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The analysis of themolecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the
samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the
dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress.Therefore,
to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell
types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root
hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic
stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to
better understand plant cell response to biotic and abiotic stresses.

1. Use of Plant Single Cell Types to Study Plant
Response to Environmental Stresses

The multicellular complexity of the samples collected to
characterize plant response to environmental stress is a
major limitation to clearly depict the contribution of each
cell type composing the sample in response to the stress.
In other words, -omic studies at the level of plant organs
reflect the average response of the different cell types com-
posing the organ (Figure 1). In order to fully understand
the exact contribution of each plant cell type in regulating
plant response to environmental stresses, the transcriptome,
epigenome, proteome, metabolome, and interactomes (e.g.,
protein-protein and protein-DNA interactions) of each plant
cell type composing the sample and their changes in response
to environmental stresses should be independently charac-
terized [1]. For instance, the characterization of the tran-
scriptional response of the soybean root hair cell to rhizobial
inoculation allowed the identification of almost two thousand
differentially expressed genes [2]. This single plant cell type
analysis represents a significant improvement compared to
previous studies describing few hundred genes differentially

expressed in root sections in response to rhizobial inocula-
tion [3, 4].Ultimately, the integration of these various datasets
will lead to a global understanding of the molecular adapta-
tion of plants to environment changes through the precise
characterization of transcriptional regulatory networks [5].
Currently, the construction of these networks in response
to environmental stresses is highly dependent on the nature
of the samples used to collect biological information. For
instance, working at the level of entire organs cannot depict
the specific networks existing in each cell type composing the
organ supporting the idea to study plant biological networks
at the level of single cell types. Accordingly, this review
highlights the recent progress in the field of plant adaptation
in response to both biotic and abiotic stresses at the level of
single cell types (Table 1).

2. Isolation of Plant Single Cell Types

The isolation of plant single cell types is limited by the cell
wall, which provides both rigidity and structure to the plant
and acts as a first barrier against pathogenic organisms. To
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Figure 1: Root transcriptomic response to a stress (Rt and Rt) is
the sum of the individual responses of each cell type composing
the root (t1 to t5; t1 to t5). Because plant cell transcriptomes are
different between cell types, the cellular complexity of plant roots is
not suitable to characterize gene networks. A single cell type model
must be used to better characterize plant gene networks.

overcome this difficulty, different strategies were applied to
isolate various cell types. These technologies include the use
of cell sorting laser capture microdissection [6–9], sorting of
single plant cell types upon cell type-specific GFP labeling
and protoplastization [10, 11], and the application of the
INTACT (Isolation of Nuclei TAgged in specific Cell Types)
method which includes the labeling of single plant cell
nuclei with a biotinylated nuclear envelope protein before
their isolation using streptavidin-coated magnetic beads [12,
13]. Other methods have been applied to access in large
quantities easily accessible single plant cell types such as
cotton fiber and root hair cells [14–16]. More recently, an
innovative methodology named Meselect which combined
both a mechanical and an enzymatic treatment of the plant
cells has been applied to isolate leaf epidermal, vascular,
and mesophyll cells [17]. Lu et al. (2015) also developed
another methodology allowing the isolation of generative
cells (GCs), the sperm cells (SCs), and the vegetative nuclei
(VN) from tomato pollens [18]. In this method GCs, SCs,
and VN were isolated from germinated tomato pollen grains
and growing pollen tubes and purified by Percoll density
gradient centrifugation. Microscopic examination of fluores-
cein diacetate-stained samples confirmed the purity of GCs
and SCs, respectively. Propidium iodide staining was used to
confirm VN integrity.

Currently, only a limited number of single plant cell types
have been isolated in quantities compatible with the applica-
tion of -omic technologies.Themost noticeable examples are

the cotton fiber, pollen cells, and root hair cells [14, 16, 19–
22]. Various root cell types from the model plant Arabidopsis
thaliana have also been isolated preliminary to their molec-
ular analyses including response to environmental stresses
[23–26]. Our understanding of the biology of the plant female
gametophyte which is composed of antipodal, central, egg,
and synergid cells is also beneficiating from single cell type
analyses [27].

