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Abstract

A common task in the immunodetection of structurally close compounds is to analyze the

selectivity of immune recognition; it is required to understand the regularities of immune rec-

ognition and to elucidate the basic structural elements which provide it. Triazines are com-

pounds of particular interest for such research due to their high variability and the necessity

of their monitoring to provide safety for agricultural products and foodstuffs. We evaluated

the binding of 20 triazines with polyclonal (pAb) and monoclonal (mAb) antibodies obtained

using atrazine as the immunogenic hapten. A total of over 3000 descriptors were used in the

quantitative structure-activity relationship (QSAR) analysis of binding activities (pIC50). A

comparison of the two enzyme immunoassay systems showed that the system with pAb is

much easier to describe using 2D QSAR methodology, while the system with mAb can be

described using the 3D QSAR CoMFA. Thus, for the 3D QSAR model of the polyclonal anti-

bodies, the main statistical parameter q2 (‘leave-many-out’) is equal to 0.498, and for mono-

clonal antibodies, q2 is equal to 0.566. Obviously, in the case of pAb, we deal with several

targets, while in the case of mAb the target is one, and therefore it is easier to describe it

using specific fields of molecular interactions distributed in space.

Introduction

Triazines are herbicides which are widely used in agriculture and may accumulate in soil, as

well as in food products [1]. Triazines are bound in soil to solids as well as to dissolved frac-

tions of humic and fulvic acids, which leads not only to the accumulation of triazines in soil

but also to the contamination of surface and ground waters [2] since triazines are water

soluble.

Triazines may undergo chemical transformations of both a biotic and abiotic nature. The

parent compound atrazine is subjected to oxidation of the alkyl substituents, oxidative dealky-

lation, hydroxylation, and also to ring cleavage [3–5]. The derivatives of atrazine may be toxic
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to a greater or lesser extent. Triazines may induce different physiological disorders in humans

and animals such as immunity suppression [6] and birth defects [7]. Thus, contamination of

the environment by triazine herbicides is a significant risk factor. For this reason, it is neces-

sary to monitor the triazine levels in soil, water, agricultural products and foods.

The methods of triazine detection, such as NMR, HPLC, mass-spectrometry and others, are

time- and labour-consuming. The immunoassay determination of triazines is much easier, less

expensive, highly sensitive and rapid. Due to its selectivity and simplicity, the immunoassay

has been used to detect a wide variety of environmental pollutants including triazines [8–10].

However, the significant variety of triazines and their derivatives makes the detailed analysis of

the regulations of their immune recognition necessary.

The quantitative structure-activity relationship (QSAR) is widely used to study the immune

recognition of different classes of toxic food contaminants and veterinary drugs, including pesti-

cides, etc. [11–14]. The work by Yuan and co-authors reported an immunoassay analysis of tri-

azines; however, on only a small set of 11 compounds [9]. QSAR is used for the analysis of

immunoassays on quinolones and fluoroquinolones [15–19], organophosphorus pesticides [20–

21], phenylurea herbicides [22], and sulfonamides [23]. In this study, we used molecular model-

ing to study triazine recognition by monoclonal and polyclonal antibodies. Twenty triazines

along with 2D and 3D-QSAR methodology were used to study the relationship between the anti-

gen and antibody. The experimental data of microplate immunoenzyme assays with broad speci-

ficity for triazines were used from a classical work by A. Dankwardt and co-authors [24]. The

comparative immunoassay of polyclonal and monoclonal antibodies used 4-arylamino-6-amino-

1,3,5-triazines (Fig 1). Antibodies were grown using atrazine as an immunizing hapten.

The antibody-binding activity of triazines from Table 1, presented in the logarithmic form

(pIC50 = -log IC50), was used as the dependent variable y during QSAR calculations. In Table 1,

S2 stands for polyclonal sheep antibodies, while K4E7 stands for monoclonal antibodies.

Materials and methods

Conformational analysis and geometry optimization

The preparation of molecular geometries for 2D and 3D QSAR analysis was carried out in the

Spartan v.16 program. A series of conformers for each of the 20 compounds was obtained by

the systematic search method using the MMFF force field [25]. The optimization of the geome-

try for each conformer was carried out using the semi-empirical AM1 method [26]. In order

Fig 1. Molecular structure of arylamino-s-triazines (based on Dankwardt et al., 1996).

https://doi.org/10.1371/journal.pone.0214879.g001
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to confirm the correspondence between the obtained geometry and the minimum surface of

the potential energy for each conformer, the Hessian was calculated. The conformers with the

lowest total energy were used for 2D QSAR analysis.

