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In different organs and tissues, the lymphatic system 
serves as a drainage system for interstitial fluid and is 
useful for removing substances that would otherwise 
accumulate in the interstitium. In the brain, which lacks 
lymphatic circulation, the drainage and cleaning function 
is performed by the glymphatic system, called so for its 
dependence on glial cells and its similar function to that 
of the lymphatic system. In the present article, we define 
glymphatic insufficiency as the inability of the glymphatic 
system to properly perform the brain cleaning function. 
Furthermore, we propose that corpora amylacea or 
wasteosomes, which are protective structures that act as 
waste containers and accumulate waste products, are, in 
fact, a manifestation of chronic glymphatic insufficiency. 
Assuming this premise, we provide an explanation that 
coherently links the formation, distribution, structure, and 
function of these bodies in the human brain. Moreover, we 
open up new perspectives in the study of the glymphatic 
system since wasteosomes can provide information 
about which variables have the greatest impact on 
the glymphatic system and which diseases occur with 
chronic glymphatic insufficiency. For example, based 
on the presence of wasteosomes, it seems that aging, 
sleep disorders, and cerebrovascular pathologies have 
the highest impact on the glymphatic system, whereas 
neurodegenerative diseases have a more limited impact. 
Furthermore, as glymphatic insufficiency is a risk factor 
for neurodegenerative diseases, information provided 
by wasteosomes could help to define the strategies and 
actions that can prevent glymphatic disruptions, thus 
limiting the risk of developing neurodegenerative diseases.
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In different organs and tissues, the lymphatic system serves 
as a drainage system for interstitial fluid (ISF) and is useful 
for removing substances that would otherwise accumulate 
in the interstitium. In the brain, which lacks lymphatic circu-
lation, the drainage function is performed by the newly dis-
covered glymphatic system, called so for its dependence on 
glial water channels and its similar function to that of the 
lymphatic system (1, 2). Briefly, the glymphatic system 
involves the entry of cerebrospinal fluid (CSF) from the sub-
arachnoid space into the periarterial spaces, principally those 
of the three main cerebral arteries (anterior, middle, and 
posterior cerebral arteries), and then its movement along 
the periarterial spaces propelled by the pulsatility of the arte-
rial walls (1, 3–5). Later, aquaporin-4 (AQP4) water channels 
that are abundantly present at the vascular astrocytic end 
feet facilitate the displacement of water from the periarterial 
spaces to the brain parenchyma, where it mixes with brain 

ISF (6). Moving along an anatomical pathway that is guided 
in some cases by the white matter tracts (2, 7), fresh ISF flows 
across the brain parenchyma toward the perivenous spaces, 
principally those of the internal cerebral vein of the deep 
venous system and the inferior anastomotic vein of Labbé 
of the superficial venous system (1). ISF progresses along 
these perivenous spaces and leaves the nervous system, 
most of it bypassing the CSF of the subarachnoid space (1, 
2, 8) and eventually draining through the traditional lym-
phatic vessels located in the soft tissue surrounding the skull 
or through the meningeal lymphatic vessels (2, 9). Several 
additional pathways that ISF uses to exit the nervous system 
include the cranial and spinal nerves, as well as both the 
subependymal and transependymal routes (2, 7, 10, 11). As a 
result, the glymphatic system drags away substances that 
would otherwise accumulate in the brain parenchyma, there-
fore constituting an important brain cleaning system (12). All 
these processes are illustrated in Fig. 1.

In accordance with this and from a theoretical point of 
view, we can define glymphatic insufficiency as the inability 
of the glymphatic system to properly perform the brain 
cleaning function. Again, from a theoretical point of view, this 
insufficiency can be acute if it occurs abruptly and suddenly, 
or it can be chronic if it is maintained over time or lasts a 
while. Glymphatic insufficiency, whether acute or chronic, 
can occur because of a failure in the system itself or by over-
production of waste substances that exceeds the cleaning 
capacity of the system. Moreover, a combination of the two 
events cannot be excluded. Either way, if glymphatic insuffi-
ciency occurs, the result will be the accumulation of waste 
substances in the brain parenchyma.

