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Abstract: Slip-induced falls, responsible for approximately 40% of falls, can lead to severe injuries
and in extreme cases, death. A large foot–floor contact angle (FFCA) during the heel-strike event
has been associated with an increased risk of slip-induced falls. The goals of this feasibility study
were to design and assess a method for detecting FFCA and providing cues to the user to generate a
compensatory FFCA response during a future heel-strike event. The long-term goal of this research
is to train gait in order to minimize the likelihood of a slip event due to a large FFCA. An inertial
measurement unit (IMU) was used to estimate FFCA, and a speaker provided auditory semi-real-
time feedback when the FFCA was outside of a 10–20 degree target range following a heel-strike
event. In addition to training with the FFCA feedback during a 10-min treadmill training period,
the healthy young participants completed pre- and post-training overground walking trials. Results
showed that training with FFCA feedback increased FFCA events within the target range by 16%
for “high-risk” walkers (i.e., participants that walked with more than 75% of their FFCAs outside
the target range) both during feedback treadmill trials and post-training overground trials without
feedback, supporting the feasibility of training FFCA using a semi-real-time FFCA feedback system.

Keywords: foot–floor contact angle; slip; feedback; gait training; inertial measurement unit

1. Introduction

Slip-induced falls comprise up to 40% of falls among older adults and can cause
significant injuries with lasting negative effects on daily activities [1]. Occupational slips
lead to an absence of approximately 11 working days post-injury due to the subsequent
injuries [2]. Slips can be caused by various factors including an improper contact surface
between foot and ground and a large foot–floor contact angle (FFCA) at heel strike [3–8].
For example, prior studies have shown that a large FFCA (>20◦) is associated with more
frequent slips [3,6] and falls [4,5].

To prevent slips and falls, multiple interventions have been developed to improve the
contact surface between foot and ground, such as non-slip socks and footwear modifica-
tions. However, the effectiveness of non-slip socks on slip-prevention remains unclear [9].
A recent systematic review reported that insoles (e.g., orthopedic, textile, or vibrating
insoles) generally improve static and dynamic balance, but may not be able to address the
environmental risk factor of a slippery floor [10]. Slip-resistant shoes can increase friction
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between footwear and ground surfaces, and reduce the severity of the slip [11,12]. Training
on a movable floor has been shown to improve slip recovery [13], but findings have been
limited to indoor settings, and many slips happen outdoors [2]. Another method shown
to reduce slips and falls is walking with proactive gait adaptations that decrease both slip
probability and slip severity. Beneficial proactive gait adaptations include shortened step
length, increased cadence, and decreased FFCA [5,14].

Feedback systems coupled with inertial measurement units (IMUs) can provide cues
based on the measured kinematics to improve balance [15–26] and gait [27–31]. For example,
a feedback system with an IMU at the trunk has been demonstrated to reduce trunk tilt
during walking [27]. Previous studies have also reported that IMUs measuring lower-limb
kinematics paired with corresponding haptic or visual cues can correct excessive internal
and external foot rotation during walking (i.e., foot progression angle) in healthy older
adults [32] and increase insufficient knee-flexion angle during the swing phase of gait in
a participant with cerebral palsy [33]. A proof-of-concept study supported the feasibility
of foot-mounted IMUs to improve certain gait parameters including stance/swing time,
stride length, and FFCA [34]; significant changes were observed for participants with spinal
cord injury and older adults, but not for participants with stroke, when participants were
provided with verbal feedback of foot angles [34]. However, this particular study did
not examine full-body kinematics [34], which may be helpful to explain the inconsistent
results among different participant groups. In summary, a limited number of studies have
explored the potential effects of providing feedback about FFCA during walking, and
among the studies that have investigated this topic, none have considered the effects of
FFCA alterations on full-body kinematics.

This feasibility study aimed to address three research questions: (1) can participants
use feedback to change their FFCA during treadmill walking; (2) do outcomes from tread-
mill gait training carry over to overground walking; and (3) how do the body kinematics
change with FFCA feedback? We hypothesized that an IMU-based FFCA feedback system
could be used to detect FFCA and prompt participants to adjust their FFCA during subse-
quent heel-strike events if it exceeded or fell below a target range of values. Such a system
could be used as a real-time aid or a gait-training tool in future practice.