2D QSAR

Using a random number generator, triazines were divided into two samples: the training set

(80%) and test set (20%). The requirements for the maximum and minimum values in the test

sample were as follows: 1) the maximum value of pIC50 should be less than or equal to the

maximum value of pIC50 in the training sample; and 2) the minimum value of pIC50 must be

greater than or equal to the minimum value of pIC50 in the training sample. The actual limit

IC50 values given in Table 1 are equal to 500 nmol l-1, which were experimentally tested values

in the original work by Dankwardt et al., 1996 [24]. When the activity IC50 was equal to or

greater than 500 nmol l-1 the pIC50 value of 6.30103 was used.

The required linear regression equation should have the following form:

y ¼ a1 � x1þ . . . an � xnþ c

where y is the dependent variable (pIC50); a1 and an are regression coefficients; x1 and xn are

independent variables (descriptors); and c is a regression constant.

We estimated the contribution of a descriptor to the model using the following equation:

aðx1Þ ¼
R2ðx1; x2; x3Þ � R2ðx2; x3Þ

3� R2ðx1; x2; x3Þ � R2ðx1; x2Þ � R2ðx1; x3Þ � R2ðx2; x3Þ
� 100%

where α(x1) is the relative contribution of the descriptor x1 to the model with three descriptors;

Table 1. Cross-reactivity (CR) and concentration of 50% inhibition for the interaction of triazines with polyclonal (S2) and monoclonal antibodies (K4E7), accord-

ing to Dankwardt et al., 1996.

№ Compound CR, % IC50, nmol l-1

S2 K4E7 S2 K4E7

1 2-chloro-4-isopropylamino-6-ethylamino-1,3,5-triazine (atrazine) 100 100 0.93 0.37

2 2-chloro-4-isopropylamino-6-amino-1,3,5-triazine (deethylatrazine) 15 18 6.0 2.1

3 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (deisopropylatrazine) 0.4 1.8 232 20.6

4 2-hydroxy-4-isopropylamino-6-ethylamino-1,3,5-triazine (hydroxyatrazine) 6 0.1 15.3 371

5 2-chloro-4-anilino-6-isopropylamino-1,3,5-triazine 106 140 0.88 0.27

6 2-chloro-4-(3’,4’-dimethoxyanilino)-6-isopropylamino-1,3,5-triazine 126 140 0.74 0.27

7 2-chloro-4-(3’,4’-dimethoxybenzylamino)-6-isopropylamino-1,3,5-triazine 109 148 0.84 0.25

8 2-chloro-4-(3’-hydroxy-4’-methoxyanilino)-6-isopropylamino-1,3,5-triazine 74 79 1.25 0.47

9 2-chloro-4-(2’-carboxy-4’,5’-dimethoxyanilino)-6-isopropylamino-1,3,5-triazine 9 <0.1 10.3 >500

10 2-chloro-4-(2’-nitrilanilino)-6-isopropylamino-1,3,5-triazine 134 70 0.70 0.52

11 2-chloro-4-(3’-nitrilanilino)-6-isopropylamino-1,3,5-triazine 134 108 0.70 0.34

12 2-chloro-4-(4’-nitrilanilino)-6-isopropylamino-1,3,5-triazine 101 107 0.93 0.35

13 2-chloro-4-(2’-triflourmethylanilino)-6-isopropylamino-1,3,5-triazine 91 81 1.02 0.46

14 2-chloro-4-(3’-triflourmethylanilino)-6-isopropylamino-1,3,5-triazine 133 75 0.70 0.46

15 2-chloro-4-(4’-triflourmethylanilino)-6-isopropylamino-1,3,5-triazine 92 129 1.02 0.49

16 2-chloro-4-(3’,4’-dimethoxyanilino)-6-ethylamino-1,3,5-triazine 5 10 18.6 3.68

17 2-hydroxy-4-anilino-6-isopropylamino-1,3,5-triazine 0.4 0.2 232 186

18 2-hydroxy-4-(3’,4’-dimethoxyanilino)-6-isopropylamino-1,3,5-triazine 0.4 0.2 232 186

19 2-chloro-4-anilino-6-amino-1,3,5-triazine 0.1 <0.1 500 >500

20 2-chloro-4-(3’,4’-dimethoxyanilino)-6-amino-1,3,5-triazine <0.1 <0.1 >500 >500

https://doi.org/10.1371/journal.pone.0214879.t001
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R2 x1; x2; x3ð Þ is the determination coefficient of the model with all three descriptors; and

R2 x2; x3ð Þ is the determination coefficient of the model with two descriptors: x2 and x3.