In this article, we propose that corpora amylacea or was-
teosomes, which are protective bodies that act as waste 
containers and accumulate brain waste products (13–15), 
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are in fact a manifestation of glymphatic insufficiency, spe-
cifically chronic glymphatic insufficiency. We will explain 
below the different elements that led us to propose this 
hypothesis and how this allows some conclusions to be 
drawn regarding the functioning or malfunctioning of the 
glymphatic system in different situations or diseases.

Wasteosomes are composed of a polyglucosan structure 
that retains or accumulates waste elements (13–17). The 
polyglucosan structure is composed of aggregates of poly-
meric chains of hexoses, mainly glucose, which are more 
similar to the amylopectin of vegetable starch than to animal 
glycogen (13, 16, 18, 19). This similarity to starch led to these 
bodies being named corpora amylacea, a Latin term for 
"starch-like bodies" (19, 20). Regarding the waste elements 
or elements that are associated with these polyglucosan 
structures, a great variety has been described, including com-
ponents of neuronal, astrocytic, or oligodendrocytic origins, 
as well as components with hematological or even infectious 

disease origins (13, 21–47). Since some of these components 
are amyloid proteins (32, 45–48), the name corpora amylacea 
has generated certain confusion and misunderstandings 
over time (15). Thus, in this article, we will use the term was-
teosomes (defined in ref. 15), which emphasizes the waste 
elements that these structures contain instead of their amy-
loid properties.

The wide variety of waste products described in waste-
osomes has generated controversy regarding their origin or 
formation. Although some studies have described the pres-
ence of wasteosomes in neuronal structures (23, 49–52), 
evidence suggests that wasteosomes are formed in astro-
cytes (21, 35, 39, 42, 44, 53–57). In fact, astrocytes can capture 
or phagocytose residual elements and even components of 
synaptic boutons during neural network remodeling (58–63), 
which may explain the variety of components found in was-
teosomes. It has been proposed that the formation of was-
teosomes involves the capture of waste elements that may 

Fig. 1. Brief description of the glymphatic system. (1) The glymphatic system involves the entry of CSF from the subarachnoid space into the periarterial 
spaces, its movement along these spaces propelled by the pulsatility of the arterial walls, and the displacement of water from the periarterial spaces to the brain 
parenchyma, where it mixes with brain ISF. (2) Fresh ISF flows across the brain parenchyma, moving along an anatomical pathway that is guided in some cases 
by the white matter tracts, and dragging away substances that would otherwise accumulate in the parenchyma. (3) Some of the ISF leaves the brain through 
the perivenous spaces (principally those of the large-caliber ventral veins and some superficial veins), most of it bypassing the CSF of the subarachnoid space. 
(4) ISF can also drain through the cranial and spinal nerves. (5) The subependymal and transependymal routes are additional pathways that ISF uses to exit the 
nervous system. As a result, the glymphatic system constitutes an important brain cleaning system. See text for details.
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originate from inside or outside the cell and would involve 
the cell machinery required for the production of the amyl-
opectin-like component that forms the skeleton of the con-
tainer (14, 15).

Concerning the presence and abundance of wasteosomes 
in the brain, evidence indicates that aging is a relevant factor. 
Several studies indicate that wasteosomes are nonexistent 
in young individuals or, if present, their number is invariably 
low (7, 64–66), while studies that include aged individuals 
always report high amounts of wasteosomes at advanced 
ages (16, 21, 22, 29, 35, 43, 54, 67, 68). Moreover, there is a 
high number of studies indicating that the number of was-
teosomes increases with age (13, 64, 65, 66, 69, 70). Another 
important factor may be sleep disorders. In this sense, a high 
number of wasteosomes have also been described in the 
brains of patients with obstructive sleep apnea in a quanti-
tative study performed by Xu et al. (71). In that study, a large 
number of these structures were detected in almost all the 
specimens examined. The images exhibited in the article 
show an extraordinarily high density of wasteosomes in the 
brains of these patients, suggesting that the amount of was-
teosomes in these cases is much higher than that observed 
in most other diseases. Moreover, patients with certain vas-
cular disorders, such as small vessel disease and vascular 
atherosclerotic encephalopathy, also show significant 
amounts of wasteosomes in their brains (13, 22, 38, 68, 72). 
Of note, in a large series of postmortem examinations, Leel-
Össy found the greatest numbers of wasteosomes in the 
brains of patients with vascular encephalopathies (73).