2. Materials and Methods
2.1. Participants

Ten healthy young adults (three females and seven males, mean age 22.0 ± 1.6 years,
mean weight 66.7 ± 5.9 kg, and mean height 173.4 ± 7.0 cm) were enrolled in this study.
All participants provided written informed consent prior to participation. Approval was
granted from an Institutional Review Board at the University of Michigan (HUM00015990).
Following the completion of the baseline assessment (session 1), only seven participants
(three females and four males, aged 21.9 ± 1.9 years, weight 66.3 ± 6.9 kg, and height
172.0 ± 7.8 cm) met the FFCA-based criteria and were included in the data analysis. For par-
ticipants who did not meet the criteria, data collection ceased after the baseline assessment.

2.2. Experimental Protocol

The protocol comprised four experimental sessions conducted in a laboratory setting:
session 1—baseline assessment; session 2—gait training with verbal instructions prior to
each walking trial to reduce FFCA during each subsequent trial; session 3—treadmill gait
training with semi-real-time feedback; and session 4—post-training assessment after the
FFCA-feedback training. All sessions except for the third session (treadmill gait training)
included both overground and treadmill walking trials. Overground walking trials were
included in this preliminary study to assess the extent to which carry-over effects from
training with feedback while walking on a treadmill were observed. Following the com-
pletion of the baseline assessment, participants’ FFCAs were analyzed to determine the
percentage of heel-strike events resulting in FFCAs within the target range of 10◦–20◦.
Participants who had more than 75% of their FFCAs within the target range during the
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baseline session were excluded from the study on the basis that minimal opportunities
existed to further adjust their FFCA with the addition of feedback.

After the baseline assessment, each participant was provided with summary informa-
tion about the percentage of their FFCAs that fell within the desirable range. If participants
met the inclusion criteria, they were provided with more detailed information about their
FFCA values and instructions on how to adjust their FFCA to achieve values within the
target range. Each participant was allowed to practice walking a few steps within the
targeted FFCA range to familiarize themselves with the task.

For the overground walking trials performed as part of sessions 1, 2, and 4, partici-
pants completed five trials per session and were instructed to walk naturally along a 7 m
walkway. For the treadmill walking trials performed as part of all four sessions, participants
were instructed to walk on a level treadmill (TMX 22, Fuller Vision Inc., Groveport, OH,
USA) for 2 mins [35] at a speed of 1.35 m/s [36]. Prior to the start of the first treadmill
trial, participants were allotted 2 min to acclimate to walking on the treadmill. During
the treadmill training session (session 2), participants performed gait training over four
consecutive blocks of time, each lasting 4 mins [37]. Kinematic data were collected on
participants throughout all four sessions with a passive optical motion tracking system and
a custom IMU-based feedback system described below. Participants were required to rest
for 3 min after experimental sessions 1, 2, and 4, and following completion of each 4 min
training block within session 3 [37]. For the verbal instruction session (session 2), mean
and range FFCA values in addition to the percentage of desirable FFCAs from the previous
trial were verbally provided to participants, and participants were instructed to adjust
their gait to achieve FFCAs within the desirable range before the start of each subsequent
walking trial. For session 3, gait training with semi-real-time feedback was performed on
the treadmill in order to enable many steps to be taken without stopping or turns within
the field of view of the motion tracking system that captured kinematic data.