During the 2D QSAR analysis, different types of descriptors were used: constitutional

(number of hydrogen bond donors, number of hydrogen bond acceptors, number of rings,

number of chains, number of CH3 groups, number of OH groups, etc.), electrostatic descrip-

tors (maximum positive charge, maximum negative charge, the number of positively charged

atoms, the number of negatively charged atoms, etc.), topological descriptors (kappa-indices

describing the shape of the molecule, the indices of molecular bonds of Kier and Hall, etc.), 3D

descriptors (volume, surface area, length and area of the projection on the coordinate axis,

etc.), physico-chemical (lipophilicity (LogP), molecular refraction, polarizability, solubility in

water, etc.) and quantum-chemical descriptors (energy of frontier molecular orbitals, electro-

static charges of atoms, the population of atoms according to Mulliken, etc.), amounting to a

total of more than 3000 descriptors. The values of the descriptors were calculated using the

program packages Spartan v. 16 and E-Dragon 1.0.

For the QSAR obtained model, the cross-validation was performed. Also, the models were

tested for their predictive power using an external test set of compounds. The following statis-

tical indicators were used:

• r2—coefficient of determination for the training sample [27];

• The determination coefficient R2adj, corrected for the number of descriptors involved in the

model;

• q2—r2 from the results of the internal cross-validation of the training sample using the leave-

one-out (LOO) method [28,29];

• LOF—error of Friedman approximation (Friedman Lack of Fit);

• RMSE—root-mean-square error;

• Max Error—the maximum prediction error for all the compounds in the test and training

set;

• pred_r2—r2, which estimates the predictive ability of the model relative to the test set.

3D QSAR

Spatial alignment of molecules. The alignment of molecules plays a key role in

3D-QSAR. As a rule, the most energetically favorable conformation of the most active com-

pound or the geometry corresponding directly to the interaction of the ligand and target

(antibody), obtained on the basis of X-ray diffraction analysis or docking data, is chosen as

the template for the alignment [30]. In our case, the most active conformation is unknown,

and a number of the most active compounds (10, 14) have a large number of conformers,

which makes it difficult to analyze them correctly using quantum-chemical methods of

required accuracy. Compounds 5, 11 and 12 are also highly active, but with a small number

of conformers compared to other triazines in the sample. All conformers of compounds 5

(12 conformers), 11 (23 conformers) and 12 (12 conformers) were optimized using the Har-

tree–Fock method and 6-31G(d) basis set (Fig 2). It was found that the most energetically

favorable conformers of these compounds are identical, and therefore it can be assumed

that this particular conformation is the most active and corresponds to the interaction with

the antibody.
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Triazine molecules in various conformations, optimized with the AM1 method, were super-

imposed on the template (compounds 5 and/or 11) using the algorithm presented in the

open3DALIGN program [31]. Conformations corresponding to the largest overlap with the

atoms of compounds 5 and 11 were selected (Fig 3).

The aligned geometries (S1 Fig) were used to create and analyze the fields of molecular

interactions using the open3DQSAR program [32]. Visualization of 3D structures and contour

maps of the force fields was carried out in the PyMol program.

Building of molecular interaction fields (MIF). Molecular interaction fields (MIF) were

calculated to analyze the pIC50 values of triazines and to create CoMFA models for the S2 and

K4E7 systems.