In addition to aging, sleep disorders and vascular disor-
ders, which seem to be relevant factors associated with the 
formation of wasteosomes, high amounts of wasteosomes 
have been described in other diseases, including neurode-
generative diseases like Alzheimer’s disease (AD) (67, 74–77), 
Huntington’s disease (74), Parkinson’s disease (36, 77), Pick’s 
disease (76), amyotrophic lateral sclerosis (36), and multiple 
sclerosis (40, 76) as well as aging-related tau astrogliopathy 
(ARTAG) (72), neuromyelitis optica (44, 78), and some cases 
of temporal lobe epilepsy and other epilepsies (53, 79–82).

Remarkably, most of the factors that are associated with 
high amounts of wasteosomes are also identified as disrup-
tive or strongly disruptive for the glymphatic system. Aging 
is one of the most disruptive factors for the glymphatic sys-
tem (83–86), with poor sleep quality being another important 
disruptive factor (2, 86–91). Of note, this system shows a 
marked circadian rhythm and performs its cleaning function 
during sleep, mainly during the stages NREM 3 and NREM 2 
(86). Other important strongly disruptive factors for the glym-
phatic system are cardiovascular disorders, which include 
small vessel disease (92–95), hypertension (4, 96), cerebral 
amyloid angiopathy (97), and vascular dementia (98).

Glymphatic disruptions have also been reported in neu-
rodegenerative diseases (2, 86, 87, 99–102), as well as in cer-
tain types of epilepsies (103, 104), but not in neuromyelitis 
optica or ARTAG. However, neuromyelitis optica, in which 
the number of wasteosomes seems also to increase, is an 
astrocytopathy that occurs with the presence of antibodies 
directed against the AQP4 protein (44, 105, 106), which plays 
an essential role in the functioning of the glymphatic system. 
Regarding ARTAG, some alterations in the CSF flow associ-
ated with disturbances in the blood–CSF–brain barriers in 

basal brain regions have been described, but not specifically 
alterations in the glymphatic system (107). However, the dis-
turbances of the CSF–brain barrier and the astrocytic alter-
ations that accompany the disease (108) suggest this 
possibility.

It seems, therefore, that in those situations in which alter-
ations of the glymphatic system occur, there is also an 
increase in wasteosomes. From our point of view, it seems 
conceivable that if there is a disruption of the glymphatic 
system, which is responsible for removing waste elements 
from the brain parenchyma, there will be an increase in the 
number of wasteosomes, as these structures accumulate 
waste elements. Furthermore, there is more evidence that 
suggests that wasteosomes are closely related to the glym-
phatic system.

There is a general consensus that wasteosomes are 
located predominantly at the perivascular, periventricular, 
and subpial regions of the brain. However, although the 
causes are unknown, they are not evenly distributed through-
out these regions but are mainly found in select areas of 
these regions. Notably, as explained later, these select areas 
may correspond to the drainage regions of the glymphatic 
system, in which the waste elements dragged by the move-
ment of ISF tend to concentrate, as well as to critical regions 
of ISF flow and critical or altered regions with an increased 
generation of waste products.

