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Abstract: The prevalence of asthma has increased worldwide. Asthma exacerbations triggered by
upper respiratory tract viral infections remain a major clinical problem and account for hospital
admissions and time lost from work. Virus-induced asthma exacerbations cause airway inflammation,
resulting in worsening asthma and deterioration in the patients’ quality of life, which may require
systemic corticosteroid therapy. Despite recent advances in understanding the cellular and molecular
mechanisms underlying asthma exacerbations, current therapeutic modalities are inadequate for
complete prevention and treatment of these episodes. The pathological role of cellular senescence,
especially that involving the silent information regulator 2 homolog sirtuin (SIRT) protein family, has
recently been demonstrated in stable and exacerbated chronic respiratory disease states. This review
discusses the role of SIRT1 in the pathogenesis of bronchial asthma. It also discusses the role of SIRT1
in inflammatory cells that play an important role in virus-induced asthma exacerbations. Recent
studies have hypothesized that SIRT1 is one of major contributors to cellular senescence. SIRT1 levels
decrease in Th2 and non-Th2-related airway inflammation, indicating the role of SIRT1 in several
endotypes and phenotypes of asthma. Moreover, several models have demonstrated relationships
between viral infection and SIRT1. Therefore, targeting SIRT1 is a novel strategy that may be effective
for treating virus-induced asthma exacerbations in the future.
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1. Introduction

Asthma is the most common chronic respiratory disease, as over 300 million individuals suffer
from asthma worldwide [1]. Although the rate of asthma-related mortality has declined for decades
due to the advancement in treatment strategies, the prevalence of asthma has gradually increased from
1990 to 2005, and death rates have plateaued in some countries with aging populations [2]. Among
all asthma patients, it is thought that about 5–10% of patients have severe refractory asthma. This
is due to inaccurate inhalation techniques, poor treatment adherence, and inadequate management
of comorbidities [3]. However, even when these factors are excluded, asthma is often still poorly
controlled in the population.

Patients still have to grapple with various issues associated with the condition; asthma exacerbation
is one of the challenges that requires a more effective solution. Among multiple causes, infectious
diseases are the most important cause of asthma exacerbations. Various microorganisms, such as
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bacteria, fungi, and viruses, can cause acute exacerbations of asthma [4–6], and viral infection is the
most common trigger.

Human rhinovirus (HRV) is one of the major pathogens of virus-induced asthma exacerbations.
In a review of 670 samples of HRV infection detected in the nasal mucosa of infants, HRV caused severe
symptoms in winter, and HRV-A and HRV-C caused moderate to severe illnesses [7]. A previous study
confirmed elevated expression of interferon (IFN) and Type 2 cytokines analyzed from bronchosorption
and nasosorption in asthma patients infected with HRV [8]. In the presence of HRV infection, it was
suggested that airway infections of Streptococcus pneumoniae and Moraxella catarrhalis might increase
the risk of experiencing the severity and symptoms of asthma exacerbations [9]. Respiratory syncytial
virus (RSV) is also an important pathogen for asthma exacerbations. RSV is known to infect almost
all children by the age of 2 years [10], and childhood RSV infection puts adults at risk of developing
asthma [11]. In addition, the annual incidence of RSV infection is 3–7% in healthy older adults, and
7.2% of patients hospitalized for asthma have comorbid RSV infection [12]. Thus, it is an essential
pathogen for all generations.

Type 2 and non-type 2 airway inflammation are the two major immune phenotypes of asthma [13].
These phenotypes and endotypes are defined by a variety of factors, including genetic predisposition
and environmental factors such as antigen exposure, inflammatory biomarkers, tight junctions in the
airway epithelium, and viral infections [14–16]. In addition to the viral infections themselves, it has been
suggested that viral infections can reduce the species, numbers, and diversity of microbiota, so-called
dysbiosis [17], indicating that asthma is a very complex disease. Viral infection, which can affect
patients with both phenotypes, induces the formation of a wide range of cytokines and chemokines in
the airway [18–22]. Eosinophils, T helper-2 (Th2) lymphocytes, type 2 innate lymphoid cells (ILC2),
Th17 cells, and neutrophils are involved in epithelial chemokine production in virus-induced asthma
exacerbation [18–22] (Figure 1). Inhaled corticosteroids (ICS), which have been used widely for treating
asthma over the past few decades, inhibit the expression of inflammatory cytokines in the airway
during virus-induced asthma exacerbations, especially Th2-airway inflammation [23]. Although
ICS ameliorate asthma exacerbation by limiting neutrophilic and non-Th2 inflammation [24], it is
also known that viral infection induces steroid resistance by inducing mainly neutrophilic airway
inflammation [25]. Virus-induced asthma exacerbation overburdens healthcare systems, and it elevates
the rates of morbidity and mortality [26]. Moreover, a few patients, described as severe, do not respond
to current therapies, and few prophylactic strategies are available for treating such refractory cases.
Therefore, new therapeutic targets and approaches are the need of the hour.

