivation in not required for  
mutagenicity [37], and are more in line with the data from Tozlovanu et al., 2006 showing that DNA 
adduction by OTA is not observed directly with OTA in the absence of oxidative metabolism [43].  

That RLM could be used for the conversion of OTA to a genotoxic mutagen in our experimental 
system (Table 1), suggested that the genotoxic metabolite of OTA is an oxidation product. In this 
regard, we previously demonstrated that the oxidation of OTA (100 µM) by RLM (1 mg/mL) 
generated a GSH-conjugate that suggested the intermediacy of the quinone electrophile (OTQ) in the 
oxidation of OTA [59]. Pfohl-Leszkowicz and coworkers have also outlined a role for GSH in 
conjugation of OTA-derived electrophiles following bioactivation of the parent toxin [60]. The 
oxidation of OTA by activated RLM in the presence of a reducing agent (ascorbate) also generates the 
hydroquinone metabolite OTHQ [59]. OTHQ autoxidizes to OTQ that reacts covalently with DNA to 
generate DNA adducts [43]; although the structure(s) of such adducts are unknown. This process 
occurs spontaneously in aqueous media in the presence of molecular O2, and no other cofactors are 
required for conversion of OTHQ into OTQ [22]. While this process has the potential to generate 
genotoxic ROS, we have recently demonstrated that OTHQ lacks cytotoxicity in mammalian kidney 
cells, suggesting that the metabolite is ineffective at stimulating ROS production [61]. Thus, DNA 
damage mediated by OTHQ is mainly due to covalent DNA adduction stimulated by OTQ  
formation [43]. This background information implies that OTQ formation is likely responsible for 
mutagenicity stimulated by the RLM/OTA system (Table 1).  
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Authentic OTHQ was also mutagen in our experimental system, albeit a weak one (Table 2). The 
weakness of OTHQ mediated mutagenicity may be a reflection of its slow rate of autoxidation [22]. 
Prolonged incubation of pSP189 with OTHQ may have enhanced its mutagenicity. However, 
interestingly, addition of cysteine enhanced the mutagenicity of OTHQ. A possible mechanism for 
enhancement of OTHQ-mediated mutagenicity by cysteine is suggested by our previous work [16] and 
outlined by Monks and Lau for the nephrotoxicity of polyphenolic-gluathione conjugates [62]. Thus, 
as outlined in Figure 2, autoxidation of OTHQ generates OTQ that reacts with cysteine to afford the 
conjugate OTHQ-Cys [16]. This conjugate is not stable [16] and can also undergo an autoxidative 
process to reform the quinone structure that reacts covalently with the amine group of the attached 
cysteine to afford a quinonimine that upon tautomerization will afford the imine electrophile in the 
new six-membered ring system. The imine functional group forms the basis for DNA adduction by the 
pyrrolobenzodiazepines, such as anthramycin, that have potential use in anticancer therapies [63]. This 
proposed pathway may play a role for the heightened mutagenicity of OTHQ in the presence of 
cysteine (Table 2).  

Figure 2. Proposed pathway for reaction of cysteine with OTHQ. 

 

In our experimental system, Fe(III)/OTA was the most potent mutagen showing a 32-fold MF 
above background levels (Table 3). This observation may correlate with earlier studies on the 
reactivity of OTA in the presence of dG to yield OTB-dG [53]. These studies were prompted by 
reports that OTA forms guanine-specific DNA adducts [64,65] and demonstrated that OTB-dG 
formation resulted from reaction of OTA/dG in the presence of Fe, Cu, or peroxidase enzymes [53]. 
Interestingly, Fe generated OTB-dG in the highest yield, ~5 orders of magnitude greater than Cu and 
peroxidase. The greater reactivity of OTA toward guanine in the presence of Fe, as opposed to Cu, 
may provide a rationale for the enhanced MF of the Fe/OTA system (Table 3). However, Fe(III) also 
oxidizes OTA to the quinone electrophile OTQ that reacts with DNA [43] and provides a rationale for 
the mutagenicity of OTHQ (Table 2). Thus, there are at least two possible mechanisms for 
Fe(III)/OTA mediated mutagenesis: (1) OTB-dG formation, and (2) OTQ formation with subsequent 
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adduct formation. At present, the DNA adduct(s) formed by OTQ have not been structurally 
characterized and it is unknown whether the OTB-dG adduct is mutagenic. Our goal is to first 
characterize the DNA adducts formed by OTQ, and incorporate site-specifically the OTQ adducts and 
OTB-dG into oligonucleotide substrates so that their biological consequences can be assessed.  

The observation of OTA-mediated mutations in the supF gene of plasmid DNA replicating in 
human Ad293 cells seemingly is not concordant with the work of Hibi et al. [45], who did not observe 
enhanced mutagenesis in the gpt gene in kidneys of OTA-exposed mice. The explanation for the 
disparate results is not known; however, methodologic differences may be contributory gpt mutations 
are detected phenotypically by resistance to 6-thioguanine due to loss of hypoxanthine-guanine 
phosphoribosyl transferase (HGPRT) catalytic activity. Phenotypically silent gpt mutations that do not 
affect HGPRT catalytic activity and are therefore not detected in a 6-thioguanine resistance assays may 
have contributed to underestimation of OTA-mediated mutations in mouse kidney DNA. In contrast, 
there are no phenotypically silent mutations in the supF gene in the reporter assay used in this study. 
Hibi et al. [45] did observe enhance OTA-mediated production of large (ca. 10 kb) deletions in mouse 
kidney; such mutations are not observable in the plasmid pSP189-based assay. The occurrence of large 
deletions in the mouse kidney vs. base substitutions and frameshift mutations in the in vitro plasmid 
based assay may reflect differences in the OTA activation pathways to a proximate mutagen. Base 
substitution and/or frameshift mutations mediated by OTA in vitro are enhanced by conversion to the 
hydroquinone in the presence of cysteine or to the phenoxyl radical in the presence of Fe(III), both of 
which produce DNA base-reactive OTA intermediates. It is possible that OTA activation pathways in 
the mouse kidney generate phosphodiester backbone reactive intermediates, producing double strand 
breaks that lead to large deletions, rather than DNA base reactive intermediates. In this regard, 
differences in OTA activation pathways in the kidney as compared to those utilized in the in vitro 
mutation reporting system may be attributable to the fact that liver, as opposed to kidney, microsomes 
were used for in vitro activation. Future experiments using the in vitro mutation reporting system 
described herein will focus on the impact of OTA bioactivation by kidney microsomes, enabling 
comparison with the mutagenicity of liver microsome-activated OTA in vitro and the in vivo  
OTA-mediated genetic alterations described by Hibi et al. 
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