In 1969, Sakai et al. studied the distribution of waste-
osomes in the cerebrum of four 70-y-old brains (16). The 
authors indicated that wasteosomes tend to concentrate in 
the tissue regions that are in proximity to CSF, such as the 
walls of the ventricles and also the brain tissue near the 
depths of the cerebral sulci. In addition, they produced a map 
of a cerebral coronal section showing the distribution and 
abundance of wasteosomes in different brain regions. 
Remarkably, the regions shown in the map as presenting the 
greatest numbers of wasteosomes are clearly associated 
with the drainage of the glymphatic system. The two regions 
with the highest amounts of wasteosomes are i) the medial 
region located at the base of the upper horns of the lateral 
ventricles and at the roof of the third ventricle and ii) the 
region located at the ventral area of the brain and close to 
the ambient cistern. The first region contains the internal 
cerebral veins (or deep cerebral veins), while the second 
region contains the basal vein (of Rosenthal), with all of them 
draining into the great cerebral vein of Galen. Remarkably, 
and as commented before, ISF moves, due to the glymphatic 
system, along an anatomical pathway toward the perivenous 
spaces, with a special predilection for specific perivenous 
spaces including that of the internal cerebral veins of the 
deep venous system. The third region containing numerous 
wasteosomes, although not at the same magnitude as that 
of the two regions mentioned above, is the part of the brain 
tissue close to the area of the lateral Sylvian sulcus. The 
superficial middle cerebral vein (or superficial Sylvian vein) 
runs through this region. Remarkably, the inferior anasto-
motic vein of Labbé, which contains another important 
perivenous space for the drainage of the glymphatic system, 
is a bridging vein between the Sylvian fissure and the trans-
verse sinus (109, 110). At this point, it should be noted that 
the studies on the perivascular spaces which are relevant for 
the drainage of the glymphatic system are still incomplete 
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and have been performed mainly in rodents. Thus, the efflux 
routes of ISF in the human brain are not yet known in detail. 
The facts presented above, however, clearly suggest a certain 
overlap between the presence of wasteosomes and the main 
drainage areas of the glymphatic system. In addition, based 
on the presence and location of wasteosomes, it can be pre-
dicted that the basal vein (of Rosenthal), the vein of Galen, 
and the Sylvian veins also play an important role in ISF drain-
age. In fact, it has already been suggested that the large-ca-
liber ventral veins play an important role in the drainage of 
the glymphatic system (111).

The relationship between wasteosomes and the areas 
adjacent to the perivenous spaces is also evident if the brain 
regions are analyzed in more detail. In the human hippocam-
pus, for example, wasteosomes predominate in the tissue 
areas close to the hippocampal sulcus and the fimbrioden-
tate sulcus. It is precisely in these areas where the parenchy-
mal veins of the hippocampal tissue converge toward the 
venous arch of the hippocampal sulcus and the venous arch 
of the fimbriodentate sulcus. Both venous arches drain into 
the basal vein, which drains into the vein of Galen (112–114). 
Therefore, these regions, in addition to being the regions 
where the majority of wasteosomes accumulate, could be 
important drainage areas of the glymphatic system in the 
hippocampus.

On the other hand, when analyzing the presence of was-
teosomes in the hippocampus, we frequently observe that 
the fimbria of the hippocampus also contains a surprisingly 
high amount of wasteosomes. Although some veins cross 
the fimbria toward the venous arch of the fimbriodentate 
sulcus, the wasteosomes do not tend to localize near the 
fimbriodentate sulcus in this case and are distributed 
throughout the whole tissue. Remarkably, the fimbria is a 
compact white matter tract, and although white matter tracts 
appear to be important flow routes for ISF, the flow is highly 
restricted in the compact ones (2, 115). Thus, in this case, the 
presence of wasteosomes might be associated with the 
restricted flow of ISF, which can explain their distribution 
throughout the whole structure.