Cellular senescence is characterized by irreversible cell-cycle arrest and release of inflammatory
mediators known as the senescence-associated secreted phenotype (SASP), which can exert paracrine
and autocrine effects on naïve cells [27]. The silent information regulator 2 homolog 1 (SIRT1), which is
a nicotinamide adenine dinucleotide (NAD+)-dependent class III deacetylase, is one of the essential
proteins that regulates aging, metabolism, DNA repair, immunity, and inflammation, and it protects
against cellular senescence [28,29].

In recent years, age-related diseases such as heart disease, neurological diseases, cancer, and
diabetes have been found to be closely related to SIRT1 [28], and similarly, SIRT1 has garnered
considerable attention because of its role in the pathogenesis of asthma [30–32]. An SIRT1-targeted
treatment strategy may be effective in patients with virus-induced asthma exacerbation, who respond
inadequately to existing therapies. In this review, we discuss the function of SIRT1 in inflammatory
cells that play a role in virus-induced asthma exacerbations and examine the possibility of using SIRT1
as a target for treating virus-induced asthma exacerbations in the future.
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Figure 1. Immunological mechanism of virus-induced asthma exacerbations. When a virus infects
the airway epithelium, airway inflammation is induced by multiple pathways. There are two types
of airway inflammation: Type 2 airway inflammation involving IL-4, IL-5, IL-13, IgE, and ILC2, and
non-Type 2 airway inflammation involving CXCL8 and Th17. CysLTs: cysteinyl leukotrienes. IL:
interleukin; ILC2: group 2 innate lymphoid cell; PG: prostaglandin; TBG-β: transforming growth
factor-β; TSLP: thymic stromal lymphopoietin.

2. The Role of SIRT1 in Inflammatory Cells

Activation of SIRT1 induces SASP in T cells through deacetylation of several transcription factors,
such as p53, NF-κB, forkhead box O (FOXO)3, PI3K, HIF-1α, and PGC1α [32,33], regulating autophagy,
DNA repair, mitochondrial function, and cellular senescence [34]. It was suggested that the mechanism
for this was an enhanced glycolysis in helper T cells, which might lead to immune dysfunction [35].
On the other hand, the details of B cells involved in the humoral immune response are not yet well
known [36]. In 2003, a screen for mammalian SIRT1 activators identified SIRT1 activators, including
resveratrol, piceatannol, and quercetin, called Sirtuin Activating Compounds (STACs). Among them,
resveratrol was shown to be the most potent activator of SIRT1 [37]. In a clinical trial of SIRT1 activators
in mild to moderate ulcerative colitis, SRT2104, a SIRT1 activator, was well tolerated [38]. Adverse
events of SRT2104 was reported to include upper abdominal pain, fatigue, photophobia, diarrhea, and
headache [38]. It is considered to be a relatively safe drug to use. On the other hand, selisistat (Ex527),
a SIRT1 inhibitor, has been studied in healthy individuals and patients with Huntington’s disease, and
has also been shown to be safe [39,40]. The association between SIRT inhibitors and respiratory illness
is not well reported. Based on these previous reports, we will discuss about the impact of SIRT1 on
virus-induced asthma exacerbations below.

2.1. Neutrophils

2.1.1. Neutrophils in Virus-Induced Asthma Exacerbations

Neutrophilic inflammation occurs in the airway during virus-induced asthma exacerbation.
CXCL8 is a crucial cytokine of the neutrophilic airway inflammatory process, which is also involved in
virus-induced asthma exacerbation [41]. HRV infection increases CXCL8 and IL-1β levels in the nasal
lavage fluid of patients with asthma [42]. Smoking is an important factor in the worsening of the disease
in asthmatic patients. Stimulating human airway epithelial cells with HRV infection and cigarette
smoking extract (CSE) enhances CXCL8 expression [43]. Increased production of CXCL8 is one of the
mechanisms of corticosteroid resistance [44,45]. The antimicrobial drug azithromycin may be effective
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in asthmatics with a predominance of CXCL-8 and other neutrophilic cytokines [46,47]. In a clinical trial
of children with RSV-infected bronchitis, azithromycin significantly reduced the expression of CXCL8
in nasal lavage and reduced respiratory symptoms one-year post-use compared to a placebo [46].
Azithromycin may exert its effects by inducing IFN-β and IFN2/3, but the clinical benefits of using
antimicrobials, including azithromycin, in patients with asthma are still unclear [48,49].

MMP-9, a type of matrix metalloprotease, has been found to be increased during viral infections [50].
MMP-9 also causes airway remodeling through neutrophilic airway inflammation [50,51]. Airway
remodeling is associated with decreased respiratory function and disease severity [52].

Despite the fact that both CXCL8 and MMP-9 are important factors associated with neutrophilic
airway inflammation, there are few therapeutic agents for these factors involved in neutrophilic airway
inflammation. Furthermore, it may lead to severe virus-induced asthma, and effective treatment
strategies are needed.