2.3. FFCA Training

The feedback system estimated FFCA at the heel-strike event for each step of the par-
ticipant’s dominant foot and provided semi-real-time audio cues every two steps when the
FFCA was outside of the desirable range via the built-in speaker of the laptop performing
data analysis. Semi-real-time cues have been shown to be more effective than deliver-
ing continuous real-time reminders for other motion-training applications (e.g., changing
knee-flexion/extension angles [38]). The feedback system consisted of (1) a commercially
available IMU (MTW2-3A7G6, Xsens Technologies B.V., Enschede, The Netherlands; sam-
pling frequency 120 Hz [39]) attached to the mid-foot by adhesive tape to measure foot
kinematics along three axes; and (2) a laptop that analyzed the IMU data, computed
the FFCA at heel strike, and provided the semi-real-time auditory cue after heel strike
(Figure 1). The system detected heel strike (and computed FFCA) using a custom algorithm.
The FFCA was defined as the pitch angle at heel strike, and the pitch angle was estimated
as the angle between the foot and floor. During walking, the heel strike was detected in two
phases. In the first phase, a foot-in-motion period was identified. A foot-in-motion period
started when the heel raised from the ground and ended when the entire foot was on the
ground. Specifically, when the pitch angle was less than 0◦ for at least three continuous
time stamps (i.e., 0.025 s), the heel was considered to have risen from the ground. When
the standard deviation of acceleration was less than 0.1 g for 50 continuous time stamps
(i.e., 0.42 s) after the heel rise, the foot was considered to have been on the ground and
the pitch angle was reset to 0◦ for the next stride. In the second phase, the heel strike was
identified at the time stamp when the maximum acceleration was detected during the
foot-in-motion period.

The FFCAs for two continuous steps of the dominant foot were averaged and then
compared to the target range on a rolling basis. If the average FFCA value was greater
than 20◦, a high-pitch tone was provided to participants to cue them to slightly reduce
their FFCA during their subsequent step, and if the average FFCA value was less than
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10◦, a low-pitch tone was provided to participants to cue them to increase their FFCA
slightly during their subsequent step. Each participant was also told that the goal was to
walk without receiving any feedback from the system during the training. Only direction
information (not magnitude information) was provided to the participants. Although an
IMU was placed on each foot, only the IMU placed on the dominant foot was used as the
input for the FFCA feedback algorithm.

Figure 1. The semi-real-time system for providing feedback about the FFCA.

2.4. Three-Dimensional (3-D) Motion Collection and Processing

Participants were instrumented with 35 retroreflective markers, with a minimum of
three tracking markers per body segment. Markers were affixed with double-sided tape
to the sternum, clavicle, C7 and T10 vertebrae, right shoulder blade; and bilaterally on
the acromio-clavicular joints, lateral epicondyle of the elbows, styloid processes of the
radius and ulna, hands, anterior superior iliac spine, posterior superior iliac spine, anterior
mid-thighs, lateral femoral condyles, tibial tubercles, lateral malleoli, the central forefeet
(between the second and third metatarsals), and the heels. Four additional tracking markers
were mounted on a headband worn by the participants. A 10-camera, high-speed, passive
optical motion analysis system (Vicon, Oxford, UK) sampled at 100 Hz was used to capture
the three-dimensional marker trajectory data from each participant. Ground reaction forces
in Newtons were collected with two embedded force platforms (AMTI, Watertown, MA,
USA) sampled at 1000 Hz that were synchronized with the motion capture system for the
overground walking trials only. After marker placement, a static trial was conducted with
the participant in a neutral position with foot direction and placement standardized to the
laboratory’s coordinate system. Marker trajectories were filtered using a low-pass, fourth-
order Butterworth filter with a cutoff frequency of 12 Hz. A six-degree-of-freedom skeletal
model was applied to the filtered trajectories to determine the position and orientation of
each segment at each time sample, and the model was scaled to each participant’s height
and weight. Lower-extremity Cardan joint angles (hip, knee, and ankle) were calculated
using Visual3D (C-Motion, Inc., Germantown, MD, USA), and the foot angle was computed
in Visual3D as the absolute angle between the foot segment and the horizontal in order to
compare to the FFCA computed from the IMU.

2.5. Outcome Measures and Data Analysis
2.5.1. Comparison of FFCA across Experimental Sessions

The first and last steps of each overground walking trial and the first and last ten steps
of each treadmill walking block were removed for data analysis to avoid the variations
associated with the initiation and termination of gait. All post-processing was performed
using Matlab (version R2016b, MathWorks, Natick, MA, USA). The percentage of steps with
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FFCAs within the target range, FFCA mean and standard deviation (SD), FFCA coefficient
of variance (CV), cycle time, stride length, stride width, and speed during walking were
calculated for each experimental session.