3. Single Cell-Specific Transcriptomes in
Response to Biotic and Abiotic Stress

Compared to other -omic datasets, plant single cell type
transcriptomes and their changes in response to environmen-
tal stresses are currently the most complete. For instance,
multiple studies have characterized the transcriptomic profile
ofArabidopsis thaliana root cells and their response to abiotic
stresses including nutrient deprivation (i.e., iron and sulfur),
salinity, and low pH values as well as in response to stress-
signaling plant hormones such as abscisic acid [24, 25].

Among root cells and across plant species, the root hair
cell is likely the best transcriptionally characterized single
cell type based on the ease to isolate them from the rest of
the root. The root hair transcriptome has been characterized
across different plant species including A. thaliana [13, 26,
28–31], Glycine max (i.e., 451 root hair specific transcripts
characterized [2, 32]), and Medicago truncatula (i.e., 49 root
hair specific transcripts characterized [33]). In legumes, this
single plant cell type was also recently used as a model to
study plant cell response to biotic stress because it is the first
cell type infected by rhizobia, the nitrogen-fixing symbiotic
bacteria [2, 33]. 219 and 79 soybean and Medicago genes
were, repetitively, transcriptionally regulated in root hair cells
in response to rhizobia including many genes functionally
characterized for their role during nodulation [34]. Another
plant single cell type model recently used to characterize the
transcriptional changes occurring in response to pathogenic
microorganisms was the A. thaliana mesophyll cell infected
by the oomycete Hyaloperonospora arabidopsidis [35].

In addition to respond to various biotic stresses, plants
are also constantly interacting, responding, and adapting to
various abiotic stresses. Our understanding of those inter-
actions is also benefiting from a single plant cell type tran-
scriptomic approach. For instance, Sarah Assmann’s group
performed a transcriptomic analysis ofA. thaliana guard cells
in response to abscisic acid, a plant hormone acting on plant
water conservation. 909 genes were specifically regulated in
response to ABA in guard cells [36]. Plant resistance to heavy
metal has also been investigated at the level of single plant
cell types. For instance, trichomes are known to sequester
heavy metals such as cadmium. Accordingly, a comparative
transcriptomic analysis was conducted in Nicotiana tabacum
trichomes in response to cadmium treatment [37]. Together,
taking advantage of the specific biological function of single
plant cell types, their transcriptomic analysis has the potential
to reveal new plant regulatory genes in response to biotic and
abiotic stresses due to the gain of sensitivity of the analysis.
For instance, the barley 𝛽-extension EXPB7 gene which was
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Table 1: Various -omic analyses were conducted on different plant single cell types in response to both biotic and abiotic stresses.

Cell type Omics
Transcriptome Proteome Metabolome

Trichome Nicotiana tabacum L. cv. Xanthi
(pathogenic stress; [37])

Arabidopsis thaliana (cold, hormone
stimulus, and drought; [55])

Artemisia annua L. (dehydration stress,
detoxification; [53])

Nicotiana tabacum (oxidative stress;
[56, 57])

Guard cell Arabidopsis thaliana (dehydration
stress; [36])

Brassica napus (ABA response; [59])
Arabidopsis thaliana (ABA response;

[60])

Vicia faba L. (darkness and
drought; [89])

Arabidopsis thaliana (nitric
oxide response and ABA
response, pathogenal
infection, and UV
radiation; [90–94])

Mesophyll cell Arabidopsis thaliana (pathogenal
infection; [35])

Root hair

Hordeum vulgare L. ssp.
spontaneum (drought stress; [38])
Arabidopsis thaliana (heat, cold, salt
stress, oxidative stress, and abscisic

acid stimulus; [28–31])
Glycine max (rhizobial infection;

[2])
Medicago truncatula (rhizobial

infection; [33])

Glycine max (rhizobial infection; [61–63]) Glycine max (rhizobial
infection; [96–98])

Pollen, pollen tube Arabidopsis thaliana (heat and
osmotic stress; [19, 28])

Arabidopsis thaliana (pathogenic
infection, oxidative stress; [42, 44–47])

Zea maize (oxidative stress; [48])
Oryza sativa (pathogen infection,

oxidative stress; [43])

Epidermal cell Mesembryanthemum crystallinum
(salinity stress; [88])

Mesembryanthemum
crystallinum (salinity stress;

[85])

Cotton fiber Gossypium arboreum L. (drought
stress; [14, 15])

initially identified based on its differential expression in root
hair cells in response to drought stress has been demonstrated
to confer a better drought adaptation to the plant [38].