Two potentials were used to create the fields of molecular interaction: the steric potential in

the form of the Lennard–Jones function 6–12 between the atoms of the molecule and the sp3

carbon atom:

EVdW ¼
Xn

i¼1

Ai

r12
i

�
Bi

r6
i

� �

;

The electrostatic field was calculated by summing the Coulomb interactions between the

test atom with charge +1 and triazine molecules:

Eele ¼ k
Xn

i¼1

qi

rm
i

� �

MIF preprocessing. The force-field data was preliminarily processed to remove non-

informative x variables:

1) The values of the variables less than 0.05 kcal mol-1 were equated to zero;

Fig 2. The most energetically favorable conformations of compounds 5, 11 and 12 according to the calculation by HF/6-31G(d)

method.

https://doi.org/10.1371/journal.pone.0214879.g002
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2) Cut-off values were above 30 kcal mol-1 and below -30 kcal mol-1;

3) x variables with a standard deviation value below<0.1 were deleted;

4) Variables that had four or fewer nonzero values within the sample were removed.

Fig 3. Triazine geometries optimized with the AM1 method (hydrogen atoms are represented only in -OH groups).

https://doi.org/10.1371/journal.pone.0214879.g003
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Building of regression models. After all the preliminary operations were completed, we

proceeded to construct the models using the partial least squares (PLS) method [33], based on

the NIPALS algorithm (non-linear iterative partial least squares) [34]. The predictive power of

the models was evaluated using the “leave-one-out” (LOO) cross-validation method:

q2 ¼ 1 �

P
ðyobs � ypredÞ

2

P
ðyobs � ymeanÞ

2
;

Also, we used the “leave-many-out” cross-validation method: a sample of 20 compounds

was randomly broken into the training (75%) and test (25%) parts. The q2 parameter was cal-

culated for the test part. The partition procedure was repeated 50 times, and the average of the

50 partitioning variants was given the value q2 (LMO).

To estimate the internal stability and predictive power of the 3D models, the standard pre-

diction error (SDEP) parameter was calculated:

SDEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðyobs � ypredÞ

2

N

s

;

where yobs is the experimental value; ypred is the predicted value; ymean is the mean value; and N
is the number of molecules in the sample.

Procedures for selecting variables and methods for creating clusters of variables with com-

mon characteristics were used in order to increase the predictive ability of models: the SRD

(smart region definition) method [35] groups variables based on their localization in three-

dimensional space. This procedure reduces the number of descriptors bearing the same infor-

mation; and fractional factorial design (FFD) [36,37] allows the selection of variables that have

the greatest impact on the predictive ability of models. The FFD selection was conducted

based on the leave-many-out cross analysis, using the SRD of the variable group.

Results

2D QSAR

S2 system analysis (polyclonal antibodies). For the S2 system, a series of multiple linear

regression models was obtained:

Model 1

pIC50 ¼ 23:68þ 0:985 � ES Count sssCH � 64:66 �Mulliken Charge C4 þ 0:056 � Solvation E

Model 2

pIC50 ¼ 12:43þ 4:393 � ES Sum sssCH � 107:3 � Jurs FPSA 3

Model 3

pIC50 ¼ 11:92 � 0:910 � CHI 2þ 1:932 � CHI V 2 � 100:3 � Jurs FPSA 3

Model 4

pIC50 ¼ 8:807þ 5:366 � ES Sum sssCH þ 0:828 � IC2 � 104:0 � Jurs FPSA 3

Model 5

pIC50 ¼ 6:302þ 6:182 � ES Sum sssCH þ 0:946 � IC2þ 0:062 � Solvation E

QSAR analysis of immune recognition for triazines based on immunoassay data
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It is believed that QSAR is predictive if the following conditions are satisfied: R2 > 0.6, q2 >

0.5 and pred_R2 > 0.5. Table 2 shows that all the presented models are statistically reliable and

possess a predictive ability. Model 5 has the highest statistical parameters among the five models.

Let us consider the descriptors involved in Model 5. Solvation_E (relative contribution, α =

66.8%) is the solvation energy calculated with the AM1 method. Compound 18 has the highest

solvation energy value (-20.27 kJ mol-1), while compound 13 has the lowest (-71.22 kJ mol-1)

(S1 Table). The lower the solvation energy, the higher the solubility. However, the energy of

solvation has a negative value, and therefore compounds that are less soluble in water have

higher pIC50 values.

ES_Sum_sssCH (26.1%) is the electrotopological index of methantriyl groups [38]. The

ES_Sum_sssCH value is directly proportional to the activity of the molecule (1, 2 and similar

compounds). ES_Sum_sssCH is equal to zero for compounds without >CH-groups. Obvi-

ously, the presence of the ES_Sum_sssCH descriptor in Model 5 indicates the participation of

>CH-groups of triazine compounds in van der Waals interactions with antibodies.