2.5.2. Comparison of FFCA Computed Using IMU, 3D Motion Capture, and Force Platforms

To assess the validity of the semi-real-time feedback system to accurately detect FFCA,
we compared the FFCA computed using the IMU data during the overground trials (defined
as “IMU”) with a ground-truth measure, which we specified as the foot angle at heel strike
as measured with the 3D motion capture system and detected using the embedded force
platforms (i.e., ground reaction force; defined as “GRF”). Specifically, for those heel-strike
events for which there was a clear heel strike, i.e., events when the heel of the foot made
evident contact in the middle of the force platform, we compared the FFCA for that specific
heel-strike event as determined using the IMU and the foot angle as measured using 3D
motion capture at the point at which the heel strike was detected by the force platform
using a threshold of 10 N. In addition, we applied the FFCA algorithm to the 3D motion
capture data to compute FFCAs based on the motion capture data at each detected heel
strike (defined as “Vicon”).

To compare the FFCA across all three conditions (“IMU”, “Vicon”, and “GRF”), the
IMU data were down-sampled to match the frequency of the motion capture data and were
time-synchronized using cross-correlation (i.e., using the xcorr function in Matlab).

2.5.3. Joint Coordination Profile Analysis

To investigate the strategies used by participants to adjust their FFCA, a modified
vector-coding technique was used to quantify inter-joint coordination for the hip–knee
and knee–foot sagittal plane joint couplings during the swing phase prior to foot–floor
contact [40,41]. Coordination was quantified for a given joint coupling by first time-
normalizing the gait cycle preceding foot–floor contact to 101 data points (representing
0–100% of the cycle). Following this temporal normalization, a coupling angle was com-
puted for each joint pairing, which indicated the relative angular motion within the cou-
pling. Afterward, intra-participant coordination variation was quantified for each of the
examined joint couplings by calculating the coupling angle variability (CAV) across each
participant’s trials for a given condition (e.g., across the five trials for the baseline (session 1)
and post-treadmill training overground trials (session 4, Figure 2) [42].

Figure 2. An illustration of the coupling-angle-variability (CAV) calculation process for the hip-
flexion/knee-flexion joint coupling for a representative participant. The left figure shows hip and
knee flexions across four gait trials; the right figure shows the coupling angle (γ) for the trials, the
mean γ, and the CAV.

Finally, the average CAV values for each joint coupling during the swing phase of
the gait cycle, defined as the final 40% of the time-normalized gait cycle, were computed.
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The CAV during the antecedent swing phase (i.e., ~40% prior to heel strike) was used to
quantify the amount of inter-stride variability between two lower-extremity sagittal joint
kinematic pairings (hip–knee & knee–foot). To interpret the CAV findings, a coordination
profiling technique was employed to examine how the participants utilized feedback to
modify their FFCA and to highlight differences between participants in a single-participant
design [43,44].

2.6. Statistical Analysis

Statistical analyses were conducted to assess FFCA differences across the four ex-
perimental sessions, and FFCA differences across the three FFCA computation methods
(i.e., “IMU”, “Vicon”, and “GRF”). The averages of (1) percentage of FFCA matching the
desirable range of 10–20◦, (2) FFCA values, (3) standard deviation (SD) of FFCA values,
and (4) coefficient of variance (CV) of FFCA values were computed for each participant
to conduct the statistical analysis. The Shapiro–Wilk test was used to verify data nor-
mality. For non-normally distributed data, the Friedman Test was performed to examine
the existence of significant differences among the four experimental sessions using SPSS
(version 22, IBM Corporation, Armonk, NY, USA). Post-hoc planned comparison tests
with Bonferroni correction (Wilcoxon Signed Ranks Tests) were conducted to determine
if significant differences existed between conditions of (1) treadmill: baseline vs. training
with the FFCA feedback system; (2) treadmill: baseline vs. post-training with the FFCA
feedback system; (3) treadmill: verbal instruction vs. training with the FFCA feedback
system; and (4) overground: baseline vs. post-training with the FFCA feedback system. The
Kruskal–Wallis H test was used to assess differences among the three FFCA computation
methods, with Dunn’s post-hoc test for multiple comparisons used to assess differences
among these methods. The level of significance was set at 0.05.