4. Characterization of the Proteomic
Response of Single Plant Cell Type to
Environmental Stresses

Proteins are the active molecules in the cells. The quantifi-
cation of their relative abundance is critical to understand
plant adaptation to environmental stresses. However, single
cell type proteomes are challenging to establish because of the
limited quantities of plant material available [39–41]. In addi-
tion, their posttranslational modifications are also affecting
protein function and should logically be characterized at the
level of single plant cell types.

A first effort in the establishment of single cell type
proteome was the characterization of the pool of proteins in
mature pollens. Pollen cell proteomics have been studied in

different plantmodels such asArabidopsis thaliana andOryza
sativa [42–45]. In Arabidopsis thaliana 130 differentially
expressed proteins involved in pollen germination and pollen
tube growth were identified via proteomic analyses [46].
Ultimately, proteomic analyses led to the establishment of the
first protein reference map of mature pollen in Arabidopsis
using two-dimensional gel electrophoresis (2DE), matrix-
assisted laser desorption/ionization time of flight (MALDI-
TOF), and electrospray quadrupole time of flight-mass spec-
trometry (EQ-TOF-MS) [47]. In maize, a comparative pro-
teomic analysis allowed the characterization of differentially
expressed proteins involved in pollen tube development and
plant defense [48]. Among those proteins, several participate
in pollen resistance to environmental stresses. For instance,
proteomic analysis in Arabidopsis pollen helped to reveal the
role of the ABI1 phosphatase 2C as a negative regulator of
ABA signaling [49]. Similarly, in response to osmotic stress,
glucose regulated (GRPs) and LEA-like A. thaliana proteins
were strongly induced to protect the cells [47, 50, 51].
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Trichome has also been subject to various proteomic
analyses across different plant species such as Artemisia
annua, Arabidopsis, and tobacco [52–54]. The establishment
of the trichome proteome in Arabidopsis thaliana confirms
the important role of this single cell type in sulfurmetabolism
and detoxification to enhance plant defense mechanisms
[55]. Upon the identification in 1543 proteins in tobacco leaf
trichomes [56], several enzymes also related to the detoxifi-
cation including glutathione-S-transferase (GST), ascorbate-
glutathione cycle enzymes, superoxide dismutases (SOD),
cytosolic Cu/Zn SOD, and peroxidases were characterized
in response to oxidative stress [56, 57]. The functional
categorization of the Arabidopsis trichome proteome based
on gene ontology (GO) terms also confirmed the role of
trichomes in plant adaptation to abiotic (cold, temperature,
drought, and heavy metal) and biotic stresses [54]. Similarly,
in tobacco, proteins were also identified for their role in biotic
stress responses such as chitinases and glucanases [56].

The guard cell proteome revealed the abundance of pro-
teins involved in signaling, membrane transport, glycolysis,
photosynthesis light reaction, and fatty acid biosynthesis
[58]. Using isobaric tag for relative and absolute quantitation
(iTRAQ) technology, several ABA-response proteins were
identified in Brassica napus and Arabidopsis guard cells [59,
60]. In B. napus, 66 ABA-dependent and 38 ABA-decreased
proteins were reported to have a special function in calcium
oscillation, ROS reaction, photosynthesis, and signaling [59].

Comparative proteomic analyses in soybean also led
to the identification of several root hair specific proteins
differentially accumulated in response to Bradyrhizobium
japonicum inoculation including more than 100 heat shock
proteins involved in protein folding and stress responses [61,
62]. To provide amore complete view about the changes in the
proteome of soybean root hair cells in response to rhizobium,
Nguyen et al. (2012) also established its phosphoproteome
and identified 273 root hair specific phosphopeptides regu-
lated in response to B. japonicum infection [63].

5. Metabolomic Response of Single Plant Cell
Types to Environmental Stresses

Similar to the other -omic approaches, the analysis of the cell
type-specific metabolomes is affected by multicellular com-
plexity of the tissues selected. In addition to their diversity,
metabolomic analyses also suffer from the low concentration
of many metabolites supporting the need for single plant cell
type metabolomic approaches.