At this point, we should also highlight another region con-
taining abundant wasteosomes that has often been over-
looked in the literature: the filum terminale (116, 117). The 
filum terminale, consisting of glial and ependymal cells, 
extends from the apex of the conus medullaris to the sacrum, 
where it blends into the connective tissue covering this bone 
(117). The filum terminale has two sections. One is the filum 
terminale internum, which is 15 cm long and lies within the 
dural sac, and the other is the filum terminale externum, 
which is 5 cm long and lies outside the dural sac. The causes 
and mechanisms involved in the presence of wasteosomes 
in the filum terminale are unknown, but they might also be 
related to a deficiency in ISF flow and the consequent accu-
mulation of waste products.

Another element that links wasteosomes to the drainage 
regions of the glymphatic system is the olfactory bulb. It is 
of note that everyone who has worked with olfactory bulb 
samples has observed a high presence of wasteosomes in 
this structure. To date, there is no reasonable explanation 
for this fact. However, it has been described that there is 
some movement of ISF from the inferior horns of the lateral 
ventricles toward the olfactory bulbs (118, 119) from where 

some of the fluid eventually drains into the nasal mucosa 
and its lymphatic vessels (120–123). Actually, olfactory bulbs 
are considered particularly relevant drainage areas of the 
glymphatic system (85). Once more, a high number of was-
teosomes are found in a relevant drainage area of this sys-
tem. Furthermore, the deficient drainage in the olfactory 
bulb could facilitate the entry of inhaled foreign material 
from the olfactory epithelium, which could in turn enhance 
the production of wasteosomes in the olfactory bulb. 
Therefore, the high presence of wasteosomes in this struc-
ture could be related to increases in both internal and exter-
nal waste materials.

Thus, the select areas in which wasteosomes tend to con-
centrate may correspond to the drainage regions of the 
glymphatic system and to critical regions of ISF flow as well 
as critical or altered regions with an increased generation or 
arrival of waste products. The increase in the production of 
waste elements can be due, among other factors, to the pres-
ence of some stressors. In this sense, the sustained or 
repeated upregulation of the stress protein heme oxygen-
ase-1 (HO-1) and the hyperinduction of glial Hmox1 by oxi-
dative stress and other stressors accelerate the 
transformation of normal mitochondria into degenerative 
mitochondria that, engaged in a complex macroautophagic 
process, leads to the formation of wasteosomes (124, 125).

Apart from the possible relationship between the glym-
phatic system and the presence of wasteosomes, we assume 
in this article that the formation of wasteosomes is relatively 
slow or extended over time. The rarity of wasteosomes in 
young people and the absence of reports of acute processes 
involving a high number of wasteosomes support this asser-
tion. In addition, wasteosomes are often lamellar structures, 
where it seems that successive layers of materials accumu-
late. This may be a long-lasting process since they can reach 
more than 50 μm in diameter. Therefore, the increase in the 
number of wasteosomes is likely to be related to chronic 
processes.

Thus, we have highlighted that the formation of waste-
osomes seems to be related to the factors that cause glym-
phatic insufficiency, with wasteosomes localizing in the 
regions that are the most affected by glymphatic insuffi-
ciency. Moreover, we assume that wasteosomes are related 
to chronic processes. Consequently, an increase in the num-
ber of wasteosomes can be considered a hallmark of chronic 
glymphatic insufficiency. Assuming this, we can now com-
ment on the repercussions of this hypothesis, which would 
allow us, among other things, to complete and improve the 
previous description of the function of wasteosomes and 
also to theorize about the main variables or situations that, 
at least chronically, have an impact on the glymphatic 
system.