3. Results
3.1. Effects of Semi-Real-Time Feedback System on FFCA during Walking

The sensitivity and specificity of the IMU for detecting FFCAs between 10◦ to 20◦

and providing the correct feedback were 99.0% and 96.4% as compared to the FFCAs
captured by Vicon in a pilot study involving five participants, respectively. An example
of the distribution of FFCAs for different treadmill walking conditions for an illustrative
participant is shown in Figure 3. The percentage of FFCAs within the desirable range
(10–20◦) was low during the baseline assessment, and increased while receiving feedback,
with the training results retained for short periods of time after training with the feedback.

Table 1 reports the FFCA mean and SD values, and the spatial and temporal gait
parameters computed across all participants. As shown in Table 1, the mean percentage
of desirable FFCAs increased by 24.1% during feedback training (p < 0.05) with respect to
the baseline treadmill values, and increased by 40.6% for the post-training session without
feedback (p < 0.05) with respect to the baseline treadmill values. The baseline treadmill
mean FFCA (9.9◦) increased to 13.7◦ during training trials (p < 0.05) and to 13.0◦ during post-
training trials (p < 0.05) compared to baseline treadmill trials. It is also interesting to note
that the mean variability of FFCAs was smaller during treadmill training trials (p < 0.05) and
post-training trials (p < 0.05) than during the baseline treadmill trials, and was also smaller
during treadmill training trials compared to verbal-instruction treadmill trials (p < 0.05). No
significant differences among FFCA parameters were found for overground walking trials,
although the p values for the mean percentage of desirable FFCAs (p = 0.075) and reduction
in mean values of the post-training FFCAs (p = 0.093) were approaching significance.
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Table 1. Comparison of the FFCA across all sessions (n = 7).

Mean ± SD p-Value

Baseline
Session

(S1)

Verbal Instruction
Session

(S2)

Feedback
Training Session

(S3)

Post-Training
Session

(S4)

Friedman Test
(4 Sessions)

Planned Comparison (Wilcoxon Signed
Ranks Test)

S1 vs.
S2

S1 vs.
S3

S1 vs.
S4

S2 vs.
S3

Treadmill

Percentage of desirable FFCA 1 53.9 ± 14.8% 45.9 ± 27.5% 66.9 ± 15.0% 75.8 ± 10.9% <0.001 * 0.227 0.028 * 0.027 * 0.249
FFCA (◦) 9.9 ± 2.2 9.2 ± 3.4 13.7 ± 0.5 13.0 ± 1.4 <0.001 * 0.761 0.028 * 0.075 0.028 *

SD of FFCA 6.5 ± 3.2 4.6 ± 1.2 5.4 ± 1.1 5.3 ± 2.6 0.009 * 0.311 0.463 0.046 * 0.027 *
CV of FFCA 66.5% ± 27.0% 55.0% ± 20.5% 39.4% ± 8.3% 42.2% ± 25.2% 0.020 * 0.457 0.028 * 0.028 * 0.075
Speed (m/s) 0.743 ± 0.013 0.740 ± 0.023 0.697 ± 0.085 0.744 ± 0.011 <0.001 * 0.046 * 0.176 0.866 0.499

Gait cycle time (s) 1.278 ± 0.043 1.245 ± 0.064 1.267 ± 0.061 1.273 ± 0.070 <0.001 * 0.091 0.612 >0.999 0.866
Stride length (m) 0.951 ± 0.038 0.922 ± 0.052 0.886 ± 0.121 0.948 ± 0.053 <0.001 * 0.046 * 0.176 0.866 0.499
Stride width (m) 0.1408 ± 0.0379 0.1427 ± 0.0338 0.1430 ± 0.0382 0.1434 ± 0.0479 0.713 - - - -

Overground

Percentage of desirable FFCA 1 26.4% ± 20.7 35.0% ± 22.7 - 43.3% ± 25.6 - 0.895 - 0.075 -
FFCA (◦) 20.9 ± 4.7 16.7 ± 4.9 - 19.1 ± 3.0 - 0.058 - 0.093 -

