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Summary

The AP-2 family of transcription factors consists of five different proteins in humans and mice: AP-2�,
AP-2�, AP-2�, AP-2� and AP-2�. Frogs and fish have known orthologs of some but not all of
these proteins, and homologs of the family are also found in protochordates, insects and
nematodes. The proteins have a characteristic helix-span-helix motif at the carboxyl terminus,
which, together with a central basic region, mediates dimerization and DNA binding. The amino
terminus contains the transactivation domain. AP-2 proteins are first expressed in primitive
ectoderm of invertebrates and vertebrates; in vertebrates, they are also expressed in the
emerging neural-crest cells, and AP-2�-/- animals have impairments in neural-crest-derived facial
structures. AP-2� is indispensable for kidney development and AP-2� is necessary for the
formation of trophectoderm cells shortly after implantation; AP-2� and AP-2� levels are elevated
in human mammary carcinoma and seminoma. The general functions of the family appear to be
the cell-type-specific stimulation of proliferation and the suppression of terminal differentiation
during embryonic development. 
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Gene organization and evolutionary history 
The AP-2 family of transcription factors (Ensembl Family

ENSF00000001105) consists in humans and mice of five

members, AP-2�, AP-2�, AP-2�, AP-2� and AP-2�; frogs and

fish have some of these proteins, and homologs are also

known in invertebrates. The chromosomal locations and

accession numbers of the family are given in Tables 1 and 2,

respectively. All mammalian AP-2 proteins except AP-2� are

encoded by seven exons and share a characteristic domain

structure (reviewed in [1]; for AP-2� see [2] and for AP-2�

see [3,4]). Orthologs show a similarity between 60 and 99%

at the amino-acid level, whereas paralogs show a similarity

between 56 and 78%.

Analysis of the phylogenetic tree (Figure 1) reveals that the

vertebrate AP-2 proteins are grouped together and are

divided into five groups. The single Xenopus AP-2 is most

closely related to mammalian AP-2� proteins. As the genes

AP-2� and AP-2� are found on the same chromosome in

chickens, rodents and humans (Table 1), it is likely that they

are the result of an internal duplication. According to the

phylogenetic tree, AP-2� genes appear to have separated

from the rest of the family early in the vertebrate clade and

to have evolved separately (Figure 1). A BLAST search of the

puffer fish Fugu rubripes fourth genome assembly database

[5] suggests that there are orthologs of AP-2�, AP-2�, AP-2�

and AP-2� but not AP-2� genes in bony fish, although only

orthologs of AP-2� and AP-2� have been found in zebrafish.

In the genome of the protochordate Ciona intestinalis a

single AP-2 gene has been predicted; the phylogenetic tree

shows that the protein evolved before the split of the AP-2�,

AP-2�, AP-2� and AP-2� proteins, with the highest sequence

similarity with the AP-2� group, suggesting that AP-2�

might be most similar to the ancestor of AP-2 proteins. This

hypothesis is further supported by the conserved epithelial



expression patterns of murine AP-2� [6], Xenopus AP-2 [7]

and the amphioxus and lamprey AP-2 [8] genes. As

expected, the two Caenorhabditis elegans and the single

Drosophila melanogaster AP-2 proteins show the weakest

phylogenetic relationship with vertebrate and protochor-

date AP-2 transcription factors; they form an outgroup to

the other AP-2 family members (Figure 1). Given that no

AP-2 gene has been identified in yeast, the family probably

originated late in evolution and expanded considerably in

the vertebrates.

Characteristic structural features 
All AP-2 proteins share a highly conserved helix-span-helix

dimerization motif at the carboxyl terminus, followed by a

central basic region and a less conserved domain rich in

proline and glutamine at the amino terminus (Figure 2). The

proteins are able to form hetero- as well as homodimers. The

helix-span-helix motif together with the basic region medi-

ates DNA binding [9,10], and the proline- and glutamine-

rich region is responsible for transactivation. AP-2 has been

shown to bind to the palindromic consensus sequence

5�-GCCN3GGC-3�, found in various cellular and viral

enhancers (reviewed in [1]); a binding-site selection assay

in vitro also revealed the additional binding motifs

5�-GCCN3GGC-3�, 5�-GCCN4GGC-3� and 5�-GCCN3/4GGG-3�

[11]. Other binding sites differing from these sequence

motifs, for example, the SV40 enhancer element

5�-CCCCAGGC-3� [12], indicate that AP-2 proteins may bind

to a range of G/C-rich elements with variable affinities.
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Table 1