IC2 (7.1%) is the information content index (neighborhood symmetry of 2-order). This

descriptor makes it possible to estimate the degree of heterogeneity of the molecular structure.

Compound 1 has the lowest value of IC2 (3.431), and compound 9 has, on the contrary, the

highest value of this descriptor (4.426). IC2 can be considered as a measure of the complexity

of the triazine topology. IC2 makes a minor contribution to the model (α = 7.1%).

Experimental and predicted pIC50 values for triazine interactions with polyclonal antibod-

ies (S2) based on Model 5 are presented on Fig 4.

K4E7 system analysis (monoclonal antibodies). For the K4E7 system, a series of multiple

linear regression models was obtained:

Model 6

pIC50 ¼ 7:142 � 9:584 �Mor21v � 0:561 � NPlusO Count þ 33:83 � R6mþ

Model 7

pIC50 ¼ 5:859 � 0:018 � Jurs TPSA � 7:118 �Mor21vþ 27:20 � R6mþ

Model 8

pIC50 ¼ � 3:941þ 1:291 � ES Count sssCH þ 5:271 � IC2 � 0:216 � Jurs DPSA 3

Model 9

pIC50 ¼ 7:173 � 8:061 �Mor21v � 0:0385 � TPSA NOþ 34:56 � R6mþ

Table 2. Statistical parameters of the models for the S2 system.

№ Statistical parameter Model 1 Model 2 Model 3 Model 4 Model 5

1 R2 0.941 0.890 0.937 0.937 0.945

2 R2 adj 0.926 0.873 0.921 0.921 0.932

3 q2 0.893 0.843 0.898 0.873 0.900

4 pred_R2 0.913 0.924 0.870 0.920 0.942

5 Max error 0.567 0.904 0.746 0.549 0.454

6 RMS error 0.295 0.387 0.305 0.306 0.284

7 LOF 0.383 0.329 0.411 0.412 0.355

https://doi.org/10.1371/journal.pone.0214879.t002
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Model 10

pIC50 ¼ 7:369þ 1:637 � ES Count sssCH þ 0:287 � ES Sum sCl � 0:791 � Num H Donors Lipinski

Model 10 has a high predictive ability, and its statistical parameters are higher than for

models 6–9 (Table 3).

Num_H_Donors_Lipinski (α = -37.9%) is the number of hydrogen bond donors (S2 Table).

The value of the descriptor is inversely correlated with the activity: the greater the number of

hydrogen bond donors, the lower the activity. Apparently, the presence of amine groups

(-NH- and -NH2) negatively affects the activity.

ES_Sum_sCl (34.6%) is the electrotopological index of chlorine atoms.35 The ES_Sum_sCl
value is directly proportional to the activity of the molecule. Apparently, the chlorine atom, as

an electron-acceptor substituent, participates in electrostatic interactions.

Fig 4. Comparison of experimental pIC50 values for triazine interactions with polyclonal antibodies (S2) and

predicted activity based on Model 5; compounds 4, 6, 14 and 19 were used as a test set.

https://doi.org/10.1371/journal.pone.0214879.g004

Table 3. Statistical parameters of 2D QSAR models for the K4E7 system.

№ Statistical parameters Model 6 Model 7 Model 8 Model 9 Model 10

1 R2 0.921 0.915 0.917 0.925 0.966

2 R2 adj 0.902 0.894 0.896 0.906 0.957

3 q2 0.819 0.778 0.862 0.832 0.939

4 pred_R2 0.767 0.788 0.898 0.704 0.969

5 Max error 0.947 1.110 1.065 0.913 0.469

6 RMS error 0.431 0.449 0.444 0.422 0.285

7 LOF 0.822 0.890 0.869 0.787 0.359

https://doi.org/10.1371/journal.pone.0214879.t003
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ES_Count_sssCH (27.4%) is the number of methantriyl groups. Obviously, the presence of

the ES_Count_sssCH descriptor in Model 10 indicates the participation of bulky substituents

of triazine compounds in steric interactions with antibodies.

The experimental and predicted pIC50 values for triazine interactions with monoclonal

antibodies (K4E7) based on Model 10 are presented in Fig 5.