Microcapillary method is applied for sampling plant sin-
gle cells content by using the oil-filled glass microcapillaries
mounted on the micromanipulator [64–67]. This method
benefits from cellular turgor pressure to study plant organ
water relations at the single cell level, which allows investigat-
ing cellular macromolecules [68, 69].The combination of the
microcapillary method with other physical or chemical ana-
lyticalmethods (e.g., gas chromatography-time of flight-mass
spectrometry (GC-TOF-MS) [70], laser capture microdis-
section (LCM), laser microdissection optionally coupled to
laser pressure catapulting (LMPC) [71], andRT-PCR [67, 69])

helps researchers to characterize the metabolome of fully
differentiated plant cell types [72]. Combined with the recent
improvement of analytical technologies, the quantitative and
qualitative analysis of plant single cell type metabolomes
would provide new insights into the environmental stress
responses of plant cells.

Various technologies are commonly used for metabo-
lomic profiling including infrared spectroscopy [73], nuclear
magnetic resonance (NMR) [74–76], mass spectrometry
(MS) and gas chromatography-MS (GC-MS) [77, 78],matrix-
assisted laser desorption/ionization (MALDI) [79], capil-
lary electrophoresis coupled with laser induced fluorescence
detection (CE/LIF) [80] or mass spectrometry (CE/MS) [81,
82], CE-negative electrospray ionization-MS, and electro-
spray ionization (ESI) [83]. These techniques vary in speed,
selectivity, and sensitivity.

Several metabolomic studies at the level of single plant
cell types have been described. For instance, focusing on
the epidermal bladder cell (EBC), a specialized trichome cell
from Mesembryanthemum crystallinum known to be mor-
phologically altered under salt stress [84], Barkla and Vera-
Estrella (2015) characterized their metabolomic response to
salinity [85]. Comparing M. crystallinum EBC metabolomic
salt-response with the metabolomes of other salt-tolerant
plant species [86, 87], specific classes of metabolites enhanc-
ing plant adaptation to high salinity such as sugars and sugar
alcohols have been identified. Similarly, having the goal to
enhance plant resistance in response to salinity and heavy
metals, metabolomic analyses revealed the accumulation of
sulfur and glutathione in Arabidopsis and tobacco trichomes
[88].

In the Arabidopsis thaliana and Vicia faba guard cells,
several metabolomic studies revealed the relationships exist-
ing between the accumulation of flavonoids, reactive oxygen
species, abscisic acid, nitric oxide, and auxin as impor-
tant components of the signaling cascade controlling the
stomatal movements in response to osmotic stresses and
pathogenic organisms such asPseudomonas syringae [89–94].
For instance, the increase in phenolic and flavonoid com-
pounds in the A. thaliana guard cells provides an additional
protection against pathogens, insects, and UV-B radiation
[90]. Lipidomic analysis of Commelina communis and A.
thaliana guard cells also revealed the role of fatty acids in the
stomatal response of plants to both abiotic and biotic stresses
[93, 95].

Plant single cell type metabolomic response to biotic
stresses has also been established such as the soybean
root hair metabolome and its regulation in response to B.
japonicum inoculation. A total of 2610 root hair metabolites
were identified using two biochemical methodologies: gas
chromatography-mass spectrometry (GC-MS) and ultraper-
formance liquid chromatography-quadrupole time of flight-
mass spectrometry (UPLC-QTOF-MS) [96]. Among them,
166 were highly regulated in response to B. japonicum
inoculation including various flavonoids, amino acids, fatty
acids, carboxylic acids compounds, and trehalose. The latter
has been well described for its essential role during the
nodulation process and, more specifically, its role on survival
of the soybean symbiotic bacteria [97, 98].
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New approaches are currently developed allowing the
noninvasive analysis of single plant cell metabolome associ-
ated with a robust quantification and detection of plant single
cell metabolites. Infrared-laser ablation electrospray ioniza-
tion (LAESI) and UV-laser desorption/ionization (LDI) are
two methods minimizing sample preparation and manipula-
tion.The latter does not require an external matrix providing
a larger spatial resolution of the single cell [99]. Complemen-
tary to LDI technology, LAESI highlights the colocalization
of metabolites and metabolomic networks in plant samples
such as Spathiphyllum lynise and Aphelandra squarrosa [100].
The LAESI was also successfully applied to analyze the
metabolome of single epithelial cells inAllium cepa, theCitrus
aurantium oil glands, and Narcissus pseudonarcissus bulbs
[101, 102]. As a conclusion, LAESI and LDI are new noninva-
sive analytical methods compatible with the analysis of single
plant cell metabolome. They represent attractive solutions
to image known and unknown metabolomic networks in
response to environmental stresses at the level of single plant
cells.