Chromosomal locations of AP-2 genes from selected species

AP-2� AP-2� AP-2� AP-2� AP-2� Other AP-2 genes*

H. sapiens 6p24 6p12 20q13.2 6p12.1 1p34.3

P. troglodytes 6p22.3 6p12 21 - -

M. musculus 13 A5-B1 1 A2-A4 2 H3-H4 1 A3 4 D2.2

R. norvegicus 17p12 9q13 3q42 9q13 5q36

G. gallus 2 3 - 3 -

X. tropicalis scaffold_278 - - - -

D. rerio 24 20 - - -

C. elegans II

D. melanogaster 3L

*The AP-2 genes of C. elegans and D. melanogaster are not orthologous to any of the five mammalian genes. Data taken from the database entries for the
accession numbers given in Table 2. No information on mapping is available for the C. intestinalis AP-2 gene.

Table 2

Accession numbers for AP-2 proteins from selected species

AP-2� AP-2� AP-2� AP-2� AP-2� Other AP-2 proteins*

H. sapiens NP_003211 NP_003212 NP_003213 NP_758438 NP_848643

P. troglodytes - XP_518532 XP_526337 - -

M. musculus NP_035677 NP_033360 NP_033361 NP_694794 NP_945198

R. norvegicus XP_225238 XP_217356 NP_958823 XP_236975 XP_233526

G. gallus NP_990425 NP_990226 - XP_426224 -

X. tropicalis AAD53289 - - - -

X. laevis AAA49972 - - - -

D. rerio NP_789829 NP_001019836 - - -

C. elegans NP_4951819

D. melanogaster NP_730664

C. intestinalis BAE06307 and BAE06308

*The AP-2 genes of C. elegans, D. melanogaster and C. intestinalis are not orthologous to any of the five mammalian genes.
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Figure 1
Phylogenetic tree of the AP-2 family. Amino-acid sequence alignments were performed using ClustalW implemented in Sequence Data Explorer of the
MEGA3 software [67]. The phylogenetic tree was created using the neighbor-joining method (gaps setting: pairwise deletion; distance method: number of
differences). Numbers at selected nodes indicate the percentage frequencies of branch association on the basis of 1,000 bootstrap repetitions. The scale
bar indicates the number of residue changes. Asterisks indicate predicted proteins; brackets denote subfamilies in vertebrates. Species: Caenorhabditis
elegans (nematode); Ciona intestinalis (sea squirt); Drosophila melanogaster (fruit fly); Danio rerio (zebrafish); Gallus gallus (chicken); Homo sapiens (human);
Mus musculus (mouse); Pan troglodytes (chimpanzee); Rattus norvegicus (rat); Xenopus laevis and Xenopus tropicalis (frog). 
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Target genes with AP-2-binding sites in their promoter

sequences are involved in biological processes such as cell

growth and differentiation and include, for example, those

encoding insulin-like growth factor binding protein 5 (IGF-

BP5) with the binding site 5�-GCCAGGGGC-3� [13], prothy-

mosin-� (5�-GCCGGTGGGC-3�) [14] and the estrogen

receptor (5�-GCCTGCGGGG-3�) [15]. 

Most AP-2 proteins have a PY motif (XPPXY) and other

highly conserved critical residues in the transactivation

domain; by contrast, the PY motif is missing in AP-2� but

the amino- and carboxy-terminal ends of the core sequence

of the transactivation domain are still conserved. In addi-

tion, the binding affinity of AP-2� to conserved AP-2-

binding sites is much lower than that of other AP-2 proteins

[2]. This suggests that AP-2� might transactivate genes in

vivo by a different mechanism from that used by other AP-2

proteins, probably through interactions with a novel group

of coactivators and through a different affinity for AP-2-

binding sites. Alternatively, AP-2� might act as a negative

regulator, inhibiting or modulating the transactivation capa-

bility or DNA-binding affinity of the other AP-2 family

members. The crystal structure of the AP-2 proteins has not

yet been solved.

Localization and function 
AP-2 transcription factors are localized predominantly in the

nucleus, where they bind to target sequences and regulate

transcription of target genes. AP-2 proteins have also been

shown to interfere with other signal transduction pathways;

for example, it has been proposed that they modulate the

pathway downstream of the developmental signaling molecule

Wnt by associating with the Adenomatous polyposis coli

(APC) tumor suppressor protein in the nucleus [16].