3D QSAR

S2 system study. A 3D QSAR analysis was carried out for all 20 compounds. The interac-

tion energy of the "probe" (carbon atom with charge +1) with the target molecule was calcu-

lated at each point of the regular 3D lattice. The dimensions of the 3D cubic grid were 26 × 18

× 22 Å. The lattice spacing was 2 Å.

One can consider Table 4 to compare the accuracy of the activity prediction for individual

molecules within the model.

Van der Waals interactions make the main contribution to the interactions between the tri-

azine and antibody in the S2 system in all three models (S3 Table).

To estimate the predictive ability of the 3D QSAR models, the following statistical parame-

ters were used: the coefficient of determination (R2), the mean-square error of the model

(SDEC), the F-statistic value, the correlation coefficient of the leave-one-out (LOO) method

(q2
(LOO)), the correlation coefficient of the LMO method (q2

(LMO)), and the mean-square error

Fig 5. Comparison of experimental pIC50 values for triazine interactions with monoclonal antibodies (K4E7) and

predicted activity based on Model 10; compounds 6, 10, 16 and 20 were used as a test set.

https://doi.org/10.1371/journal.pone.0214879.g005
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of prediction (SDEP). The S2 system 3D QSAE model showed satisfactory statistical results

(Table 5).

As can be seen from Table 5, the model has high predictive ability. High coefficients of

determination (R2 = 0.938) and LOO cross-validation (q2 = 0.68) indicate the statistical signifi-

cance of the obtained model. The high correlation between predicted and experimental values

of the model can be seen in Fig 6.

Molecular interaction field (MIF) contour maps were obtained to visualize the information

about the 3D-QSAR models. Contour maps are presented in Fig 7. The steric fields presented

by green contours are favorable for bulk substituents and have a positive effect on cross-reac-

tivity (Fig 7A), while the yellow contours represent the areas where the presence of bulk sub-

stituents is unfavorable for high activity (Fig 7B). The electrostatic fields are represented by

blue and red contours. The blue contour reflects the areas where positively charged atoms

have a positive effect on activity (Fig 7C), while the red contours reflect the regions in which

the presence of negatively charged atoms is favorable for high activity (Fig 7D).

K4E7 system study. A 3D QSAR analysis was carried out for all 20 compounds without

splitting the sample into the training and test parts. The same alignment was used as for the S2

system.

The predicted values of triazine activity are shown in Table 6. The calculated values of the

model have the best match with the experimental data. The level of correlation between the

activities predicted by the CoMFA model and the experimental values is also shown in Fig 8.

Table 4. Experimental and predicted values of the triazine cross-reactivity logarithm (pIC50) in the S2 system.

№ Experiment Prediction

1 9.032 9.056

2 8.222 8.405

3 6.635 6.846

4 7.815 7.297

5 9.056 8.641

6 9.131 8.763

7 9.076 9.393

8 8.903 8.713

9 7.987 7.878

10 9.155 9.492

11 9.155 9.276

12 9.032 8.811

13 8.991 9.147

14 9.155 9.108

15 8.991 9.016

16 7.731 7.406

17 6.635 7.039

18 6.635 6.950

19 6.301 6.529

20 6.301 6.170

https://doi.org/10.1371/journal.pone.0214879.t004

Table 5. Statistical parameters of the CoMFA model for the S2 system. SDEP: mean-square error of prediction. LOO: leave-one-out.

№ R2 SDEC F-test q2
(LOO) SDEP(LOO) q2

(LMO) SDEP(LMO)

3 0.938 0.269 80.39 0.680 0.610 0.498 0.754

https://doi.org/10.1371/journal.pone.0214879.t005
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Table 7 shows that the model has high values of the determination coefficient (R2 = 0.952)

and LOO cross-validation parameter (q2 = 0.637), which indicates the statistical significance of

the model obtained. The contour maps of the molecular interaction for this model are pre-

sented in Fig 9.

The contributions of the van der Waals and electrostatic interactions to the model are

approximately equal at 51% and 49%, respectively (S4 Table).

Discussion

It seems reasonable to compare the most similar compounds with each other and find out

which descriptors play a key role in their recognition.