SD of FFCA 5.7 ± 2.1 6.5 ± 0.9 - 6.9 ± 1.3 - 0.979 - 0.173 -
CV of FFCA 29.0% ± 14.1 40.8% ± 10.1 - 36.0% ± 3.9% - 0.809 - 0.249 -
Speed (m/s) 1.272 ± 0.101 1.099 ± 0.147 - 1.190 ± 0.104 - 0.063 - 0.237 -

Gait cycle time (s) 1.085 ± 0.045 1.157 ± 0.073 - 1.146 ± 0.057 - 0.043 * - 0.063 -
Stride length (m) 1.422 ± 0.116 1.302 ± 0.114 - 1.360 ± 0.093 - 0.063 - 0.237 -
Stride width (m) 0.1434 ± 0.0495 0.1427 ± 0.0393 - 0.1374 ± 0.0386 - - - - -

FFCA: Foot–Floor Contact Angle; SD: Standard Deviation of FFCA; CV: Coefficient of Variance of FFCA; 1: Percentage of FFCA matching the desirable range of 10–20◦; *: p < 0.05.
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Figure 3. Example of the distribution of FFCAs for different treadmill walking conditions for a
representative participant (n = 1). Each dot represents the FFCA of one step detected by the IMU.

For the spatial and temporal gait parameters, both walking speed and stride length
during treadmill walking with verbal instruction significantly decreased from the baseline
treadmill walking trials (p < 0.05), but the percentage differences were not large (<5%).
Meanwhile, the gait cycle time for overground walking trials with verbal instruction signif-
icantly increased by 6.6% from the baseline overground walking trials (p < 0.05). There was
also a tendency that the gait cycle time for treadmill walking trials with feedback decreased
from the baseline treadmill walking trials (p = 0.091). For the overground walking trials,
the speed and stride length decreased when walking with verbal instruction compared
to baseline walking trials (p = 0.063), while the gait cycle time after the training increased
from the baseline trials (p = 0.063), although no statistical significance was reached.

3.2. Gait Kinematics and Coordination Changes Pre- and Post-Training

From baseline to post-training, participants primarily tended to reduce their FFCA
by shortening their stride length, evidenced by a slightly reduced hip flexion at heel strike
and a slight offset in the swing phase (Figure 4). The duration of the swing phase also
decreased post-feedback, which may also help explain the shortened stride length.

Figure 4. Mean gait cycle at baseline (blue) and post-feedback (red) of the hip joint, knee joint, and
foot of the dominant leg (n = 7). The shaded regions indicate the 95% bootstrapped confidence
interval around the mean for each curve.
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The coordination profiling analysis revealed that the participants varied in how they
coordinated their movements to reduce FFCA. Specifically, of the seven participants, three
exhibited reduced CAV post-testing (9.7 to 2.8 for the hip–knee and 12.1 to 4.6 for the
knee–foot, on average), while the remaining four exhibited increased CAV (5.2 to 10.0
for the hip–knee and 7.5 to 13.6 for the knee–foot, on average) (Figure 5). The changes
in walking speed were also inconsistent among the seven participants. Specifically, five
participants walked more slowly and the remining two walked more quickly in post-
training overground walking trials after the treadmill training (Figure 6).

Figure 5. Average change in coupling angle variability (CAV) among the two joint pairings for
the three participants who reduced their CAV baseline to post-feedback (Rigid) and the four par-
ticipants who increased their CAV baseline to post-feedback (Flex) (n = 7). Error bars indicate the
standard deviation.

Figure 6. Overground walking speed of the seven participants for baseline and post-training walking
trials (i.e., before and after the treadmill training) (n = 7).