2.1.2. The Relationship between SIRT1 and Neutrophils in Virus-Induced Asthma Exacerbations

Several reports suggest that SIRT1 regulates neutrophilic airway inflammation related to
CXCL8 [53–56]. CSE-induced CXCL8 elevation in mature mononuclear cells was attenuated
by the overexpression of SIRT1 in vitro [55]. These studies showed that activation of NF-κB
signaling and deacetylation of FOXO 3a protein as mechanisms by which SIRT1 regulates
neutrophilic airway inflammation [55]. A previous study confirmed that FOXO3a expression was
upregulated by RSV infection [57]. Thus, SIRT1 activators, including resveratrol, may be effective in
targeting CXCL8-induced neutrophilic airway inflammation in virus-induced and steroid-resistant
asthma exacerbations [58,59]. Interestingly, in basic experiments with macrophages isolated from
bronchoalveolar lavages of COPD patients, resveratrol inhibited the release of nearly all cytokines from
alveolar macrophages. In contrast, dexamethasone, a type of systemic corticosteroid commonly used
in the treatment of asthma exacerbations, only partially inhibited the release of CXCL8 [60]. These lines
of evidence suggest that activation of SIRT1 may lead to suppression of neutrophilic inflammation,
possibly through suppression of CXCL8 and may be an effective therapeutic strategy, especially for
steroid-resistant virus-induced asthma exacerbations.

Suzuki et al. investigated the relationship between viral infections and MMP-9 expression using
human nasal epithelial cells [51]. Notably, they found that the expression of MMP-9, which was
enhanced by Poly(I:C), was attenuated by resveratrol. Furthermore, in the presence of the SIRT1
inhibitor splitomicin, Poly(I:C) significantly enhanced the expression of MMP-9 [51]. Another study
showed that the increased MMP-9 was attenuated by not only the SIRT1 activator resveratrol, but also
by the diabetes drug metformin in a mouse model exposed to UV light [61]. These results indicated
that SIRT1 activation could be a novel therapeutic strategy for virus-induced asthma exacerbations by
regulating MMP-9 expression and suppressing airway neutrophilic inflammation and remodeling.
However, additional studies will be necessary to determine whether MMP-9 is a good biomarker for
SIRT1-targeted therapy.

2.2. Eosinophils

2.2.1. Eosinophils in Virus-Induced Asthma Exacerbations

Eosinophils play an essential role in virus-induced asthma exacerbation. CCL5 and CCL11, which
are chemokines associated with eosinophils, may be upregulated and recruit eosinophils when a virus
infects the airway epithelium [62]. Eosinophil cationic protein (ECP), an inflammatory mediator, is
released by eosinophils and correlates with airway hyperreactivity [63]. In addition to these, cytokines
such as interleukin (IL)-4, IL-5, and IL-13 are thought to be involved in a complex.

Calhoun et al. investigated whether HRV could trigger an allergic response in the airway [64] since
it is a significant viral pathogen that exacerbates asthma in adults and children [65]. Bronchoalveolar
lavage was performed for both healthy and allergic participants with or without HRV infection, and
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they concluded that eosinophil recruitment in the airway occurred during or after HRV infection
in allergic participants, but not in healthy participants [65]. Kato et al. studied childhood asthma
and reported that serum IL-5 and ECP levels were significantly higher in the virus-induced asthma
group than those in the control group [66]. They also showed that the profile of those cytokines and
chemokines differed with age [67]. Fractional exhaled nitric oxide is a good indicator of eosinophilic
airway inflammation [68]. Bjerregaard and colleagues reported that FeNO in virus-induced asthma
exacerbation was higher than in the follow-up period [69]. They demonstrated that patients with
higher FeNO levels had significantly shorter time to arrive at asthma exacerbation than those patients
with lower FeNO [69]. Activation of toll-like receptor 3 (TLR3), a virus receptor within the airway
epithelial cells, led to the induction of eosinophil-attracting chemokines (CCL11, eotaxin) in the cellular
bases [18–22]. These findings suggested that eosinophilic airway inflammation is an important aspect
of virus-induced asthma exacerbation.

2.2.2. The Relationship between SIRT1 and Eosinophils in Virus-Induced Asthma Exacerbations

Several studies have demonstrated the importance of SIRT1 in eosinophilic airway inflammation.
Wang et al., using an ovalbumin-induced asthma mouse model, found that SIRT1 was associated with
eosinophilic airway inflammation [70]. While they reported that serum SIRT1 levels were increased in
OVA-sensitized and challenged mice model, SIRT1 levels were decreased in lung tissue, and more IL-4,
IL-5, and IL-13 in BALF were found in the ovalbumin-induced asthma mouse model compared to the
controls [70]. They also showed that respiratory function (forced expiratory volume in 1 s/forced vital
capacity) was negatively correlated with serum SIRT1 in asthmatic human samples [70]. Based on
these results, they believed that the elevated serum SIRT1 levels were due to the release of SIRT1 from
the tissues following airway inflammation. In another study, SIRT1 activator (SIRT1720) treatment
decreased the eosinophil count and IL-5 and Il-13 levels, but not IL-4 levels in the bronchoalveolar fluid
and lung tissue in the ovalbumin-induced asthma mouse model [71]. They also reported that SIRT1
activation significantly inhibited inflammatory cell infiltration in the airways, but it did not significantly
affect goblet cell hyperplasia, and they attributed this to the possibility that SIRT1 activation might be
inadequate to control airway inflammation. Resveratrol, a known SIRT1 activator, also attenuated IL-5
and IL-13 as well as eosinophil accumulation in ovalbumin-induced allergic rhinitis in mice [72]. This
may be attributed to the differential effect of SIRT1 on transcription factors, including GATA3, which is
a transcriptional factor that regulates Th2 differentiation and the expression of the T2 cytokines IL-4,
IL-5, and IL-13 [73]. SIRT1 is a key regulator of GATA3 via its deacetylation, and in T-lymphocytes
from patients with severe asthma, a decrease in SIRT1 has been linked to increased expression of IL-4
via increased GATA3 activation [73]. These findings supported the fact that SIRT1 activation might
suppress eosinophilic inflammation in the airway during acute asthma exacerbations.