In Fig. 2, the proposed relationship between wasteosomes 
and the glymphatic system under chronic insufficiency is 
shown. Aging, sleep disorders, and cardiovascular diseases 
can exert a direct and chronic effect on the glymphatic sys-
tem. In this case, waste elements are poorly removed and 
 accumulate in the brain parenchyma, mainly in the drainage 
areas of the glymphatic system. Astrocytes phagocytose or 
take up some of these waste products. The waste elements 
that cannot be processed by the intracellular phagosome/
lysosome system or the ubiquitin-proteasome system become 
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incorporated into a resistant polyglucosan structure formed 
of amylopectin-like polymers, which grow over a long-lasting 
process, reaching more than tens of micrometers in diameter 
in some cases. This results in the production of wasteosomes. 
Hence, wasteosomes are mainly formed in the previously 
mentioned drainage regions of the glymphatic system, which 
include principally the regions near the large-caliber ventral 
veins and both the middle cerebral vein and the vein of Labbé, 
as well as the roots of the cranial and spinal nerves and the 
subependymal spaces. Furthermore, waste products can accu-
mulate in specific regions of the brain parenchyma due to the 
restricted flow of ISF, including, for example, the fimbria of 
the hippocampus, the filum terminale, and the bordering sub-
pial spaces. Wasteosomes can also accumulate in specific 
regions that are subjected to excessive production or arrival 

of waste substances, such as the olfactory bulb and some 
regions that present high levels of oxidative stress. In the case 
of neurodegenerative diseases, the formation of wasteosomes 
can be due to the impact of the disease on the glymphatic 
system, derived from the alterations of the neurovascular unit, 
or to increased waste production and oxidative stress gener-
ated in the affected brain areas. Regardless of the causes of 
wasteosome formation, the wasteosomes that are generated 
in the glia limitans or in proximity to CSF can be extruded by 
astrocytes into the CSF in an apocrine-like secretion (14). These 
wasteosomes can be subsequently phagocytosed by the mac-
rophages present at central nervous system interfaces or, if 
entering the meningeal lymphatic vessels, by those located in 
the deep cervical lymph nodes. All of them are supposedly M2 
macrophages and, thus, lead to protective noninflammatory 

Fig. 2. Hypothesized relationship between wasteosomes and the glymphatic system under chronic insufficiency. Aging (1), sleep disorders (2), and cardiovascular 
diseases (3) can exert a direct and chronic effect on the glymphatic system. In this case, waste elements are poorly removed and accumulate in the brain 
parenchyma, mainly in the drainage areas of the glymphatic system. Hence, wasteosomes are mainly formed in the regions near both the large-caliber ventral 
veins and some superficial veins, as well as the roots of the cranial and spinal nerves and the subependymal spaces. Neurodegenerative diseases (4) or an excessive 
production of waste substances in specific regions (5) can induce the local formation of wasteosomes. Due to the restricted flow of ISF, waste products can also 
accumulate in specific regions of the brain parenchyma like the bordering subpial spaces (6). By forming wasteosomes and incorporating waste materials into 
resistant polyglucosan structures formed of amylopectin-like polymers, astrocytes help in the removal and isolation of waste substances. Wasteosomes that 
are generated in the glia limitans or in proximity to CSF can be extruded by astrocytes into the CSF and subsequently be phagocytosed by M2 macrophages, 
thus leading to protective noninflammatory responses. Furthermore, wasteosomes located in the most internal regions remain in the astrocytes and, therefore, 
accumulate in the brain. Consequently, wasteosomes can be considered a hallmark of chronic glymphatic insufficiency. As can be seen, wasteosomes are mainly 
observed in perivenous, periventricular, and subpial spaces although they can also be present in some other regions. See text for details.
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responses (14, 126). Furthermore, the wasteosomes located 
in the most internal regions remain in the astrocytes and, 
therefore, accumulate in the brain. Accordingly, the number 
of wasteosomes in the brain tissue, although influenced by 
some factors like the rate of extrusion or the rate of formation 
of waste elements, will essentially depend on the time since 
the start of glymphatic insufficiency.