3.3. Comparison of FFCA Values Computed based on IMU, Vicon, and GRF

A total of 32 available FFCAs (with validation from the GRF-based measurement)
out of 105 IMU-measured overground FFCAs (5 walking trials × 3 overground walking
conditions × 7 participants) were identified and used for the computation and statistical
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analysis. Regarding the different FFCA computing methods, computing the FFCA based
on GRF tended to underestimate the FFCA values in general (Figure 7). There was a
significant main effect on FFCA among the three computing methods (Kruskal–Wallis Test;
H(2) = 11.32, p = 0.004) (Figure 7B). The post-hoc analyses (Dunn’s Test) revealed that the
FFCA was significantly larger when using the FFCA algorithm with both the Vicon (87.5%
of overestimation, p = 0.039) and IMU (84.4% of overestimation, p = 0.004) data than when
detecting FFCA using the GRF data. Meanwhile, the Vicon- and IMU-computed FFCAs
were not significantly different from each other (p = 0.714).

Figure 7. Comparison of FFCA computed based on IMU, Vicon and GRF: (A) Differences in FFCA
computed based on IMU, Vicon and GRF. The “1st FFCA” is the first group listed in the legend entry
(e.g., IMU in “IMU vs. Vicon”), while the “2nd FFCA” is the second group listed (e.g., Vicon in “IMU
vs. Vicon”). For example, blue squares show how Vicon-based FFCA compares to GRF-based FFCA;
(B) Boxplot showing the mean differences in FFCA computed based on IMU, Vicon and GRF. Red
crosses indicate outliers.

4. Discussion

This preliminary study demonstrated the immediate, retained, and carried-over effects
of training with a wireless semi-real-time FFCA feedback system on healthy young adults’
FFCAs during walking. The main findings of this study supported that: (1) healthy young
individuals could use the feedback to change their FFCA during treadmill walking; (2) the
training outcomes from treadmill gait training could be retained to some extent during the
post-training treadmill walking trials, but were not carried over to the overground walking
trials; and (3) in addition to consistently walking with slower speeds and shorter stride
lengths when using the FFCA feedback system, participants appeared to employ different
coordination strategies in order to reduce their FFCA during walking.

While previous studies found that non-slip socks [9] and slip-resistant shoes [11,12]
did not significantly change the FFCA at heel strike, this study showed that participants
walked with an increased percentage of FFCAs within the targeted range during the use
of and after using the FFCA feedback system, indicating that participants could use this
feedback system as a training device to adjust their FFCA and walking patterns. In this
study, verbal instruction was also effective at reducing FFCA; however, verbal instruction
had limitations at the lower range of the targeted FFCA, leading to an excessively small
FFCA with a mean value of less than 10◦. This finding may further suggest that additional
objective real-time feedback is required.

Multiple previous studies have investigated the utility of IMUs coupled with feedback
systems for training gait kinematics in various populations [27–31,33,34]. Additionally,
several studies have investigated the ability of such systems to support retained training
effects [33,34]. With respect to the immediate/real-time effects observed in this study,
our findings are consistent with the findings of previously described feedback systems
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that have involved the use of IMUs placed on lower limbs coupled with feedback to
provide cues regarding lower-extremity joint/segmental angles [27–31,33,34]. For example,
Schließmann et al. performed a proof-of-concept study involving IMUs placed on the feet
to train the foot–ground angle at heel strike in older adults, participants with stroke, and
participants with spinal cord injury [34]. They observed real-time significant changes in
participants with spinal cord injury and older adults, but not in the participants with
stroke [34]. After a four-week training period, the positive effects achieved through training
were not retained during the follow-up assessment [34]. Because kinematic data were not
collected during this study, the strategies used by participants for whom changes were
observed during the training portion of the session were unknown [34]. Other previous
studies have reported a positive reduction in internal and external foot rotation during
walking (foot progression angle) in healthy older adults [45] and young adults [46], and an
increase in knee-flexion angle during the swing phase of gait for a participant with cerebral
palsy [33] in response to real-time feedback.

Regarding the short-term effects of training with the FFCA feedback system, the result-
ing FFCA outcomes following treadmill training were retained to some extent during the
post-training treadmill walking trials but were not carried over to the overground walking
trials. Several factors may have contributed to this finding including the limited time spent
on training (totaling 16 mins during a single day), different walking patterns between the
treadmill and overground conditions [37], and/or the order of the sessions performed
in the study (i.e., overground trials were always performed last). Previous studies have
reported significant retained effects for gait training after multiple consecutive days of
training (ranging from 3 to 18 days) with feedback delivered by either a device [34,47] or
a physical therapist [48]. This study observed that the percentage of FFCAs within the
targeted range increased from 26.4% to 43.3% (p = 0.075), and the mean values of the FFCA
also decreased from 20.9◦ to 19.1◦ (p = 0.093) during the post-training overground walking
trials as compared to the baseline, with the difference approaching significance.