Controlling eosinophilic inflammation is a key approach for predicting and treating virus-induced
asthma exacerbations [68,74,75]. Anti-IL-5 therapies, such as mepolizumab and benralizumab, are
effective against eosinophilic airway inflammation and markedly reduce virus-induced asthma
exacerbations [76,77]. Although these biologics produce marked effects in patients with refractory
asthma, their efficacy was limited in patients with non-Th2-asthma [78,79]. Activation of SIRT1 may
facilitate control of eosinophilic inflammation and refractory eosinophilic asthma.

2.3. Mast Cells and B Cells

2.3.1. Mast Cells and B Cells in Virus-Induced Asthma Exacerbations

IgE is an important therapeutic target for virus-induced asthma exacerbation, which is mainly
produced by plasma cells. The position of omalizumab, which is a humanized anti-IgE monoclonal
antibody, has been confirmed as an important therapeutic agent [80]. The PROSE study revealed a
lower asthma exacerbation frequency in the omalizumab group than that in the placebo group [81].
In this study, they conducted a subgroup analysis of patients with HRV infection and found a
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significant increase in IFN-α in the group of patients treated with omalizumab, which may be a
protective mechanism for viral-induced asthma exacerbations [81]. Another clinical study showed
that omalizumab decreased the frequency and duration of HRV infection in patients with childhood
asthma [82]. Despite the efficacy of omalizumab in patients with asthma with viral infection, it was
reported that some patients, especially geriatric patients, responded poorly to anti-IgE. This observation
may be attributed to immunosenescence, which includes impaired mucociliary clearance, changes
within the inflammatory cells in the airway, and decreased antigen response [83]. Hence, there is a
demand for other treatment options besides anti-IgE therapy for patients who are unresponsive to
anti-IgE therapy.

Lipid profiling is thought to be important for understanding viral infections [84,85]. When the
virus reacts with airway epithelium, mast cells are activated in an IgE-dependent or independent
manner, and degranulation occurs [86]. This results in the production of lipid mediators such as
prostaglandin (PG) and cysteinyl leukotriene (CysLTs), which induce an immediate response in the
airways and other target organs [86]. Currently, drugs targeting lipid mediators in asthma are mainly
the CySLT1 receptor antagonists pranlukast and montelukast [87,88]. It is known that obesity, a factor
in refractory asthma, results in steroid resistance due to decreased adipokines. Although leukotriene
receptor antagonists are useful in such patients [89], they are still not well controlled. A better
understanding of the pathogenesis of refractory asthma by further approaches to lipid mediators is an
important issue.

2.3.2. The Relationship between SIRT1 and Mast Cells and B Cells in Virus-Induced Asthma
Exacerbations

Resveratrol, a polyphenol found in grapes, berries, red wine, and peanuts [90], can activate
SIRT1 [91]. Lee et al. examined the possible anti-inflammatory effects of resveratrol in an
ovalbumin-induced asthma mouse model [92]. Resveratrol significantly reduced total IgE and
ovalbumin-specific IgE levels and increased serum IgG2a, which is associated with Th1 response, in
serum [92]. Moreover, it reduced airway hyperresponsiveness and mucus hypersecretion compared to
a placebo [92]. Yet another study found that SIRT1 regulated the pathways, AMP-activated protein
kinase (AMPK), and protein tyrosine phosphatase 1B. Modulation of these pathways via resveratrol
attenuated signals from the IgE receptor, FcεRI, and inhibited the release of lipid mediators, leukotriene
C4 (LTC4) and PGD2, and the inflammatory cytokines, tumor necrosis factor (TNF)-α and IL-6 [93]. In
a mouse model of OVA-induced allergic rhinitis, SIRT1 administration reduced symptoms such as
sneezing and nasal rubbing events, and it led to a significant reduction in serum IgE [94]. It is known
that when IgE antibodies bind to the antigen, intracellular secretory granules are transported to the
cell surface, and chemicals, such as histamine, contained in the granules are released. Previous reports
demonstrated that SIRT1 inhibited degranulation [95]. The study noted that inhibition of degranulation
by SIRT1 may be mediated through inhibition of the response mechanisms of the phosphorylation
of protein kinase C (PKC) isomer, PKCµ and PKCθ. These data suggested that SIRT1 activation may
ameliorate IgE-mediated airway inflammation in viral-induced asthma exacerbations, whereas the
detailed mechanism by which omalizumab blocks IgE is unclear and requires further study.