Analyzing the situations in which wasteosomes tend to 
accumulate, we can deduce those that have the greatest 
chronic impact on the glymphatic system. Although it has to 
be verified, it seems that these situations include aging, sleep 
disorders, and cerebrovascular pathologies, which all disturb 
the glymphatic system in a general way. Neurodegenerative 
diseases seem to have more limited effects since the correla-
tion between these diseases and the number of wasteosomes 
is not systematically observed or described. However, the 
absence of a clear correlation might be due to possible mask-
ing effects from concomitant variables like aging, cerebrovas-
cular pathologies, and sleep disorders. For example, in a study 
evaluating a broad range of pathologies in a cohort of 101 
individuals, all of them presented wasteosomes, predomi-
nantly in the subpial (100%), white matter (94%), subependy-
mal (87%), perivascular (73%), and gray matter (51%) regions 
(72). However, the presence of wasteosomes in the different 
regions did not show a significant association with the pres-
ence of Lewy body pathology, limbic-predominant age-related 
TDP-43 encephalopathy neuropathological change (LATE-NC), 
cerebral amyloid angiopathy (CAA), β-amyloid plaques, and 
ARTAG, except for that in the gray matter in ARTAG. Of note, 
the study was performed in a cohort of 101 individuals aged 
from 77 to 90 y, which implies that all of them probably had 
a high number of wasteosomes due to aging, thus possibly 
masking the effects of other variables. Vascular or sleep dis-
orders, which are frequently associated with age and some 
of these diseases, can also mask these effects.

It can be assumed, with certain caution, that neurodegen-
erative diseases can trigger the formation of wasteosomes. 
However, the presence of wasteosomes does not necessarily 
imply the presence of neurodegenerative diseases, as other 
variables can lead to the generation of these bodies. 
Nevertheless, the variables that most favor chronic glym-
phatic insufficiency may be risk factors for the development 
of neurodegenerative diseases. In the case of chronic glym-
phatic insufficiency, although the formation of wasteosomes 
would help in the elimination of waste substances, the accu-
mulation of waste substances in the parenchyma and, hence, 
of extracellular proteins would promote the misfolding, 
aggregation, and seeding of aggregation-prone proteins (86). 
These proteins include β-amyloid in AD; phosphorylated tau 
in frontotemporal dementia (FTD), chronic traumatic enceph-
alopathy, and AD; α-synuclein in Parkinson’s disease, Lewy 
body disease, and multisystem atrophies; mutant huntingtin 
in Huntington’s disease; and TAR DNA-binding protein 43 
(TDP-43) in amyotrophic lateral sclerosis and FTD (86, 127). 
From this point of view, it is important to know the variables 
that have an impact on the glymphatic system, and waste-
osomes can help to ascertain them as well as their relative 
importance. Altogether, this knowledge could help to define 
the strategies and actions that can prevent or correct glym-
phatic disruptions, thus limiting the risk factors for develop-
ing neurodegenerative diseases.

In addition to neurodegenerative diseases, another note-
worthy point is that of disorders that occur with seizures.

Wasteosome accumulation has been described in 
patients with temporal lobe epilepsy and other epilepsies 
(79, 80, 128–130). Among them, mesial temporal lobe epi-
lepsy (MTLE) is the most common surgically remediable 
human epilepsy syndrome, with hippocampal sclerosis (HS) 
being the most frequently encountered lesion in patients 
with MTLE (131–133). Several reports have described the 
accumulation of wasteosomes in the resected hippocampus 
of patients with medically refractory MTLE with HS (52, 65, 
130, 134–139) and its absence in MTLE with other lesions 
(140). Although there are still only a few studies in this 
regard, the presence of wasteosomes in patients with med-
ically refractory MTLE with HS, but not in those with other 
lesions, could indicate that the disease progresses with 
chronic glymphatic insufficiency in the former. In fact, alter-
ations in the glymphatic system in MTLE with HS have 
recently been described (103).

Wasteosome accumulation has also been described in 
local clusters that mimic low-grade glioma and result in sei-
zures (81, 128). In one case, the patient remained seizure-free 
without the use of antiepileptic drugs postoperatively, sug-
gesting that the seizures could be attributed directly to the 
wasteosome lesion (81). Accordingly, it is thus necessary to 
investigate possible glymphatic alterations associated with 
these lesions.