The activity of AP-2 proteins can be controlled at multiple

levels: their transactivation potential, their DNA binding,

their subcellular localization [17-19] and their degradation

[20,21] can all be modified. Mechanisms of regulation

include post-translational modifications, such as protein

kinase A-mediated phosphorylation [22,23], sumoylation

[24] and redox regulation [25,26], as well as physical inter-

action with various proteins (see Table 3 for a comprehen-

sive list). Interacting proteins either modulate the activity of

AP-2 proteins or are influenced in their function by binding

to AP-2 proteins.

The tissue distribution and developmental functions of AP-2

transcription factors have been studied extensively in several

species. Drosophila AP-2 (dAP-2) is expressed in the maxil-

lary segment and neural structures during embryogenesis,

and in the central nervous system (CNS) and the leg, anten-

nal and labial imaginal disks during larval development

[27,28]. Mutation of the dAP-2 gene leads to defects in pro-

boscis development and leg-joint formation [29,30].

The multiple overlapping and diverging expression patterns

of AP-2 family proteins suggest that, following the expansion

of the family during vertebrate evolution, redundant and

non-redundant functions of the individual AP-2 family

members evolved. Although the single AP-2 protein in the

cephalochordate amphioxus is expressed mainly in non-

neuronal ectoderm, in the lamprey, a primitive vertebrate,

AP-2 has co-opted a second expression domain, the neural

crest [8]. The single AP-2 homolog described so far in

Xenopus is expressed in the epidermis and neural crest and

has been shown to be critical for the development of these

structures [7,31-33]. In zebrafish, the two AP-2 family

members, tfap2a and tfap2b [34], are coexpressed in the

neural tube, the ectoderm and the pronephric ducts of the

developing kidney, but only tfap2a is expressed in neural

crest cells [35,36]. Positional cloning revealed that the

zebrafish point mutants named mont blanc [35] and lockjaw

[36] encode tfap2a; the mutant animals display impaired

development of neural-crest derivatives, such as the facial

skeleton, the peripheral nervous system and pigment cells

[37,38]. It is also interesting to note that AP-2 proteins are

expressed in the primitive ectoderm of both invertebrates

and vertebrates, suggesting an evolutionarily conserved role

for the family in the formation of this tissue. 

In mice, three of the five AP-2 family members (AP-2�, AP-

2� and AP-2�) are coexpressed in neural-crest cells, the

peripheral nervous system, facial and limb mesenchyme,

various epithelia of the developing embryo and the extra-

embryonic trophectoderm [2,39-41]. AP-2� expression is

restricted mainly to the developing heart, CNS and retina

[39], whereas AP-2� expression is detected in cells of the
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Figure 2
A schematic representation of the protein structure of an AP-2� dimer,
showing the proline- and glutamine (P/Q)-rich transactivation domain (89
amino acids, red), the PY motif within this domain (5 amino acids, green),
the basic domain (20 amino acids, yellow) and the helix-span-helix motif
(131 amino acids, blue). The helix-span-helix motif is responsible for
dimerization of the proteins and mediates DNA binding together with the
basic domain. Modified from SwissProt, ID: P34056 [68].
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olfactory bulb [3,4]. Despite the overlapping expression

patterns of AP-2�, AP-2� and AP-2�, disruption of these AP-2

genes reveals non-redundant roles during development.

Mutation of AP-2� predominantly affects the cranial neural

crest and the limb mesenchyme, leading to disturbances of

facial and limb development in a manner reminiscent of the

defects described in dAP2 mutant flies [42,43]. AP-2� and

AP-2�, on the other hand, are essential for kidney develop-

ment [44,45] or placentation of the embryo [46,47],

respectively. In humans, mutations generating a dominant

negative allele of AP-2� have been shown to be the cause of

Char syndrome (Online Mendelian Inheritance in Man

(OMIM) ID 169100 [48]); the hallmarks of this syndrome

are patent ductus arteriosus (abnormal persistence of a

normal fetal heart structure after birth) with facial dysmor-

phism and abnormal fifth digits [49,50]. 