Some studies on the association between SIRT1 and lipid mediators have been reported. Tan
et al. demonstrated in basic experiments using eosinophils isolated from whole human blood that
trans-resveratrol suppressed the expression of LTC4 [96]. Another study showed that resveratrol
reduced the expression levels of LTC4 and PGD in a mouse model of eosinophilic sinusitis [97].
These results might be attributed to inhibition of the phospholipaseA2 (PLA2) and lipoxygenase
(LOX) pathways, which play an important role in the arachidonic acid cascade [96,97]. As mentioned
above, SIRT1 is closely related to metabolism. It was reported that fisetin and licochalcone, which are
polyphenols, improve hepatic lipid metabolism via the SIRT1/AMPK pathway in a mouse model [98,99].
In a clinical trial on asthma and diet, a healthier diet correlated with better asthma control [100]. These
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evidences suggest that drug treatment and diet modification may be one of the lipid mediator-mediated
SIRT targeted treatment strategies for virus-induced asthma exacerbations.

2.4. Type 2 Innate Lymphoid Cells (ILC2)

2.4.1. ILC2 in Virus-Induced Asthma Exacerbations

ILCs are a novel type of lymphocyte, which have been recently identified as playing an important
role in immune diseases. Th2-type cytokines were initially found to be produced solely by Th2
cells, but recent findings show that ILC2 cells, although less numerous than Th2 cells, are more
efficient in producing Th2-type cytokines [101]. Moreover, ILC2 has been shown to play an essential
role in virus-induced asthma [102,103]. Studies have confirmed that the expression of the upstream
cytokines IL-25, IL-33, and TSLP that regulate ILC2 is enhanced in rhinovirus infections [104–107].
Current knowledge suggests that airway epithelial damage triggered by viral infections promotes
the production of IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), which in turn leads to the
activation of ILC2 and exacerbation of asthma [102]. We showed that the late addition of budesonide
attenuates the increase in TSLP caused by viral infection [19]. Although Tezepermab, a biologic that
targets TSLP for treatment, was reported to reduce the frequency of asthma exacerbations [108], the
role of ILCS2, including IL25 and IL-33, is not fully understood, and we need to elucidate the full
mechanism of its production and develop new treatment options.

2.4.2. The Relationship between SIRT1 and ILC2 in Virus-Induced Asthma Exacerbations

Little is currently known about the association between airway inflammation, SIRT1, and ILC2.
Basic experiments using mouse models of allergic diseases demonstrated that resveratrol inhibited
the expression of IL-25, IL-33, and TSLP in airway epithelial cells [109]. Resveratrol also reduces
caspase-3, an indicator of apoptosis [109]. In basic experiments using a mouse model of HDM-induced
asthma, resveratrol reduced cell apoptosis and suppressed the expression of the γH2AX gene, which is
associated with DNA damage [110]. Activation of SIRT1 suppresses epithelial damage, which may
inhibit apoptosis and control viral-induced asthma exacerbations. Leptin is one of the adipokines
secreted by adipocytes and is involved in increased energy metabolism and appetite suppression via
hypothalamic receptors [111]. An increase in SIRT1 led to an increase in the sensitivity of leptin [111].
It was suggested that elevated leptin could cause exacerbation of allergic diseases via ILC2 [112,113].
Zeng et al. tested the relationship between leptin and ILC2 in patients with allergic rhinitis [113].
The results showed that leptin expression correlated with the percentage of ILC2 in peripheral blood
mononuclear cells. MAPK signaling and PI3K signaling were thought to be the possible pathways
involved in this response [112,113]. It was reported that SIRT1 was inhibited by p38 MAPK and PI3K
signaling via micro-RNA (miRNA) 34-a and miRNA570 expression, if the airway epithelial cells were
subjected to oxidative stress [114,115]. The possible mechanisms by which SIRT1 regulates allergic
airway inflammation through ILC2, such as cellular apoptosis and lipid metabolic pathways, as well
as the presence of miRNAs, require further investigation.

2.5. Th17 Cells

2.5.1. Th17 Cells in Virus-Induced Asthma Exacerbations

Th17 cells also play an important part in virus-induced asthma, mediated by the role of IL-17
family cytokines [116–118]. In basic experiments in which an OVA mouse model was infected with
RSV, IL-17A regulated the airway hyperreactivity [116]. Niwa et al. demonstrated in vitro experiments
using normal human bronchial epithelium that the increase in IFN-λ, which plays a protective role in
viral infection, was attenuated by the presence of IL-17A [118]. Increased IL-17 is thought to be one of
the mechanisms of steroid resistance in asthmatic patients [118], and IL-17 may be a novel therapeutic
target for patients with viral-induced asthma who are refractory to treatment.
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IL-6 and transforming growth factor (TGF)-β are required for Th17 differentiation. Viral infection,
including HRV infection, increases IL-6 levels in the respiratory tract [119,120], which correlates with
airway remodeling and the severity of asthma [121,122]. At present, the anti-IL-6 antibody tocilizumab,
which is used to treat rheumatoid arthritis, is not indicated for asthma, but basic experiments suggested
that IL-6 may be an important marker of asthma [123,124].