Another noteworthy case of epilepsy in this context is 
Lafora disease. Lafora disease is a severe, autosomal reces-
sive progressive myoclonus epilepsy that usually manifests 
in previously healthy adolescents, with death commonly 
occurring within 10 y of symptom onset (141–143). Lafora 
disease is usually caused by mutations in the EPM2A gene, 
which encodes laforin, or by mutations in the EPM2B gene, 
which encodes malin, an E3 ubiquitin ligase (144–146). These 
proteins have been described to regulate glycogen accumu-
lation (13, 147–149) and to intervene in the clearance of mis-
folded proteins (150–155). The absence of either malin or 
laforin results in poorly branched hyperphosphorylated gly-
cogen that precipitates, aggregates, and accumulates into 
small inclusion bodies in many tissues, including the brain 
(13, 18, 156, 157). These inclusions, termed Lafora bodies, 
are the hallmark of the disease.

Studies carried out with malin knockout mice (malinKO), 
a mouse model of Lafora disease, show that these animals 
have the neuronal inclusions that are characteristic of 
Lafora disease and that constitute the Lafora bodies 
observed in the brains of patients with the condition. 
Moreover, these animals present a high amount of 
another type of cerebral inclusion that is formed in astro-
cytes (53). These astrocytic inclusions have been observed 
in many other murine models, such as SAMP8 mice (that 
present accelerated senescence), as well as aged C57BL/6 
mice, AKR mice, and ICR-CD1 mice (158–163). Due to their 
granular structure and the fact that they stain with the 
periodic acid-Schiff (PAS) stain, these inclusions are gen-
erally called PAS granules, and since they are not exclusive 
to malinKO animals, they should not be considered Lafora 
bodies. Interestingly, these mouse PAS granules present 
high similarities with human wasteosomes and have been 
considered to be corpora amylacea-like granules (21, 53). 
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This may indicate that there are chronic glymphatic dis-
turbances in malinKO animals and, by extension, in Lafora 
disease. In this case, however, it must be taken into 
account that the absence of malin directly alters the 
metabolism of glycogen. Therefore, the presence of PAS 
granules could be, directly or in part, the result of this 
alteration in glycogen metabolism in astrocytes or per-
haps the direct activation of the machinery involved in the 
generation of the polyglucosan structure of the waste 
containers (15). It should be noted, moreover, that we 
have not found any reports indicating the presence of 
abundant wasteosomes or any other type of astrocytic 
inclusion with a polyglucosan nature in the brains of 
patients with Lafora disease. We would like to highlight 
the reports from Cavanagh (13) and from Sakai and col-
laborators (156) that compared neuronal Lafora bodies 
with the wasteosomes from humans without this disease. 
This implies that the researchers knew that there are two 
types of bodies, but there is no reference in their studies 
about the presence of wasteosomes in the brains of 
patients with Lafora disease. Therefore, it is necessary to 
clarify why abundant PAS granules or astrocytic inclusions 
are present in malinKO animals, but wasteosomes or astro-
cytic inclusions are not significant or have not been 
described yet in patients with Lafora disease. In fact, this 
could perhaps help to solve why malinKO animals, despite 
being a model of Lafora disease, do not present the per-
ceptible epileptic seizures typical of patients with Lafora 
disease.

In this article, we introduce the concept of glymphatic 
insufficiency and highlight that there are different elements 
indicating that wasteosomes are a hallmark of chronic 
glymphatic insufficiency. On the one hand, this premise 
provides an explanation that coherently links the forma-
tion, distribution, structure, and function of wasteosomes 
in the human brain. On the other hand, new perspectives 
are raised in the study of the glymphatic system since these 
bodies could provide information about which diseases 
occur with glymphatic insufficiency and which variables 
have the greatest impact on the glymphatic system. Almost 
200 y after their discovery, corpora amylacea, mysterious 
and intriguing bodies, evolve to wasteosomes, bodies with 
a precise function related to glymphatic insufficiency. 
Knowing their function and their involvement in the func-
tioning of the glymphatic system will help to understand 
the pathophysiology of some of the diseases of the central 
nervous system, helping to develop new treatments for 
these diseases.
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