Comparing all mutant phenotypes, it can be seen that loss of

AP-2 transcription factor activity generally impairs prolifer-

ation and induces premature differentiation and/or apopto-

sis in various cell types during development. This conclusion

is further substantiated by results from a screen for AP-2�

target genes [51] and supported by gain-of-function studies

in Xenopus and mice [31,52,53]. As uncontrolled prolifera-

tion leads to malignancies, AP-2 transcription factors are not

only implicated in normal development, but also seem to be

involved in cellular neoplasia, and enhanced AP-2 levels

have been reported in various types of cancer [19,54-60]. In

a murine breast-cancer model, tumor progression is

enhanced after transgenic overexpression of AP-2� [55].

Thus, AP-2 proteins can be viewed as gatekeepers control-

ling the balance between proliferation and differentiation

during embryogenesis. 
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Table 3

Proteins that physically interact with AP-2 transcription factors

Domain of AP-2 
Protein Description proteins that interacts* Function of interaction Reference

APC Adenomatous polyposis coli Basic region Inhibition of �-catenin/TCF/LEF-dependent transcription [16]
tumor suppressor

CITED2 Coactivator DD Transcriptional activation [69] 

CITED4 Coactivator n.d. Transcriptional activation [70]

CDP CCAAT displacement protein DBD, DD Repression of the hamster histone H3.2 promoter [71]

DEK Oncoprotein, chromatin remodeling n.d. Transcriptional activation [72]

E1A Transforming protein of adenovirus DBD, DD Repression of AP-2 target genes [73]

c-Myc Onco-protein Carboxyl terminus Impairment of Myc/Max DNA-binding and transactivation [14]

PARP PolyADP-ribose polymerase Carboxyl terminus Transcriptional activation [74]

PAX-6 Transcription factor n.d. Stimulation of gelatinase B activation [75]

PC4 Coactivator Transcriptional activation [24]

P300/CBP Coactivator Amino terminus Transcriptional activation [69]

p53 Tumor suppressor n.d. Augmentation of p53-dependent transcription [76]

RAP74 Subunit of transcription factor TFIIF Central region Unknown [74]
containing DBD

Rb Retinoblastoma tumor suppressor Amino terminus† Repression of the hamster histone H3.2 promoter; [77,78]
transcriptional activation of the E-cadherin gene

SP1 Transcription factor Basic region Transcriptional activation of the ovine CYP11A1 gene [79]

SV40T Transforming protein of SV40 virus n.d. Blocks DNA binding of AP-2 protein [12]

UBC9 E2-conjugating enzyme DBD, DD Sumoylation [80]

WWOX Tumor suppressor Amino terminus Cytoplasmic localization PPPY motif [17]
PY motif

YB-1 Transcription factor n.d. Stimulation of gelatinase A transcription [81]

YY1 Transcription factor DBD, DD Stimulation of the hamster histone H3.2 promoter [82]

*Abbreviations: DBD, DNA-binding domain; DD, dimerization domain; n.d., not determined. †It is currently not entirely clear whether Rb binds AP-2
only via the amino terminus [78], or whether the DNA-binding domain is also necessary [77].
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The lethal phenotypes of the AP-2 mutants generated so far

have precluded an analysis of the roles of AP-2 transcription

factors in adult tissues. We and others are currently exploit-

ing the power of conditional mouse mutants to overcome

these restrictions [61-63]. Such approaches will not only

shed light on normal AP-2 functions but will probably also

lead to unique insights into human disorders.

Complementary approaches currently include the identifica-

tion of AP-2 target genes; this might give a better under-

standing of developmental disturbances and pave the way to

novel treatment options [51,64]. At the molecular level, one

major challenge will be the identification of specific AP-2

homo- or hetero-dimeric complexes bound to a particular

promoter and the identification of the specific properties of

each complex with respect to gene regulation. Also, the sig-

naling pathways responsible for induction of AP-2 genes are

currently under investigation. A cross-species comparison of

the various AP-2 promoters may give insights into the evolu-

tion of tissue specificity and help to determine important

enhancer elements. Moreover, given that CpG islands are

present in AP-2 promoters, epigenetic regulation such as

DNA methylation also needs to be considered. 

AP-2 transcription factors are currently being studied exten-

sively in human cancer, and they may be of diagnostic value,

as has been demonstrated for mammary or testicular carci-

noma [19,54,56,65,66]. It is tempting to speculate that AP-2

transcription factors might not only be molecular markers

for certain types of cancer, but could also be causally

involved in their etiologies and would therefore represent a

potential target for therapeutic intervention.
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