Atrazine in the S2 system (polyclonal antibodies) exhibits significantly higher activity (CR

100%) than its metabolites: compounds 2, 3 and 4 (CR 15%, 0.4% and 6%, respectively). Atra-

zine has the highest value of the Solvation_E descriptor (see S1 Table). The value of the Solva-
tion_E descriptor is directly proportional to pIC50. The lower the Solvation_E, the higher the

polarity of the molecule. For compounds 1–4, Solvation_E is equal to -33.49 kJ mol-1, -49.34 kJ

mol-1, -56.07 kJ mol-1 and -58 kJ mol-1, respectively. In general, this is consistent with our

observation that the polarity of triazines is unfavorable for the interaction with the antibodies.

Also, compounds with a CR higher than 1% (compounds 1, 2 and 4) possess ES_Sum_sssCH
with a non-zero value, while the compound with the lowest ES_Sum_sssCH value (compound

3) has the lowest CR value– 0.4%.

For the K4E7 system (monoclonal antibodies), the highest pIC50 value of compound 1

among compounds 1–4 is determined by non-zero values of its descriptors ES_Count_sssCH
and ES_Sum_sCl. Also, compound 1 has the lowest value of the descriptor Num_H_Donor-
s_Lipinski. The descriptor Num_H_Donors_Lipinski is inversely correlated with pIC50.

Fig 6. Experimental vs. predicted values of triazine cross-reactivity in the S2 system according to the CoMFA

method (3D QSAR).

https://doi.org/10.1371/journal.pone.0214879.g006
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For system S2, the highest CR value of compound 6 among compounds 6–9 (CR 126%,

109%, 74% and 9%, respectively) is determined by its lowest value of E_Solvation (-37.49 kJ

mol-1), while E_Solvation is inversely correlated with CR.

In the case of the K4E7 system and compounds 6–9, we should regard the CoMFA contour

maps. The substituent at the C6 position does not differ in these compounds, and the variation

of the substituent in the C4 position obviously plays the main role. The geometry of compound

7 is the most advantageous for the interaction with the antibody, and the geometry of 9 is the

least advantageous (Table 1). The contour map of electrostatic charges (Fig 9D) indicates that

the presence of a negatively charged carboxyl group at position 2’ (compound 9) is unfavorable

for the binding with the antibody. Fig 9C, on the contrary, shows how the presence of nega-

tively charged oxygen atoms of the methoxy groups of compound 7 has a positive effect on the

activity. The contour map on Fig 9A shows that the aniline residue at the C4 position (namely,

the benzene ring) generally has a positive effect on the activity of atrazines. Fig 9B shows that

the bulky substituents localized at the meta position of the aniline have a negative effect on the

activity; the methoxy substituents of compound 9 are located in these areas.

Compounds 10, 11 and 12 have ortho-, meta- and para-positions of the nitrile of the aniline

substituent, respectively (Fig 1). The contour maps of electrostatic interactions (Fig 7C and

7D) may explain why the activity of these compounds in system S2 is different. Fig 7D shows

Fig 7. The molecular interaction field (MIF) contour maps for system S2 and compound 7: (a) favorable steric interactions; (b) unfavorable

steric interactions; (c) sites favorable for positively charged groups; (d) sites favorable for negatively charged groups.

https://doi.org/10.1371/journal.pone.0214879.g007
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that the contour map is favorable for the interaction with the nitrile located at the 2’ and 3’

positions of the aniline ring.

Table 6. Experimental and predicted values of triazine cross-reactivity in the K4E7 system.

№ Experiment Prediction

1 9.432 9.120

2 8.678 8.786

3 7.686 7.746

4 6.431 6.429

5 9.569 9.031

6 9.569 9.361

7 9.602 9.397

8 9.328 8.894

9 6.301 6.442

10 9.284 9.455

11 9.469 9.462

12 9.456 9.871

13 9.337 9.212

14 9.337 9.776

15 9.310 9.527

16 8.434 8.497

17 6.731 6.721

18 6.731 6.362

19 6.301 6.931

20 6.301 6.266

https://doi.org/10.1371/journal.pone.0214879.t006

Fig 8. K4E7 system’s experimental and predicted pIC50 triazine values based on the CoMFA method (3D QSAR).

https://doi.org/10.1371/journal.pone.0214879.g008
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Let us regard compounds 13, 14 and 15, which possess trifluoromethyl substituent (-CF3) in

the ortho-, para- and meta- positions, respectively. In the S2 system, molecule 14 is more active

than 13 and 15 (Table 1). In order to answer the question why these compounds exhibit differ-

ent activities, it is required to consider the Solvation_E descriptor involved in 2D QSAR model

5. This descriptor is inversely correlated with pIC50. For compounds 13, 14 and 15, Solvation_E
is equal to -20.27 kJ mol-1, -30.06 kJ mol-1 and -27.35 kJ mol-1, respectively. Obviously, the

lower the solvation energy, the lower the activity. Also, the pIC50 of compounds 13, 14 and 15 is

correlated with IC2 values of 4.15, 4.21 and 4.09, respectively. The higher value of IC2 descriptor

for compound 14 means a higher heterogeneity of 14 among compounds 13–15.