6. Conclusion

Recent technological advances are now enabling the char-
acterization of plant molecular responses to both biotic
and abiotic stresses at the level of single plant cell types. -
Omic studies on entire plant organs mask the cell-specific
characteristics and lead to a dilution of the molecular
changes. Accordingly, the scientific community highlighted
the need for single plant cell type approaches to provide a
more precisemolecular characterization of plants response to
the abiotic and biotic stresses. The combination of different
molecular approaches and their integration will reveal at a
systems level the complexity of plant cell adaptation to the
stresses.

For instance, using tomato pollen cell as a model, Lopez-
Casado et al. (2012) generated a proteomic analysis using
RNA-seq database [103]. Single cell system biology by com-
bination of one or two -omic analyses can also provide a
more dynamic model of the interactions between the plant
and its environment [104]. Therefore, integrating single cell
type-specific proteomes, transcriptomes, and metabolomes
would provide a better understanding of plant model reg-
ulatory networks in response to environmental stresses
[22].
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[88] G.Gutiérrez-Alcalá, C.Gotor, A. J.Meyer,M. Fricker, J.M.Vega,
and L. C. Romero, “Glutathione biosynthesis in Arabidopsis
trichome cells,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 97, no. 20, pp. 11108–11113,
2000.

[89] X. Ou, Y. Gan, P. Chen,M.Qiu, K. Jiang, andG.Wang, “Stomata
prioritize their responses to multiple biotic and abiotic signal
inputs,” PLoS ONE, vol. 9, no. 7, Article ID e101587, 2014.

[90] J.-M. He, X.-G. Ma, Y. Zhang et al., “Role and interrelationship
of G𝛼 protein, hydrogen peroxide, and nitric oxide in ultraviolet
B-induced stomatal closure in Arabidopsis leaves,” Plant Physi-
ology, vol. 161, no. 3, pp. 1570–1583, 2013.

[91] T. Joudoi, Y. Shichiri, N. Kamizono et al., “Nitrated cyclic GMP
modulates guard cell signaling in Arabidopsis,” Plant Cell, vol.
25, no. 2, pp. 558–571, 2013.

[92] R. Desikan, M.-K. Cheung, J. Bright, D. Henson, J. T. Hancock,
and S. J. Neill, “ABA, hydrogen peroxide and nitric oxide
signalling in stomatal guard cells,” Journal of Experimental
Botany, vol. 55, no. 395, pp. 205–212, 2004.

[93] B. B. Misra, B. R. Acharya, D. Granot, S. M. Assmann, and
S. Chen, “The guard cell metabolome: functions in stomatal
movement and global food security,” Frontiers in Plant Science,
vol. 6, article 334, 2015.

[94] X. Jin, R.-S.Wang,M.Zhu et al., “Abscisic acid-responsive guard
cell metabolomes of Arabidopsis wild-type and gpa1 G-protein
mutants,”The Plant Cell, vol. 25, no. 12, pp. 4789–4811, 2013.

[95] Q. Sun, J. Liu, Q. Zhang et al., “Characterization of three
novel desaturases involved in the delta-6 desaturation pathways
for polyunsaturated fatty acid biosynthesis from Phytophthora
infestans,” Applied Microbiology and Biotechnology, vol. 97, no.
17, pp. 7689–7697, 2013.

[96] L. Brechenmacher, Z. Lei, M. Libault et al., “Soybean metabo-
lites regulated in root hairs in response to the symbiotic
bacterium Bradyrhizobium japonicum,” Plant Physiology, vol.
153, no. 4, pp. 1808–1822, 2010.

[97] J. G. Streeter and M. L. Gomez, “Three enzymes for trehalose
synthesis inBradyrhizobium cultured bacteria and in bacteroids

from soybean nodules,” Applied and Environmental Microbiol-
ogy, vol. 72, no. 6, pp. 4250–4255, 2006.

[98] J. G. Streeter, “Effect of trehalose on survival of Bradyrhizobium
japonicum during desiccation,” Journal of Applied Microbiology,
vol. 95, no. 3, pp. 484–491, 2003.
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