TGF-β is an essential factor affecting airway remodeling along with MMP-9, amphiregulin,
vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF) [125]. Repeated RV
infection in mice not sensitized to allergens activated TGF-β in lung tissue, but neutralizing TGF-β
reduced airway smooth muscle thickening [125]. TGF-β-deficient mice showed an earlier increase in
IFN-β in lung tissue compared to that in controls [126]. Collectively, TGF-βwas found to contribute
strongly to remodeling during virus-induced asthma exacerbations.

One therapeutic candidate targeting Th17 cells is brodalumab, a monoclonal antibody against
the IL-17 receptor, which has failed to show efficacy in the clinical trial [127]. Further elucidation of
their mechanisms and development of therapeutic agents are required to control the pathogenesis of
virus-induced asthma exacerbations.

2.5.2. The Relationship between SIRT1 and Th17 Cells in Virus-Induced Asthma Exacerbations

It was reported that loss of SIRT1 further induced mRNA expression of IL-17 in an animal model
of RSV infection [128]. According to their considerations, SIRT1-deficient bone marrow dendritic cells
elevated Acetyl CoA carboxylase 1 (ACC1), which is associated with fatty acid synthesis, resulting in
the activation of an abnormal metabolic process, which in turn preceded an excessive virus-induced
immune response [128]. In other words, SIRT1 may regulate the Th17 immune response from
virus-infected dendritic cells by regulating their metabolic pathways [128]. The relationship between
SIRT1 and IL-17 has been well studied in other diseases. Previous studies investigated the effect of SIRT1
activation in patients with psoriasis [129,130]. They found a significant histological improvement in the
SIRT activator group compared to that in the placebo group, which was attributed to the inhibition of
IL-17 and TNF-α [129]. Moreover, resveratrol, a SIRT1 activator, suppressed the expression of CCL6, a
chemokine that is essential chemokine for the production of IL-17 [130]. The involvement of Th17 cells
was demonstrated in patients with diabetic ophthalmopathy [130,131]. Other studies reported that the
SIRT1 activator might inhibit the elevation in serum IL-17 levels, and regulation of IL-17 through SIRT1
probably leads to a reduction in the development of diabetic ophthalmopathy [132]. By applying the
proven relationship between SIRT1 and IL-17 in these other diseases to viral-induced asthma, SIRT1
could become a new therapeutic target in the future.

SIRT1 regulated IL-6 expression in the ovalbumin-induced asthma mouse model [17,133,134].
These studies confirmed that the activation of the PI3K-Akt pathway led to an increase in IL-6, and this
response was attenuated by SIRT1 inhibitors [133,134]. Ichikawa et al. showed that a SIRT1 activator
suppressed IL-6 and TNF-α production by splenocytes in ovalbumin-challenged mice [17]. These
indicate that the Akt-SIRT1 signaling is a crucial pathway to the control of IL-6. Interestingly, another
study reported that metformin, a pharmacotherapeutic agent used to treat diabetes, reduced IL-6,
IL-17, IL-1β, and TNF-α levels in a mouse model of acute respiratory distress syndrome [135]. One
possibility was that the low expression of miRNA138 might suppress the mitogen-activated protein
kinase (MAPK) pathway upstream of SIRT1 [135]. Moreover, metformin, like resveratrol, was reported
to inhibit HIF-1α expression, but through a different pathway [136]. In clinical practice, oral metformin
reduced asthma-related hospitalizations and asthma exacerbations [137]. Metformin may be one of the
treatment options in patients with virus-induced asthma exacerbations by regulating Th17 cells.

The relationship between SIRT1 and TGF-β has often been studied in idiopathic pulmonary
fibrosis (IPF). Zeng et al. used a bleomycin-induced mouse model to explore the role of SIRT1 in
pulmonary fibrosis [138]. They demonstrated that activation of SIRT1 by resveratrol and SRT1720
inhibited myofibroblast differentiation induced by TGF-β1. Overexpression of SIRT6, a member of the
SIRT family, reduced E-cadherin, a marker of EMT, through the TGF-β pathway [139]. This result might
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involve p21, a protein that regulates cell cycle progression [140]. Another study showed that resveratrol
inhibits airway remodeling through transforming growth factor (TGF)-β1/Smad signaling [141]. The
relationship between SIRT1 and TGF-β, which was identified in IPF, has potential applications in
virus-induced asthma exacerbations, but the mechanisms of this relationship are still unclear.

Therefore, the findings of these studies suggest that future treatments against cellular senescence,
especially SIRT1, may regulate Th17 airway inflammation. We believe that metformin is an attractive
treatment option because it is already used in many patients with few adverse events, but further
research is needed to determine whether it is useful in patients with virus-induced asthma exacerbations
who do not have diabetes mellitus.