While participants consistently walked with slower speeds and shorter stride lengths
when using the FFCA feedback system, they appeared to employ different coordination
strategies to reduce their FFCA during walking. Among the seven participants, four
responded by distinctly increasing the CAV of the hip–knee and knee–foot couplings,
while the remaining three demonstrated a different response (i.e., decreasing CAV). In the
present study, CAV can be interpreted as characterizing how variable each joint’s sagittal
plane angular motion is relative to the other in a given coupling during the swing phase
as the foot prepares to make contact with the floor. More succinctly, this measure can
characterize how constrained or flexible the joint coupling is in achieving the FFCA goal as
trained with the feedback [42]. Although coordination profiling has not been examined
with respect to FFCA, previous work found that head position feedback increased CAV
in the lower extremities during running [49]; specifically, Lim and colleagues suggested
that the increased lower-extremity CAV resulted in greater redundancy of referent lower-
extremity configurations that allowed participants to maintain a stable head position while
running. Similarly, it is possible that the four participants who increased CAV post-training
achieved FFCAs within the target range by exploiting the inherent redundancy in the lower
extremities (resulting in more variable configurations). Conversely, those that reduced their
CAV appeared to have constrained the entire leg (resulting in less variable configurations)
to keep the FFCA within the target range. However, due to the small sample size of this
study, it is difficult to draw a conclusion on these interpretations, and a larger study should
be conducted to investigate CAV responses further.

While no statistical difference was observed in FFCA computed based on IMU and
Vicon data in this study, it is interesting to observe that the FFCA computed based on GRF
data was consistently smaller than the FFCAs computed based on Vicon and IMU data.
This difference may have been caused by the threshold value of the ground reaction force
used to determine the gait event of a heel strike via the force platform (i.e., GRF ≥ 10 N).
A smaller threshold value may have reduced the difference. Additionally, the cushion effect
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of the soft tissues at the heel may also help explain this observation; prior research has
examined the time associated with the compression of the soft tissues during heel contact,
which has been commonly represented as a small hump/peak (before the two large peaks)
on the curve of GRF measured by the floor-mounted force platform in a gait cycle [50–52].

The primary limitations of this study were the small sample size and the use of a
young, healthy population. Although the long-term target populations are older adults
and individuals with an increased risk of slipping due to disease or disability, we opted to
demonstrate proof of concept using a readily accessible population of participants. These
factors may limit the broad application and generalization of this study. Future work
should also explore the effectiveness of mitigating the severity of slip events on slippery
surfaces following training with the FFCA feedback system.

The findings from this study have implications for slip-risk-reduction training and
slip-risk monitoring. For example, a FFCA feedback system similar to the one used in this
study could be used to train gait for potential slip prevention, either as a real-time aid
or as a training tool that would be removed during activities of daily living. Given the
previously established association with slip risk [3–8], FFCA could be monitored during
activities of daily living with a modified version of the hardware and software used in this
study (e.g., smartphone paired with single IMU and custom software) to predict when
individuals are at an increased risk of slipping.

5. Conclusions

In summary, this pilot study supports the feasibility of gait training with semi-real-time
feedback of the foot–floor contact angle in healthy young adults. However, participants
walked with slower speeds and shorter stride lengths when receiving the semi-real-time
feedback. Participants also employed different body-coordination strategies to reduce FFCA
during walking. The immediate effect of retaining the change in FFCA following training
on the treadmill suggests some carry over to overground walking conditions, which could
have implications for safe gait-training applications. Following further development and
evaluation, this type of FFCA feedback system could potentially be used as a real-time aid
or a gait-training tool to reduce FFCA. Further studies are still needed to determine the
effects on reducing risks of slips and falls among populations with higher fall risks.
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