Obviously, the low activity of compounds 16, 19 and 20 in both systems (S2 and K4E7) is

due to the absence of the>CH- group at the C6 position. This is confirmed both by the zero

values of 2D descriptors ES_Count_sssCH, ES_Sum_sssCH, and by the contour maps of van

der Waals interactions (Figs 7A and 9A). Also, it is quite obvious that compounds 17, 18 have

low pIC50 values due to the presence of the -OH group in the C2 position instead of chlorine.

Table 7. Statistical parameters of the 3D QSAR model for the K4E7 system.

№ R2 SDEC F-test q2
(LOO) SDEP(LOO) q2

(LMO) SDEP(LMO)

3 0.952 0.291 105.0 0.637 0.796 0.566 0.861

https://doi.org/10.1371/journal.pone.0214879.t007

Fig 9. MIF contour maps for the K4E7 system: (a) favorable steric interactions and (b) unfavorable steric interactions for compound 11; (c)

sites favorable for positively charged groups; (d) sites favorable for negatively charged groups for compound 12.

https://doi.org/10.1371/journal.pone.0214879.g009
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If we compare the 2D QSAR models for monoclonal antibodies (mAb) and polyclonal anti-

bodies (pAb), one can see that both models (Model 4 for mAb and Model 7 for pAb) contain the

polar surface area parameters Jurs_FPSA_3 and Jurs_TPSA, respectively. The polar surface area

is inversely correlated with the activity, which means that the polarity of atrazines is unfavorable

for the interaction with both monoclonal and polyclonal antibodies. Both mAb and pAb are

affected by the amount of methantriyl groups (ES_Sum_sssCH and ES_Count_sssCH parameters,

respectively), which means that, in both cases, bulk substituents are favorable for higher activity.

The latter statement is supported by 3D molecular interaction field contour maps (Figs 7A and

9A). We may see that both mAb and pAb systems have a great deal in common.

Conclusions

In this study, we evaluated the efficiency of the interaction of 20 triazines with polyclonal and

monoclonal antibodies grown using atrazine as the immunizing hapten.

The comparison of the two immunoassay systems showed that the system with the poly-

clonal antibodies (S2) is much easier to describe using 2D QSAR methodology, and the system

with monoclonal antibodies can be described using the 3D QSAR CoMFA method. Thus, for

the 3D QSAR model of the S2 system, the main statistical parameter q2 (LMO) is equal to

0.498, and for K4E7, q2 (LMO) = 0.566. Apparently, this is explained by the fact that in the

case of polyclonal antibodies, we deal with several targets, while in interaction with monoclo-

nal antibodies, the target is one, and therefore it is easier to describe it using specific fields of

molecular interactions distributed in space.

There is an interesting fact: while for the S2 system the main contribution (72%) is made by

steric interactions (S3 Table), for K4E7, the fraction of van der Waals and electrostatic interac-

tions is equal (S4 Table).

Based on our analysis, we conclude that the effectiveness of the interaction with polyclonal

antibodies significantly depends on the presence of the isopropylamino group in the C6 posi-

tion of triazine, the presence of chlorine at the C2 position, and also the aniline substituent in

the C4 position, whose substituents, in turn, participate in electrostatic interactions and hydro-

gen bonding.

The obtained data as well as the earlier-published results of QSAR technique application for

immune recognition demonstrate the efficiency of this technique in the identification of key

structures responsible for the distinguishing of structurally close antigens by antibodies. This

information allows the theoretical formulation of criteria for molecules that could be recog-

nized by the same antibodies (thus, extending the selectivity of one immunoassay) or require-

ments in different antibodies for detection (thus, realizing assays with mixtures or arrays of

immunoreactants).
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