2.6. Viral Protein

2.6.1. Viral Protein in Virus-Induced Asthma Exacerbations

Protein acetylation plays a crucial role in host response to viral infection. Histone deacetylases
(HDAC) are enzymes that define chromatin structure and are closely associated with chronic respiratory
diseases [142]. Adenovirus infection resulted in reduced activation of HDAC in OVA sensitization
mice [143]. Experiments using human blood samples also showed reduced activation of HDAC in
asthmatics compared to that in healthy subjects [144].

NF-E2-related factor2 (Nrf2) is a transcription factor that has a protective effect on cells from
oxidative stress caused by reactive oxygen species. RSV, which frequently causes asthma exacerbations,
induces deacetylation of Nrf2 [145]. In vitro models of rhinovirus infection showed that inhibition
of S-nitrosoglutathione reductase was reported to increase SQSTM1, an Nrf2-dependent gene, and
suppress viral growth, with an effect on airway hypersensitivity [146].

Although these viral proteins are important factors in the pathogenesis of virus-induced asthma
exacerbations, there remain unanswered questions concerning established treatment.

2.6.2. The Relationship between SIRT1 and Viral Proteins in Virus-Induced Asthma Exacerbations

Theophylline, a drug for asthma and COPD, activates HDAC and exerts an anti-inflammatory
effect. When the activity of HDAC was investigated in LPS-stimulated macrophages, HDACs were
activated by the combination of theophylline compared to dexamethasone alone [147]. In a clinical
trial examining the effects of low volume theophylline, the addition of theophylline to inhaled steroids
improved respiratory function [148]. In patients with acute exacerbations of COPD, theophylline also
improved HDAC activity during the stable phase [149]. Interestingly, steroid resistance correlated
with a decrease in SIRT, and a combination of steroid, theophylline, curcumin, or resveratrol treatment
resulted in an increase in SIRT1 as well as an increase in glucocorticoid receptors [150]. Doxophylline,
which is considered to have fewer side effects than conventional theophylline preparations, improved
the protein expression of SIRT1, which was reduced by LPS stimulation [151]. As a treatment option
for targeting SIRT1, theophylline is very effective for patients with inadequate response to steroids.

SIRT1 regulates the expression of various genes by deacetylating histones and transcription
factors, such as NF-kB, STAT1, and STAT3 [152–155]. SIRT1 deacetylates induced NF-kB activation in
monocytes [152]. SIRT1 inhibits growth hormone-stimulated STAT3 activation in mouse embryonic
cells via the deacetylation of STAT3 [153]. Treatment with SIRT1 agonists deacetylates STAT3, which
inhibits T-cell differentiation into Th7 and Th17 cells [154]. A recent study reported that the activation
of SIRT1 by viral infection further affected STAT1 activation [155]. These studies indicated that
transcription factors, including STAT1 and STAT3, may be potential biomarkers in virus-induced
asthma with SIRT1-targeted therapy.

SIRT1 also regulates antioxidant genes, which are important antiaging genes, via deacetylation
of FOXO3 and Nrf2. Resveratrol increased the expression of Nrf2 in obese rat models and
paraquat-induced lung injury mouse models [156,157]. Apios americana Medikus is an edible tuberous
legume native to Eastern North America. Chu and colleagues showed that Apios americana Medikus
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leaf extract increased the expression of Nrf2 in mouse macrophages stimulated with LPS [158]. At
present, there is no specific treatment for Nrf2, and further studies are needed. Roflumilast, a selective
inhibitor of phosphodiesterase 4 (PDE4), was reported to reduce exacerbations and hospitalization
rates as a treatment for COPD [159]. Roflumilast is highlighted by the fact that it increased the SIRT1
expression along with Nrf2 expression in COPD patients [160]. In vitro, RSV infection increased the
Nrf2 expression and its increase was attenuated by roflumilast [161]. The proinflammatory cytokines
IL-6, IL-8, and TNF-αwere also reduced in a capacity-dependent manner. These results suggest that
Nrf2 may be a potential therapeutic target for viral asthma exacerbations.

Middle East Respiratory Syndrome coronavirus (MERS-CoV) pp1ab protein is potentially regulated
by SIRT1 [162]. SARS-CoV-2 might have a similar motif, but further study is required. SIRT1 and other
sirtuins were also reported to have antiviral roles against several DNA and RNA viruses, including
HCMV, HSV-1, adenovirus, and influenza A [163]. Although resveratrol was found to inhibit HRV
replication in nasal epithelial cells [164], it is unclear whether this is due to intercellular adhesion
molecule-1 (ICAM-1) as the HRV receptor, or reduction or deacetylation on potential viral protein
acetylation, as the acetylation of HRV or RSV proteins remains unclear. Caspase 3 cleavage levels,
indicators of apoptosis, are known to elevate in MERS-CoV infection [165], and resveratrol was found
to reduce caspase 3 cleavage levels with less cytotoxicity [166]. Activation of SIRT1 may reduce
apoptosis through deacetylation of viral proteins. In another report using airway epithelial cells, Kim
and colleagues examined the relationship between cellular senescence and the replication efficiency
of influenza virus [167]. Senescent cells infected with influenza virus had reduced expression of
IFN-β, which plays an essential role in the immune response compared to nonsenescent cells. They
also examined whether SIRT1, an essential factor in cellular senescence, affected viral replication.
Interestingly, SIRT1-knockdown cells showed enhanced expression of proteins associated with influenza
virus and reduced cell viability [167].

Collectively, with further research, therapies targeting SIRT1 may control asthma exacerbations
through acetylation of the viral protein.

3. Conclusions

We reviewed the cellular interactions between SIRT1 and inflammatory cells involved in
virus-induced asthma exacerbations (Table 1). Viral infection is a common health problem for
children and adults with asthma. Especially with the recent rampant COVID-19 pandemic, treating
and preventing viral infections is becoming an area of focus. While the role of various respiratory
viruses in inducing the exacerbation of asthma is well established, the pathophysiological mechanisms
underlying virus-induced asthma exacerbation and its treatment remain controversial. Existing drugs
such as ICS and biologics are among the best treatment options for asthma exacerbation triggered
by viral infection, but they may be partially ineffective due to unknown mechanisms. The current
guidelines do not consider the potential for therapeutic agents related to SIRT1. The difference in the
role of SIRT1 in asthma between adults and children is not clear.

Table 1. Relationship between target cells and SIRT1.

Target Cells Effect of SIRT1 Activation References (Model)

Neutrophils CXCL8 ↓ [54–60] (in vitro)
MMP-9 ↓ [53,61] (animal)

Eosinophils IL-4, IL-5, IL-13 ↓ [70–72] (in vitro)
GATA3 ↓ [73] (animal)

Mast cells and B cells

IgE ↓ [92,94] (animal)
[93] (in vitro)

LTC4, PG ↓ [96–99] (animal)
Degranulation ↓ [95] (animal)

ILC2
Il-25, IL-33, TSLP ↓ [109] (in vitro)
epithelial damage ↓ [110,111] (animal)

miRNA34a, miRNA570 ↓ [114,115] (in vitro)
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Table 1. Cont.

Target Cells Effect of SIRT1 Activation References (Model)

Th17 cells

[128] (animal)
IL-17 ↓ [129–132] (clinical trial)

[17,133–136] (animal)
IL-6 ↓ [139,140] (in vitro)

TGF-β↓ [138,141] (animal)

Viral protein

HDAC activity ↑ [149] (clinical trial)
steroid resistance ↓ [150] (in vitro)

NF-κB↓ [152] (in vitro)
STAT1, STAT3 ↓ [154,155] (in vitro)

[153] (animal)
Nrf2 ↓ [161] (in vitro)

[156–158] (animal)
[159,160] (clinical trial)

Viral replication ↓ [162–167] (in vitro)

However, as mentioned above, SIRT1-related signaling pathways are closely related to airway
inflammation in asthma. A better understanding of the SIRT1 mechanism may aid in the prevention
and treatment of virus-induced asthma exacerbations (Figure 2). The development of therapies targeting
SIRT1 could be a boon for patients with virus-induced asthma. Further research is needed to clarify the
relationship between known drugs and SIRT1 and to explore the development of new drugs related
to SIRT1.

HDAC
STAT1/STAT3

Nrf2

PI3K/Akt↓ or NF-κB↓ or p38 MAPK↓

SIRT1 activation

AMPK↑
PTP1B↓
PLA2↓
LOX↓

miR-34a↓ miR-570↓ FOXO3a↓ miR-138↓GATA3↓

Virus-induced 
asthma exacerbations↓

IgE↓
CysLTs↓

PG↓

Mast cells/B cells

IL-4↓
IL-5↓

IL-13↓

Eosinophils

IL-25↓
IL-33↓
TSLP↓

ILC2s

CXCL8↓
MMP-9↓

Neutrophils

IL-17↓
IL-6↓

TGF-β↓

Th17 Viral protein

Figure 2. SIRT1-related signaling to virus-induced asthma exacerbations. Activation of SIRT1
promotes the activation of transcription factors, enzyme activity, and viral proteins through PI3K/Akt,
NF-κB, and p38 MAPK signaling. As a result, proinflammatory cytokines and chemokines related
to mast cells/B cells, eosinophils, ILC2, neutrophils, and Th17 are reduced. Finally, it may
lead to the treatment or prevention of virus-induced asthma exacerbations. AMPK; adenosine
monophosphate-activated protein kinase: CXCL8; C-X-C motif ligand 8: FOXO3a; forkhead box
class O 3a: GATA3; GATA binding protein 3; HDAC; histone deacetylase: IL; interleukin: ILC2;
group 2 innate lymphoid cells: LOX; lipoxygenase: MAPK; mitogen-activated protein kinase: miR;
microRNA: MMP-9; matrix metalloproteinase-9: Nrf2; NF-E2-related factor 2: PI3K; phosphoinositide
3-kinase: PLA2; phospholipaseA2: PTP1B; protein-tyrosine phosphatase 1B: SIRT1; sirtuin1: STAT;
signal transducers and activators of transcription: TGF-β; transforming growth factor (TGF)-β: TSLP;
thymic stromal lymphopoietin.
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